diff options
author | Guido van Rossum <guido@python.org> | 1996-07-30 19:02:01 (GMT) |
---|---|---|
committer | Guido van Rossum <guido@python.org> | 1996-07-30 19:02:01 (GMT) |
commit | 72ba616066e6b90d32f2d0b49be394561bb1e518 (patch) | |
tree | c99455ed949bf2ad20a77119a6890866db856d73 /Demo/classes/Complex.py | |
parent | 89cb67bb642ee958d9f095728c99e943e994ca54 (diff) | |
download | cpython-72ba616066e6b90d32f2d0b49be394561bb1e518.zip cpython-72ba616066e6b90d32f2d0b49be394561bb1e518.tar.gz cpython-72ba616066e6b90d32f2d0b49be394561bb1e518.tar.bz2 |
Added note about Python's support of complex numbers.
Added exp(z).
Diffstat (limited to 'Demo/classes/Complex.py')
-rwxr-xr-x | Demo/classes/Complex.py | 12 |
1 files changed, 11 insertions, 1 deletions
diff --git a/Demo/classes/Complex.py b/Demo/classes/Complex.py index 5ac6b18..d2f6f23 100755 --- a/Demo/classes/Complex.py +++ b/Demo/classes/Complex.py @@ -1,6 +1,9 @@ # Complex numbers # --------------- +# [Now that Python has a complex data type built-in, this is not very +# useful, but it's still a nice example class] + # This module represents complex numbers as instances of the class Complex. # A Complex instance z has two data attribues, z.re (the real part) and z.im # (the imaginary part). In fact, z.re and z.im can have any value -- all @@ -15,6 +18,7 @@ # PolarToComplex([r [,phi [,fullcircle]]]) -> # the complex number z for which r == z.radius() and phi == z.angle(fullcircle) # (r and phi default to 0) +# exp(z) -> returns the complex exponential of z. Equivalent to pow(math.e,z). # # Complex numbers have the following methods: # z.abs() -> absolute value of z @@ -202,7 +206,9 @@ class Complex: if z is not None: raise TypeError, 'Complex does not support ternary pow()' if IsComplex(n): - if n.im: raise TypeError, 'Complex to the Complex power' + if n.im: + if self.im: raise TypeError, 'Complex to the Complex power' + else: return exp(math.log(self.re)*n) n = n.re r = pow(self.abs(), n) phi = n*self.angle() @@ -211,6 +217,10 @@ class Complex: def __rpow__(self, base): base = ToComplex(base) return pow(base, self) + +def exp(z): + r = math.exp(z.re) + return Complex(math.cos(z.im)*r,math.sin(z.im)*r) def checkop(expr, a, b, value, fuzz = 1e-6): |