summaryrefslogtreecommitdiffstats
path: root/Demo/scripts/queens.py
diff options
context:
space:
mode:
authorGuido van Rossum <guido@python.org>2000-11-16 21:25:51 (GMT)
committerGuido van Rossum <guido@python.org>2000-11-16 21:25:51 (GMT)
commit4526f2a230b3454928756bfeb2067701bb731028 (patch)
treef9906f0e602906e041b4d2c9bcd551bbc56a4c0e /Demo/scripts/queens.py
parenta3100de9ce508bb49dfb2616a32e3fd584b6064e (diff)
downloadcpython-4526f2a230b3454928756bfeb2067701bb731028.zip
cpython-4526f2a230b3454928756bfeb2067701bb731028.tar.gz
cpython-4526f2a230b3454928756bfeb2067701bb731028.tar.bz2
A solution to the classic N queens problem.
Diffstat (limited to 'Demo/scripts/queens.py')
-rwxr-xr-xDemo/scripts/queens.py85
1 files changed, 85 insertions, 0 deletions
diff --git a/Demo/scripts/queens.py b/Demo/scripts/queens.py
new file mode 100755
index 0000000..74756be
--- /dev/null
+++ b/Demo/scripts/queens.py
@@ -0,0 +1,85 @@
+#! /usr/bin/env python
+
+"""N queens problem.
+
+The (well-known) problem is due to Niklaus Wirth.
+
+This solution is inspired by Dijkstra (Structured Programming). It is
+a classic recursive backtracking approach.
+
+"""
+
+N = 8 # Default; command line overrides
+
+class Queens:
+
+ def __init__(self, n=N):
+ self.n = n
+ self.reset()
+
+ def reset(self):
+ n = self.n
+ self.y = [None]*n # Where is the queen in column x
+ self.row = [0]*n # Is row[y] safe?
+ self.up = [0] * (2*n-1) # Is upward diagonal[x-y] safe?
+ self.down = [0] * (2*n-1) # Is downward diagonal[x+y] safe?
+ self.nfound = 0 # Instrumentation
+
+ def solve(self, x=0): # Recursive solver
+ for y in range(self.n):
+ if self.safe(x, y):
+ self.place(x, y)
+ if x+1 == self.n:
+ self.display()
+ else:
+ self.solve(x+1)
+ self.remove(x, y)
+
+ def safe(self, x, y):
+ return not self.row[y] and not self.up[x-y] and not self.down[x+y]
+
+ def place(self, x, y):
+ self.y[x] = y
+ self.row[y] = 1
+ self.up[x-y] = 1
+ self.down[x+y] = 1
+
+ def remove(self, x, y):
+ self.y[x] = None
+ self.row[y] = 0
+ self.up[x-y] = 0
+ self.down[x+y] = 0
+
+ silent = 0 # If set, count solutions only
+
+ def display(self):
+ self.nfound = self.nfound + 1
+ if self.silent:
+ return
+ print '+-' + '--'*self.n + '+'
+ for y in range(self.n-1, -1, -1):
+ print '|',
+ for x in range(self.n):
+ if self.y[x] == y:
+ print "Q",
+ else:
+ print ".",
+ print '|'
+ print '+-' + '--'*self.n + '+'
+
+def main():
+ import sys
+ silent = 0
+ n = N
+ if sys.argv[1:2] == ['-n']:
+ silent = 1
+ del sys.argv[1]
+ if sys.argv[1:]:
+ n = int(sys.argv[1])
+ q = Queens(n)
+ q.silent = silent
+ q.solve()
+ print "Found", q.nfound, "solutions."
+
+if __name__ == "__main__":
+ main()