diff options
author | Éric Araujo <merwok@netwok.org> | 2011-06-01 18:42:49 (GMT) |
---|---|---|
committer | Éric Araujo <merwok@netwok.org> | 2011-06-01 18:42:49 (GMT) |
commit | 3a9f58f6b3938823328374f34a3b52a167fed871 (patch) | |
tree | 10cc586248124e3c921dd921602e9730f7064397 /Doc/install | |
parent | a003af1ce9d008e03371b3d16c4d6361961c2e78 (diff) | |
download | cpython-3a9f58f6b3938823328374f34a3b52a167fed871.zip cpython-3a9f58f6b3938823328374f34a3b52a167fed871.tar.gz cpython-3a9f58f6b3938823328374f34a3b52a167fed871.tar.bz2 |
Add documentation for the packaging module.
This updates the user guide to refer to Packaging instead of Distutils.
Some files still require an update.
Diffstat (limited to 'Doc/install')
-rw-r--r-- | Doc/install/index.rst | 1005 | ||||
-rw-r--r-- | Doc/install/install.rst | 1029 | ||||
-rw-r--r-- | Doc/install/pysetup-config.rst | 44 | ||||
-rw-r--r-- | Doc/install/pysetup-servers.rst | 61 | ||||
-rw-r--r-- | Doc/install/pysetup.rst | 163 |
5 files changed, 1297 insertions, 1005 deletions
diff --git a/Doc/install/index.rst b/Doc/install/index.rst deleted file mode 100644 index 31c1d7f..0000000 --- a/Doc/install/index.rst +++ /dev/null @@ -1,1005 +0,0 @@ -.. highlightlang:: none - -.. _install-index: - -***************************** - Installing Python Modules -***************************** - -:Author: Greg Ward -:Release: |version| -:Date: |today| - -.. TODO: Fill in XXX comments - -.. The audience for this document includes people who don't know anything - about Python and aren't about to learn the language just in order to - install and maintain it for their users, i.e. system administrators. - Thus, I have to be sure to explain the basics at some point: - sys.path and PYTHONPATH at least. Should probably give pointers to - other docs on "import site", PYTHONSTARTUP, PYTHONHOME, etc. - - Finally, it might be useful to include all the material from my "Care - and Feeding of a Python Installation" talk in here somewhere. Yow! - -.. topic:: Abstract - - This document describes the Python Distribution Utilities ("Distutils") from the - end-user's point-of-view, describing how to extend the capabilities of a - standard Python installation by building and installing third-party Python - modules and extensions. - - -.. _inst-intro: - -Introduction -============ - -Although Python's extensive standard library covers many programming needs, -there often comes a time when you need to add some new functionality to your -Python installation in the form of third-party modules. This might be necessary -to support your own programming, or to support an application that you want to -use and that happens to be written in Python. - -In the past, there has been little support for adding third-party modules to an -existing Python installation. With the introduction of the Python Distribution -Utilities (Distutils for short) in Python 2.0, this changed. - -This document is aimed primarily at the people who need to install third-party -Python modules: end-users and system administrators who just need to get some -Python application running, and existing Python programmers who want to add some -new goodies to their toolbox. You don't need to know Python to read this -document; there will be some brief forays into using Python's interactive mode -to explore your installation, but that's it. If you're looking for information -on how to distribute your own Python modules so that others may use them, see -the :ref:`distutils-index` manual. - - -.. _inst-trivial-install: - -Best case: trivial installation -------------------------------- - -In the best case, someone will have prepared a special version of the module -distribution you want to install that is targeted specifically at your platform -and is installed just like any other software on your platform. For example, -the module developer might make an executable installer available for Windows -users, an RPM package for users of RPM-based Linux systems (Red Hat, SuSE, -Mandrake, and many others), a Debian package for users of Debian-based Linux -systems, and so forth. - -In that case, you would download the installer appropriate to your platform and -do the obvious thing with it: run it if it's an executable installer, ``rpm ---install`` it if it's an RPM, etc. You don't need to run Python or a setup -script, you don't need to compile anything---you might not even need to read any -instructions (although it's always a good idea to do so anyways). - -Of course, things will not always be that easy. You might be interested in a -module distribution that doesn't have an easy-to-use installer for your -platform. In that case, you'll have to start with the source distribution -released by the module's author/maintainer. Installing from a source -distribution is not too hard, as long as the modules are packaged in the -standard way. The bulk of this document is about building and installing -modules from standard source distributions. - - -.. _inst-new-standard: - -The new standard: Distutils ---------------------------- - -If you download a module source distribution, you can tell pretty quickly if it -was packaged and distributed in the standard way, i.e. using the Distutils. -First, the distribution's name and version number will be featured prominently -in the name of the downloaded archive, e.g. :file:`foo-1.0.tar.gz` or -:file:`widget-0.9.7.zip`. Next, the archive will unpack into a similarly-named -directory: :file:`foo-1.0` or :file:`widget-0.9.7`. Additionally, the -distribution will contain a setup script :file:`setup.py`, and a file named -:file:`README.txt` or possibly just :file:`README`, which should explain that -building and installing the module distribution is a simple matter of running :: - - python setup.py install - -If all these things are true, then you already know how to build and install the -modules you've just downloaded: Run the command above. Unless you need to -install things in a non-standard way or customize the build process, you don't -really need this manual. Or rather, the above command is everything you need to -get out of this manual. - - -.. _inst-standard-install: - -Standard Build and Install -========================== - -As described in section :ref:`inst-new-standard`, building and installing a module -distribution using the Distutils is usually one simple command:: - - python setup.py install - -On Unix, you'd run this command from a shell prompt; on Windows, you have to -open a command prompt window ("DOS box") and do it there; on Mac OS X, you open -a :command:`Terminal` window to get a shell prompt. - - -.. _inst-platform-variations: - -Platform variations -------------------- - -You should always run the setup command from the distribution root directory, -i.e. the top-level subdirectory that the module source distribution unpacks -into. For example, if you've just downloaded a module source distribution -:file:`foo-1.0.tar.gz` onto a Unix system, the normal thing to do is:: - - gunzip -c foo-1.0.tar.gz | tar xf - # unpacks into directory foo-1.0 - cd foo-1.0 - python setup.py install - -On Windows, you'd probably download :file:`foo-1.0.zip`. If you downloaded the -archive file to :file:`C:\\Temp`, then it would unpack into -:file:`C:\\Temp\\foo-1.0`; you can use either a archive manipulator with a -graphical user interface (such as WinZip) or a command-line tool (such as -:program:`unzip` or :program:`pkunzip`) to unpack the archive. Then, open a -command prompt window ("DOS box"), and run:: - - cd c:\Temp\foo-1.0 - python setup.py install - - -.. _inst-splitting-up: - -Splitting the job up --------------------- - -Running ``setup.py install`` builds and installs all modules in one run. If you -prefer to work incrementally---especially useful if you want to customize the -build process, or if things are going wrong---you can use the setup script to do -one thing at a time. This is particularly helpful when the build and install -will be done by different users---for example, you might want to build a module -distribution and hand it off to a system administrator for installation (or do -it yourself, with super-user privileges). - -For example, you can build everything in one step, and then install everything -in a second step, by invoking the setup script twice:: - - python setup.py build - python setup.py install - -If you do this, you will notice that running the :command:`install` command -first runs the :command:`build` command, which---in this case---quickly notices -that it has nothing to do, since everything in the :file:`build` directory is -up-to-date. - -You may not need this ability to break things down often if all you do is -install modules downloaded off the 'net, but it's very handy for more advanced -tasks. If you get into distributing your own Python modules and extensions, -you'll run lots of individual Distutils commands on their own. - - -.. _inst-how-build-works: - -How building works ------------------- - -As implied above, the :command:`build` command is responsible for putting the -files to install into a *build directory*. By default, this is :file:`build` -under the distribution root; if you're excessively concerned with speed, or want -to keep the source tree pristine, you can change the build directory with the -:option:`--build-base` option. For example:: - - python setup.py build --build-base=/tmp/pybuild/foo-1.0 - -(Or you could do this permanently with a directive in your system or personal -Distutils configuration file; see section :ref:`inst-config-files`.) Normally, this -isn't necessary. - -The default layout for the build tree is as follows:: - - --- build/ --- lib/ - or - --- build/ --- lib.<plat>/ - temp.<plat>/ - -where ``<plat>`` expands to a brief description of the current OS/hardware -platform and Python version. The first form, with just a :file:`lib` directory, -is used for "pure module distributions"---that is, module distributions that -include only pure Python modules. If a module distribution contains any -extensions (modules written in C/C++), then the second form, with two ``<plat>`` -directories, is used. In that case, the :file:`temp.{plat}` directory holds -temporary files generated by the compile/link process that don't actually get -installed. In either case, the :file:`lib` (or :file:`lib.{plat}`) directory -contains all Python modules (pure Python and extensions) that will be installed. - -In the future, more directories will be added to handle Python scripts, -documentation, binary executables, and whatever else is needed to handle the job -of installing Python modules and applications. - - -.. _inst-how-install-works: - -How installation works ----------------------- - -After the :command:`build` command runs (whether you run it explicitly, or the -:command:`install` command does it for you), the work of the :command:`install` -command is relatively simple: all it has to do is copy everything under -:file:`build/lib` (or :file:`build/lib.{plat}`) to your chosen installation -directory. - -If you don't choose an installation directory---i.e., if you just run ``setup.py -install``\ ---then the :command:`install` command installs to the standard -location for third-party Python modules. This location varies by platform and -by how you built/installed Python itself. On Unix (and Mac OS X, which is also -Unix-based), it also depends on whether the module distribution being installed -is pure Python or contains extensions ("non-pure"): - -+-----------------+-----------------------------------------------------+--------------------------------------------------+-------+ -| Platform | Standard installation location | Default value | Notes | -+=================+=====================================================+==================================================+=======+ -| Unix (pure) | :file:`{prefix}/lib/python{X.Y}/site-packages` | :file:`/usr/local/lib/python{X.Y}/site-packages` | \(1) | -+-----------------+-----------------------------------------------------+--------------------------------------------------+-------+ -| Unix (non-pure) | :file:`{exec-prefix}/lib/python{X.Y}/site-packages` | :file:`/usr/local/lib/python{X.Y}/site-packages` | \(1) | -+-----------------+-----------------------------------------------------+--------------------------------------------------+-------+ -| Windows | :file:`{prefix}\\Lib\\site-packages` | :file:`C:\\Python{XY}\\Lib\\site-packages` | \(2) | -+-----------------+-----------------------------------------------------+--------------------------------------------------+-------+ - -Notes: - -(1) - Most Linux distributions include Python as a standard part of the system, so - :file:`{prefix}` and :file:`{exec-prefix}` are usually both :file:`/usr` on - Linux. If you build Python yourself on Linux (or any Unix-like system), the - default :file:`{prefix}` and :file:`{exec-prefix}` are :file:`/usr/local`. - -(2) - The default installation directory on Windows was :file:`C:\\Program - Files\\Python` under Python 1.6a1, 1.5.2, and earlier. - -:file:`{prefix}` and :file:`{exec-prefix}` stand for the directories that Python -is installed to, and where it finds its libraries at run-time. They are always -the same under Windows, and very often the same under Unix and Mac OS X. You -can find out what your Python installation uses for :file:`{prefix}` and -:file:`{exec-prefix}` by running Python in interactive mode and typing a few -simple commands. Under Unix, just type ``python`` at the shell prompt. Under -Windows, choose :menuselection:`Start --> Programs --> Python X.Y --> -Python (command line)`. Once the interpreter is started, you type Python code -at the prompt. For example, on my Linux system, I type the three Python -statements shown below, and get the output as shown, to find out my -:file:`{prefix}` and :file:`{exec-prefix}`:: - - Python 2.4 (#26, Aug 7 2004, 17:19:02) - Type "help", "copyright", "credits" or "license" for more information. - >>> import sys - >>> sys.prefix - '/usr' - >>> sys.exec_prefix - '/usr' - -If you don't want to install modules to the standard location, or if you don't -have permission to write there, then you need to read about alternate -installations in section :ref:`inst-alt-install`. If you want to customize your -installation directories more heavily, see section :ref:`inst-custom-install` on -custom installations. - - -.. _inst-alt-install: - -Alternate Installation -====================== - -Often, it is necessary or desirable to install modules to a location other than -the standard location for third-party Python modules. For example, on a Unix -system you might not have permission to write to the standard third-party module -directory. Or you might wish to try out a module before making it a standard -part of your local Python installation. This is especially true when upgrading -a distribution already present: you want to make sure your existing base of -scripts still works with the new version before actually upgrading. - -The Distutils :command:`install` command is designed to make installing module -distributions to an alternate location simple and painless. The basic idea is -that you supply a base directory for the installation, and the -:command:`install` command picks a set of directories (called an *installation -scheme*) under this base directory in which to install files. The details -differ across platforms, so read whichever of the following sections applies to -you. - - -.. _inst-alt-install-prefix: - -Alternate installation: the home scheme ---------------------------------------- - -The idea behind the "home scheme" is that you build and maintain a personal -stash of Python modules. This scheme's name is derived from the idea of a -"home" directory on Unix, since it's not unusual for a Unix user to make their -home directory have a layout similar to :file:`/usr/` or :file:`/usr/local/`. -This scheme can be used by anyone, regardless of the operating system they -are installing for. - -Installing a new module distribution is as simple as :: - - python setup.py install --home=<dir> - -where you can supply any directory you like for the :option:`--home` option. On -Unix, lazy typists can just type a tilde (``~``); the :command:`install` command -will expand this to your home directory:: - - python setup.py install --home=~ - -The :option:`--home` option defines the installation base directory. Files are -installed to the following directories under the installation base as follows: - -+------------------------------+---------------------------+-----------------------------+ -| Type of file | Installation Directory | Override option | -+==============================+===========================+=============================+ -| pure module distribution | :file:`{home}/lib/python` | :option:`--install-purelib` | -+------------------------------+---------------------------+-----------------------------+ -| non-pure module distribution | :file:`{home}/lib/python` | :option:`--install-platlib` | -+------------------------------+---------------------------+-----------------------------+ -| scripts | :file:`{home}/bin` | :option:`--install-scripts` | -+------------------------------+---------------------------+-----------------------------+ -| data | :file:`{home}/share` | :option:`--install-data` | -+------------------------------+---------------------------+-----------------------------+ - - -.. _inst-alt-install-home: - -Alternate installation: Unix (the prefix scheme) ------------------------------------------------- - -The "prefix scheme" is useful when you wish to use one Python installation to -perform the build/install (i.e., to run the setup script), but install modules -into the third-party module directory of a different Python installation (or -something that looks like a different Python installation). If this sounds a -trifle unusual, it is---that's why the "home scheme" comes first. However, -there are at least two known cases where the prefix scheme will be useful. - -First, consider that many Linux distributions put Python in :file:`/usr`, rather -than the more traditional :file:`/usr/local`. This is entirely appropriate, -since in those cases Python is part of "the system" rather than a local add-on. -However, if you are installing Python modules from source, you probably want -them to go in :file:`/usr/local/lib/python2.{X}` rather than -:file:`/usr/lib/python2.{X}`. This can be done with :: - - /usr/bin/python setup.py install --prefix=/usr/local - -Another possibility is a network filesystem where the name used to write to a -remote directory is different from the name used to read it: for example, the -Python interpreter accessed as :file:`/usr/local/bin/python` might search for -modules in :file:`/usr/local/lib/python2.{X}`, but those modules would have to -be installed to, say, :file:`/mnt/{@server}/export/lib/python2.{X}`. This could -be done with :: - - /usr/local/bin/python setup.py install --prefix=/mnt/@server/export - -In either case, the :option:`--prefix` option defines the installation base, and -the :option:`--exec-prefix` option defines the platform-specific installation -base, which is used for platform-specific files. (Currently, this just means -non-pure module distributions, but could be expanded to C libraries, binary -executables, etc.) If :option:`--exec-prefix` is not supplied, it defaults to -:option:`--prefix`. Files are installed as follows: - -+------------------------------+-----------------------------------------------------+-----------------------------+ -| Type of file | Installation Directory | Override option | -+==============================+=====================================================+=============================+ -| pure module distribution | :file:`{prefix}/lib/python{X.Y}/site-packages` | :option:`--install-purelib` | -+------------------------------+-----------------------------------------------------+-----------------------------+ -| non-pure module distribution | :file:`{exec-prefix}/lib/python{X.Y}/site-packages` | :option:`--install-platlib` | -+------------------------------+-----------------------------------------------------+-----------------------------+ -| scripts | :file:`{prefix}/bin` | :option:`--install-scripts` | -+------------------------------+-----------------------------------------------------+-----------------------------+ -| data | :file:`{prefix}/share` | :option:`--install-data` | -+------------------------------+-----------------------------------------------------+-----------------------------+ - -There is no requirement that :option:`--prefix` or :option:`--exec-prefix` -actually point to an alternate Python installation; if the directories listed -above do not already exist, they are created at installation time. - -Incidentally, the real reason the prefix scheme is important is simply that a -standard Unix installation uses the prefix scheme, but with :option:`--prefix` -and :option:`--exec-prefix` supplied by Python itself as ``sys.prefix`` and -``sys.exec_prefix``. Thus, you might think you'll never use the prefix scheme, -but every time you run ``python setup.py install`` without any other options, -you're using it. - -Note that installing extensions to an alternate Python installation has no -effect on how those extensions are built: in particular, the Python header files -(:file:`Python.h` and friends) installed with the Python interpreter used to run -the setup script will be used in compiling extensions. It is your -responsibility to ensure that the interpreter used to run extensions installed -in this way is compatible with the interpreter used to build them. The best way -to do this is to ensure that the two interpreters are the same version of Python -(possibly different builds, or possibly copies of the same build). (Of course, -if your :option:`--prefix` and :option:`--exec-prefix` don't even point to an -alternate Python installation, this is immaterial.) - - -.. _inst-alt-install-windows: - -Alternate installation: Windows (the prefix scheme) ---------------------------------------------------- - -Windows has no concept of a user's home directory, and since the standard Python -installation under Windows is simpler than under Unix, the :option:`--prefix` -option has traditionally been used to install additional packages in separate -locations on Windows. :: - - python setup.py install --prefix="\Temp\Python" - -to install modules to the :file:`\\Temp\\Python` directory on the current drive. - -The installation base is defined by the :option:`--prefix` option; the -:option:`--exec-prefix` option is not supported under Windows. Files are -installed as follows: - -+------------------------------+---------------------------+-----------------------------+ -| Type of file | Installation Directory | Override option | -+==============================+===========================+=============================+ -| pure module distribution | :file:`{prefix}` | :option:`--install-purelib` | -+------------------------------+---------------------------+-----------------------------+ -| non-pure module distribution | :file:`{prefix}` | :option:`--install-platlib` | -+------------------------------+---------------------------+-----------------------------+ -| scripts | :file:`{prefix}\\Scripts` | :option:`--install-scripts` | -+------------------------------+---------------------------+-----------------------------+ -| data | :file:`{prefix}\\Data` | :option:`--install-data` | -+------------------------------+---------------------------+-----------------------------+ - - -.. _inst-custom-install: - -Custom Installation -=================== - -Sometimes, the alternate installation schemes described in section -:ref:`inst-alt-install` just don't do what you want. You might want to tweak just -one or two directories while keeping everything under the same base directory, -or you might want to completely redefine the installation scheme. In either -case, you're creating a *custom installation scheme*. - -You probably noticed the column of "override options" in the tables describing -the alternate installation schemes above. Those options are how you define a -custom installation scheme. These override options can be relative, absolute, -or explicitly defined in terms of one of the installation base directories. -(There are two installation base directories, and they are normally the same--- -they only differ when you use the Unix "prefix scheme" and supply different -:option:`--prefix` and :option:`--exec-prefix` options.) - -For example, say you're installing a module distribution to your home directory -under Unix---but you want scripts to go in :file:`~/scripts` rather than -:file:`~/bin`. As you might expect, you can override this directory with the -:option:`--install-scripts` option; in this case, it makes most sense to supply -a relative path, which will be interpreted relative to the installation base -directory (your home directory, in this case):: - - python setup.py install --home=~ --install-scripts=scripts - -Another Unix example: suppose your Python installation was built and installed -with a prefix of :file:`/usr/local/python`, so under a standard installation -scripts will wind up in :file:`/usr/local/python/bin`. If you want them in -:file:`/usr/local/bin` instead, you would supply this absolute directory for the -:option:`--install-scripts` option:: - - python setup.py install --install-scripts=/usr/local/bin - -(This performs an installation using the "prefix scheme," where the prefix is -whatever your Python interpreter was installed with--- :file:`/usr/local/python` -in this case.) - -If you maintain Python on Windows, you might want third-party modules to live in -a subdirectory of :file:`{prefix}`, rather than right in :file:`{prefix}` -itself. This is almost as easy as customizing the script installation directory ----you just have to remember that there are two types of modules to worry about, -pure modules and non-pure modules (i.e., modules from a non-pure distribution). -For example:: - - python setup.py install --install-purelib=Site --install-platlib=Site - -The specified installation directories are relative to :file:`{prefix}`. Of -course, you also have to ensure that these directories are in Python's module -search path, such as by putting a :file:`.pth` file in :file:`{prefix}`. See -section :ref:`inst-search-path` to find out how to modify Python's search path. - -If you want to define an entire installation scheme, you just have to supply all -of the installation directory options. The recommended way to do this is to -supply relative paths; for example, if you want to maintain all Python -module-related files under :file:`python` in your home directory, and you want a -separate directory for each platform that you use your home directory from, you -might define the following installation scheme:: - - python setup.py install --home=~ \ - --install-purelib=python/lib \ - --install-platlib=python/lib.$PLAT \ - --install-scripts=python/scripts - --install-data=python/data - -or, equivalently, :: - - python setup.py install --home=~/python \ - --install-purelib=lib \ - --install-platlib='lib.$PLAT' \ - --install-scripts=scripts - --install-data=data - -``$PLAT`` is not (necessarily) an environment variable---it will be expanded by -the Distutils as it parses your command line options, just as it does when -parsing your configuration file(s). - -Obviously, specifying the entire installation scheme every time you install a -new module distribution would be very tedious. Thus, you can put these options -into your Distutils config file (see section :ref:`inst-config-files`):: - - [install] - install-base=$HOME - install-purelib=python/lib - install-platlib=python/lib.$PLAT - install-scripts=python/scripts - install-data=python/data - -or, equivalently, :: - - [install] - install-base=$HOME/python - install-purelib=lib - install-platlib=lib.$PLAT - install-scripts=scripts - install-data=data - -Note that these two are *not* equivalent if you supply a different installation -base directory when you run the setup script. For example, :: - - python setup.py install --install-base=/tmp - -would install pure modules to :file:`{/tmp/python/lib}` in the first case, and -to :file:`{/tmp/lib}` in the second case. (For the second case, you probably -want to supply an installation base of :file:`/tmp/python`.) - -You probably noticed the use of ``$HOME`` and ``$PLAT`` in the sample -configuration file input. These are Distutils configuration variables, which -bear a strong resemblance to environment variables. In fact, you can use -environment variables in config files on platforms that have such a notion but -the Distutils additionally define a few extra variables that may not be in your -environment, such as ``$PLAT``. (And of course, on systems that don't have -environment variables, such as Mac OS 9, the configuration variables supplied by -the Distutils are the only ones you can use.) See section :ref:`inst-config-files` -for details. - -.. XXX need some Windows examples---when would custom installation schemes be - needed on those platforms? - - -.. XXX I'm not sure where this section should go. - -.. _inst-search-path: - -Modifying Python's Search Path ------------------------------- - -When the Python interpreter executes an :keyword:`import` statement, it searches -for both Python code and extension modules along a search path. A default value -for the path is configured into the Python binary when the interpreter is built. -You can determine the path by importing the :mod:`sys` module and printing the -value of ``sys.path``. :: - - $ python - Python 2.2 (#11, Oct 3 2002, 13:31:27) - [GCC 2.96 20000731 (Red Hat Linux 7.3 2.96-112)] on linux2 - Type "help", "copyright", "credits" or "license" for more information. - >>> import sys - >>> sys.path - ['', '/usr/local/lib/python2.3', '/usr/local/lib/python2.3/plat-linux2', - '/usr/local/lib/python2.3/lib-tk', '/usr/local/lib/python2.3/lib-dynload', - '/usr/local/lib/python2.3/site-packages'] - >>> - -The null string in ``sys.path`` represents the current working directory. - -The expected convention for locally installed packages is to put them in the -:file:`{...}/site-packages/` directory, but you may want to install Python -modules into some arbitrary directory. For example, your site may have a -convention of keeping all software related to the web server under :file:`/www`. -Add-on Python modules might then belong in :file:`/www/python`, and in order to -import them, this directory must be added to ``sys.path``. There are several -different ways to add the directory. - -The most convenient way is to add a path configuration file to a directory -that's already on Python's path, usually to the :file:`.../site-packages/` -directory. Path configuration files have an extension of :file:`.pth`, and each -line must contain a single path that will be appended to ``sys.path``. (Because -the new paths are appended to ``sys.path``, modules in the added directories -will not override standard modules. This means you can't use this mechanism for -installing fixed versions of standard modules.) - -Paths can be absolute or relative, in which case they're relative to the -directory containing the :file:`.pth` file. See the documentation of -the :mod:`site` module for more information. - -A slightly less convenient way is to edit the :file:`site.py` file in Python's -standard library, and modify ``sys.path``. :file:`site.py` is automatically -imported when the Python interpreter is executed, unless the :option:`-S` switch -is supplied to suppress this behaviour. So you could simply edit -:file:`site.py` and add two lines to it:: - - import sys - sys.path.append('/www/python/') - -However, if you reinstall the same major version of Python (perhaps when -upgrading from 2.2 to 2.2.2, for example) :file:`site.py` will be overwritten by -the stock version. You'd have to remember that it was modified and save a copy -before doing the installation. - -There are two environment variables that can modify ``sys.path``. -:envvar:`PYTHONHOME` sets an alternate value for the prefix of the Python -installation. For example, if :envvar:`PYTHONHOME` is set to ``/www/python``, -the search path will be set to ``['', '/www/python/lib/pythonX.Y/', -'/www/python/lib/pythonX.Y/plat-linux2', ...]``. - -The :envvar:`PYTHONPATH` variable can be set to a list of paths that will be -added to the beginning of ``sys.path``. For example, if :envvar:`PYTHONPATH` is -set to ``/www/python:/opt/py``, the search path will begin with -``['/www/python', '/opt/py']``. (Note that directories must exist in order to -be added to ``sys.path``; the :mod:`site` module removes paths that don't -exist.) - -Finally, ``sys.path`` is just a regular Python list, so any Python application -can modify it by adding or removing entries. - - -.. _inst-config-files: - -Distutils Configuration Files -============================= - -As mentioned above, you can use Distutils configuration files to record personal -or site preferences for any Distutils options. That is, any option to any -command can be stored in one of two or three (depending on your platform) -configuration files, which will be consulted before the command-line is parsed. -This means that configuration files will override default values, and the -command-line will in turn override configuration files. Furthermore, if -multiple configuration files apply, values from "earlier" files are overridden -by "later" files. - - -.. _inst-config-filenames: - -Location and names of config files ----------------------------------- - -The names and locations of the configuration files vary slightly across -platforms. On Unix and Mac OS X, the three configuration files (in the order -they are processed) are: - -+--------------+----------------------------------------------------------+-------+ -| Type of file | Location and filename | Notes | -+==============+==========================================================+=======+ -| system | :file:`{prefix}/lib/python{ver}/distutils/distutils.cfg` | \(1) | -+--------------+----------------------------------------------------------+-------+ -| personal | :file:`$HOME/.pydistutils.cfg` | \(2) | -+--------------+----------------------------------------------------------+-------+ -| local | :file:`setup.cfg` | \(3) | -+--------------+----------------------------------------------------------+-------+ - -And on Windows, the configuration files are: - -+--------------+-------------------------------------------------+-------+ -| Type of file | Location and filename | Notes | -+==============+=================================================+=======+ -| system | :file:`{prefix}\\Lib\\distutils\\distutils.cfg` | \(4) | -+--------------+-------------------------------------------------+-------+ -| personal | :file:`%HOME%\\pydistutils.cfg` | \(5) | -+--------------+-------------------------------------------------+-------+ -| local | :file:`setup.cfg` | \(3) | -+--------------+-------------------------------------------------+-------+ - -On all platforms, the "personal" file can be temporarily disabled by -passing the `--no-user-cfg` option. - -Notes: - -(1) - Strictly speaking, the system-wide configuration file lives in the directory - where the Distutils are installed; under Python 1.6 and later on Unix, this is - as shown. For Python 1.5.2, the Distutils will normally be installed to - :file:`{prefix}/lib/python1.5/site-packages/distutils`, so the system - configuration file should be put there under Python 1.5.2. - -(2) - On Unix, if the :envvar:`HOME` environment variable is not defined, the user's - home directory will be determined with the :func:`getpwuid` function from the - standard :mod:`pwd` module. This is done by the :func:`os.path.expanduser` - function used by Distutils. - -(3) - I.e., in the current directory (usually the location of the setup script). - -(4) - (See also note (1).) Under Python 1.6 and later, Python's default "installation - prefix" is :file:`C:\\Python`, so the system configuration file is normally - :file:`C:\\Python\\Lib\\distutils\\distutils.cfg`. Under Python 1.5.2, the - default prefix was :file:`C:\\Program Files\\Python`, and the Distutils were not - part of the standard library---so the system configuration file would be - :file:`C:\\Program Files\\Python\\distutils\\distutils.cfg` in a standard Python - 1.5.2 installation under Windows. - -(5) - On Windows, if the :envvar:`HOME` environment variable is not defined, - :envvar:`USERPROFILE` then :envvar:`HOMEDRIVE` and :envvar:`HOMEPATH` will - be tried. This is done by the :func:`os.path.expanduser` function used - by Distutils. - - -.. _inst-config-syntax: - -Syntax of config files ----------------------- - -The Distutils configuration files all have the same syntax. The config files -are grouped into sections. There is one section for each Distutils command, -plus a ``global`` section for global options that affect every command. Each -section consists of one option per line, specified as ``option=value``. - -For example, the following is a complete config file that just forces all -commands to run quietly by default:: - - [global] - verbose=0 - -If this is installed as the system config file, it will affect all processing of -any Python module distribution by any user on the current system. If it is -installed as your personal config file (on systems that support them), it will -affect only module distributions processed by you. And if it is used as the -:file:`setup.cfg` for a particular module distribution, it affects only that -distribution. - -You could override the default "build base" directory and make the -:command:`build\*` commands always forcibly rebuild all files with the -following:: - - [build] - build-base=blib - force=1 - -which corresponds to the command-line arguments :: - - python setup.py build --build-base=blib --force - -except that including the :command:`build` command on the command-line means -that command will be run. Including a particular command in config files has no -such implication; it only means that if the command is run, the options in the -config file will apply. (Or if other commands that derive values from it are -run, they will use the values in the config file.) - -You can find out the complete list of options for any command using the -:option:`--help` option, e.g.:: - - python setup.py build --help - -and you can find out the complete list of global options by using -:option:`--help` without a command:: - - python setup.py --help - -See also the "Reference" section of the "Distributing Python Modules" manual. - - -.. _inst-building-ext: - -Building Extensions: Tips and Tricks -==================================== - -Whenever possible, the Distutils try to use the configuration information made -available by the Python interpreter used to run the :file:`setup.py` script. -For example, the same compiler and linker flags used to compile Python will also -be used for compiling extensions. Usually this will work well, but in -complicated situations this might be inappropriate. This section discusses how -to override the usual Distutils behaviour. - - -.. _inst-tweak-flags: - -Tweaking compiler/linker flags ------------------------------- - -Compiling a Python extension written in C or C++ will sometimes require -specifying custom flags for the compiler and linker in order to use a particular -library or produce a special kind of object code. This is especially true if the -extension hasn't been tested on your platform, or if you're trying to -cross-compile Python. - -In the most general case, the extension author might have foreseen that -compiling the extensions would be complicated, and provided a :file:`Setup` file -for you to edit. This will likely only be done if the module distribution -contains many separate extension modules, or if they often require elaborate -sets of compiler flags in order to work. - -A :file:`Setup` file, if present, is parsed in order to get a list of extensions -to build. Each line in a :file:`Setup` describes a single module. Lines have -the following structure:: - - module ... [sourcefile ...] [cpparg ...] [library ...] - - -Let's examine each of the fields in turn. - -* *module* is the name of the extension module to be built, and should be a - valid Python identifier. You can't just change this in order to rename a module - (edits to the source code would also be needed), so this should be left alone. - -* *sourcefile* is anything that's likely to be a source code file, at least - judging by the filename. Filenames ending in :file:`.c` are assumed to be - written in C, filenames ending in :file:`.C`, :file:`.cc`, and :file:`.c++` are - assumed to be C++, and filenames ending in :file:`.m` or :file:`.mm` are assumed - to be in Objective C. - -* *cpparg* is an argument for the C preprocessor, and is anything starting with - :option:`-I`, :option:`-D`, :option:`-U` or :option:`-C`. - -* *library* is anything ending in :file:`.a` or beginning with :option:`-l` or - :option:`-L`. - -If a particular platform requires a special library on your platform, you can -add it by editing the :file:`Setup` file and running ``python setup.py build``. -For example, if the module defined by the line :: - - foo foomodule.c - -must be linked with the math library :file:`libm.a` on your platform, simply add -:option:`-lm` to the line:: - - foo foomodule.c -lm - -Arbitrary switches intended for the compiler or the linker can be supplied with -the :option:`-Xcompiler` *arg* and :option:`-Xlinker` *arg* options:: - - foo foomodule.c -Xcompiler -o32 -Xlinker -shared -lm - -The next option after :option:`-Xcompiler` and :option:`-Xlinker` will be -appended to the proper command line, so in the above example the compiler will -be passed the :option:`-o32` option, and the linker will be passed -:option:`-shared`. If a compiler option requires an argument, you'll have to -supply multiple :option:`-Xcompiler` options; for example, to pass ``-x c++`` -the :file:`Setup` file would have to contain ``-Xcompiler -x -Xcompiler c++``. - -Compiler flags can also be supplied through setting the :envvar:`CFLAGS` -environment variable. If set, the contents of :envvar:`CFLAGS` will be added to -the compiler flags specified in the :file:`Setup` file. - - -.. _inst-non-ms-compilers: - -Using non-Microsoft compilers on Windows ----------------------------------------- - -.. sectionauthor:: Rene Liebscher <R.Liebscher@gmx.de> - - - -Borland/CodeGear C++ -^^^^^^^^^^^^^^^^^^^^ - -This subsection describes the necessary steps to use Distutils with the Borland -C++ compiler version 5.5. First you have to know that Borland's object file -format (OMF) is different from the format used by the Python version you can -download from the Python or ActiveState Web site. (Python is built with -Microsoft Visual C++, which uses COFF as the object file format.) For this -reason you have to convert Python's library :file:`python25.lib` into the -Borland format. You can do this as follows: - -.. Should we mention that users have to create cfg-files for the compiler? -.. see also http://community.borland.com/article/0,1410,21205,00.html - -:: - - coff2omf python25.lib python25_bcpp.lib - -The :file:`coff2omf` program comes with the Borland compiler. The file -:file:`python25.lib` is in the :file:`Libs` directory of your Python -installation. If your extension uses other libraries (zlib, ...) you have to -convert them too. - -The converted files have to reside in the same directories as the normal -libraries. - -How does Distutils manage to use these libraries with their changed names? If -the extension needs a library (eg. :file:`foo`) Distutils checks first if it -finds a library with suffix :file:`_bcpp` (eg. :file:`foo_bcpp.lib`) and then -uses this library. In the case it doesn't find such a special library it uses -the default name (:file:`foo.lib`.) [#]_ - -To let Distutils compile your extension with Borland C++ you now have to type:: - - python setup.py build --compiler=bcpp - -If you want to use the Borland C++ compiler as the default, you could specify -this in your personal or system-wide configuration file for Distutils (see -section :ref:`inst-config-files`.) - - -.. seealso:: - - `C++Builder Compiler <http://www.codegear.com/downloads/free/cppbuilder>`_ - Information about the free C++ compiler from Borland, including links to the - download pages. - - `Creating Python Extensions Using Borland's Free Compiler <http://www.cyberus.ca/~g_will/pyExtenDL.shtml>`_ - Document describing how to use Borland's free command-line C++ compiler to build - Python. - - -GNU C / Cygwin / MinGW -^^^^^^^^^^^^^^^^^^^^^^ - -This section describes the necessary steps to use Distutils with the GNU C/C++ -compilers in their Cygwin and MinGW distributions. [#]_ For a Python interpreter -that was built with Cygwin, everything should work without any of these -following steps. - -Not all extensions can be built with MinGW or Cygwin, but many can. Extensions -most likely to not work are those that use C++ or depend on Microsoft Visual C -extensions. - -To let Distutils compile your extension with Cygwin you have to type:: - - python setup.py build --compiler=cygwin - -and for Cygwin in no-cygwin mode [#]_ or for MinGW type:: - - python setup.py build --compiler=mingw32 - -If you want to use any of these options/compilers as default, you should -consider writing it in your personal or system-wide configuration file for -Distutils (see section :ref:`inst-config-files`.) - -Older Versions of Python and MinGW -"""""""""""""""""""""""""""""""""" -The following instructions only apply if you're using a version of Python -inferior to 2.4.1 with a MinGW inferior to 3.0.0 (with -binutils-2.13.90-20030111-1). - -These compilers require some special libraries. This task is more complex than -for Borland's C++, because there is no program to convert the library. First -you have to create a list of symbols which the Python DLL exports. (You can find -a good program for this task at -http://www.emmestech.com/software/pexports-0.43/download_pexports.html). - -.. I don't understand what the next line means. --amk -.. (inclusive the references on data structures.) - -:: - - pexports python25.dll >python25.def - -The location of an installed :file:`python25.dll` will depend on the -installation options and the version and language of Windows. In a "just for -me" installation, it will appear in the root of the installation directory. In -a shared installation, it will be located in the system directory. - -Then you can create from these information an import library for gcc. :: - - /cygwin/bin/dlltool --dllname python25.dll --def python25.def --output-lib libpython25.a - -The resulting library has to be placed in the same directory as -:file:`python25.lib`. (Should be the :file:`libs` directory under your Python -installation directory.) - -If your extension uses other libraries (zlib,...) you might have to convert -them too. The converted files have to reside in the same directories as the -normal libraries do. - - -.. seealso:: - - `Building Python modules on MS Windows platform with MinGW <http://www.zope.org/Members/als/tips/win32_mingw_modules>`_ - Information about building the required libraries for the MinGW environment. - - -.. rubric:: Footnotes - -.. [#] This also means you could replace all existing COFF-libraries with OMF-libraries - of the same name. - -.. [#] Check http://sources.redhat.com/cygwin/ and http://www.mingw.org/ for more - information - -.. [#] Then you have no POSIX emulation available, but you also don't need - :file:`cygwin1.dll`. diff --git a/Doc/install/install.rst b/Doc/install/install.rst new file mode 100644 index 0000000..8067544 --- /dev/null +++ b/Doc/install/install.rst @@ -0,0 +1,1029 @@ +.. highlightlang:: none + +==================================== +Installing Python projects: overwiew +==================================== + +.. _packaging_packaging-intro: + +Introduction +============ + +Although Python's extensive standard library covers many programming needs, +there often comes a time when you need to add new functionality to your Python +installation in the form of third-party modules. This might be necessary to +support your own programming, or to support an application that you want to use +and that happens to be written in Python. + +In the past, there was little support for adding third-party modules to an +existing Python installation. With the introduction of the Python Distribution +Utilities (Distutils for short) in Python 2.0, this changed. However, not all +problems were solved; end-users had to rely on ``easy_install`` or +``pip`` to download third-party modules from PyPI, uninstall distributions or do +other maintenance operations. Packaging is a more complete replacement for +Distutils, in the standard library, with a backport named Distutils2 available +for older Python versions. + +This document is aimed primarily at people who need to install third-party +Python modules: end-users and system administrators who just need to get some +Python application running, and existing Python programmers who want to add +new goodies to their toolbox. You don't need to know Python to read this +document; there will be some brief forays into using Python's interactive mode +to explore your installation, but that's it. If you're looking for information +on how to distribute your own Python modules so that others may use them, see +the :ref:`packaging-index` manual. + + +.. _packaging-trivial-install: + +Best case: trivial installation +------------------------------- + +In the best case, someone will have prepared a special version of the module +distribution you want to install that is targeted specifically at your platform +and can be installed just like any other software on your platform. For example, +the module's developer might make an executable installer available for Windows +users, an RPM package for users of RPM-based Linux systems (Red Hat, SuSE, +Mandrake, and many others), a Debian package for users of Debian and derivative +systems, and so forth. + +In that case, you would use the standard system tools to download and install +the specific installer for your platform and its dependencies. + +Of course, things will not always be that easy. You might be interested in a +module whose distribution doesn't have an easy-to-use installer for your +platform. In that case, you'll have to start with the source distribution +released by the module's author/maintainer. Installing from a source +distribution is not too hard, as long as the modules are packaged in the +standard way. The bulk of this document addresses the building and installing +of modules from standard source distributions. + + +.. _packaging-distutils: + +The Python standard: Distutils +------------------------------ + +If you download a source distribution of a module, it will be obvious whether +it was packaged and distributed using Distutils. First, the distribution's name +and version number will be featured prominently in the name of the downloaded +archive, e.g. :file:`foo-1.0.tar.gz` or :file:`widget-0.9.7.zip`. Next, the +archive will unpack into a similarly-named directory: :file:`foo-1.0` or +:file:`widget-0.9.7`. Additionally, the distribution may contain a +:file:`setup.cfg` file and a file named :file:`README.txt` ---or possibly just +:file:`README`--- explaining that building and installing the module +distribution is a simple matter of issuing the following command at your shell's +prompt:: + + python setup.py install + +Third-party projects have extended Distutils to work around its limitations or +add functionality. After some years of near-inactivity in Distutils, a new +maintainer has started to standardize good ideas in PEPs and implement them in a +new, improved version of Distutils, called Distutils2 or Packaging. + + +.. _packaging-new-standard: + +The new standard: Packaging +--------------------------- + +The rules described in the first paragraph above apply to Packaging-based +projects too: a source distribution will have a name like +:file:`widget-0.9.7.zip`. One of the main differences with Distutils is that +distributions no longer have a :file:`setup.py` script; it used to cause a +number of issues. Now there is a unique script installed with Python itself:: + + pysetup install widget-0.9.7.zip + +Running this command is enough to build and install projects (Python modules or +packages, scripts or whole applications), without even having to unpack the +archive. It is also compatible with Distutils-based distributions. + +Unless you have to perform non-standard installations or customize the build +process, you can stop reading this manual ---the above command is everything you +need to get out of it. + +With :program:`pysetup`, you won't even have to manually download a distribution +before installing it; see :ref:`packaging-pysetup`. + + +.. _packaging-standard-install: + +Standard build and install +========================== + +As described in section :ref:`packaging-new-standard`, building and installing +a module distribution using Packaging usually comes down to one simple +command:: + + pysetup run install_dist + +How you actually run this command depends on the platform and the command line +interface it provides: + +* **Unix**: Use a shell prompt. +* **Windows**: Open a command prompt ("DOS console") or use :command:`Powershell`. +* **OS X**: Open a :command:`Terminal`. + + +.. _packaging-platform-variations: + +Platform variations +------------------- + +The setup command is meant to be run from the root directory of the source +distribution, i.e. the top-level subdirectory that the module source +distribution unpacks into. For example, if you've just downloaded a module +source distribution :file:`foo-1.0.tar.gz` onto a Unix system, the normal +steps to follow are these:: + + gunzip -c foo-1.0.tar.gz | tar xf - # unpacks into directory foo-1.0 + cd foo-1.0 + pysetup run install_dist + +On Windows, you'd probably download :file:`foo-1.0.zip`. If you downloaded the +archive file to :file:`C:\\Temp`, then it would unpack into +:file:`C:\\Temp\\foo-1.0`. To actually unpack the archive, you can use either +an archive manipulator with a graphical user interface (such as WinZip or 7-Zip) +or a command-line tool (such as :program:`unzip`, :program:`pkunzip` or, again, +:program:`7z`). Then, open a command prompt window ("DOS box" or +Powershell), and run:: + + cd c:\Temp\foo-1.0 + pysetup run install_dist + + +.. _packaging-splitting-up: + +Splitting the job up +-------------------- + +Running ``pysetup run install_dist`` builds and installs all modules in one go. If you +prefer to work incrementally ---especially useful if you want to customize the +build process, or if things are going wrong--- you can use the setup script to +do one thing at a time. This is a valuable tool when different users will perform +separately the build and install steps. For example, you might want to build a +module distribution and hand it off to a system administrator for installation +(or do it yourself, but with super-user or admin privileges). + +For example, to build everything in one step and then install everything +in a second step, you aptly invoke two distinct Packaging commands:: + + pysetup run build + pysetup run install_dist + +If you do this, you will notice that invoking the :command:`install_dist` command +first runs the :command:`build` command, which ---in this case--- quickly +notices it can spare itself the work, since everything in the :file:`build` +directory is up-to-date. + +You may often ignore this ability to divide the process in steps if all you do +is installing modules downloaded from the Internet, but it's very handy for +more advanced tasks. If you find yourself in the need for distributing your own +Python modules and extensions, though, you'll most likely run many individual +Packaging commands. + + +.. _packaging-how-build-works: + +How building works +------------------ + +As implied above, the :command:`build` command is responsible for collecting +and placing the files to be installed into a *build directory*. By default, +this is :file:`build`, under the distribution root. If you're excessively +concerned with speed, or want to keep the source tree pristine, you can specify +a different build directory with the :option:`--build-base` option. For example:: + + pysetup run build --build-base /tmp/pybuild/foo-1.0 + +(Or you could do this permanently with a directive in your system or personal +Packaging configuration file; see section :ref:`packaging-config-files`.) +In the usual case, however, all this is unnecessary. + +The build tree's default layout looks like so:: + + --- build/ --- lib/ + or + --- build/ --- lib.<plat>/ + temp.<plat>/ + +where ``<plat>`` expands to a brief description of the current OS/hardware +platform and Python version. The first form, with just a :file:`lib` directory, +is used for pure module distributions (module distributions that +include only pure Python modules). If a module distribution contains any +extensions (modules written in C/C++), then the second form, with two ``<plat>`` +directories, is used. In that case, the :file:`temp.{plat}` directory holds +temporary files generated during the compile/link process which are not intended +to be installed. In either case, the :file:`lib` (or :file:`lib.{plat}`) directory +contains all Python modules (pure Python and extensions) to be installed. + +In the future, more directories will be added to handle Python scripts, +documentation, binary executables, and whatever else is required to install +Python modules and applications. + + +.. _packaging-how-install-works: + +How installation works +---------------------- + +After the :command:`build` command is run (whether explicitly or by the +:command:`install_dist` command on your behalf), the work of the :command:`install_dist` +command is relatively simple: all it has to do is copy the contents of +:file:`build/lib` (or :file:`build/lib.{plat}`) to the installation directory +of your choice. + +If you don't choose an installation directory ---i.e., if you just run +``pysetup run install_dist``\ --- then the :command:`install_dist` command +installs to the standard location for third-party Python modules. This location +varies by platform and depending on how you built/installed Python itself. On +Unix (and Mac OS X, which is also Unix-based), it also depends on whether the +module distribution being installed is pure Python or contains extensions +("non-pure"): + ++-----------------+-----------------------------------------------------+--------------------------------------------------+-------+ +| Platform | Standard installation location | Default value | Notes | ++=================+=====================================================+==================================================+=======+ +| Unix (pure) | :file:`{prefix}/lib/python{X.Y}/site-packages` | :file:`/usr/local/lib/python{X.Y}/site-packages` | \(1) | ++-----------------+-----------------------------------------------------+--------------------------------------------------+-------+ +| Unix (non-pure) | :file:`{exec-prefix}/lib/python{X.Y}/site-packages` | :file:`/usr/local/lib/python{X.Y}/site-packages` | \(1) | ++-----------------+-----------------------------------------------------+--------------------------------------------------+-------+ +| Windows | :file:`{prefix}\\Lib\\site-packages` | :file:`C:\\Python{XY}\\Lib\\site-packages` | \(2) | ++-----------------+-----------------------------------------------------+--------------------------------------------------+-------+ + +Notes: + +(1) + Most Linux distributions include Python as a standard part of the system, so + :file:`{prefix}` and :file:`{exec-prefix}` are usually both :file:`/usr` on + Linux. If you build Python yourself on Linux (or any Unix-like system), the + default :file:`{prefix}` and :file:`{exec-prefix}` are :file:`/usr/local`. + +(2) + The default installation directory on Windows was :file:`C:\\Program + Files\\Python` under Python 1.6a1, 1.5.2, and earlier. + +:file:`{prefix}` and :file:`{exec-prefix}` stand for the directories that Python +is installed to, and where it finds its libraries at run-time. They are always +the same under Windows, and very often the same under Unix and Mac OS X. You +can find out what your Python installation uses for :file:`{prefix}` and +:file:`{exec-prefix}` by running Python in interactive mode and typing a few +simple commands. + +.. TODO link to Doc/using instead of duplicating + +To start the interactive Python interpreter, you need to follow a slightly +different recipe for each platform. Under Unix, just type :command:`python` at +the shell prompt. Under Windows (assuming the Python executable is on your +:envvar:`PATH`, which is the usual case), you can choose :menuselection:`Start --> Run`, +type ``python`` and press ``enter``. Alternatively, you can simply execute +:command:`python` at a command prompt ("DOS console" or Powershell). + +Once the interpreter is started, you type Python code at the prompt. For +example, on my Linux system, I type the three Python statements shown below, +and get the output as shown, to find out my :file:`{prefix}` and :file:`{exec-prefix}`:: + + Python 3.3 (r32:88445, Apr 2 2011, 10:43:54) + Type "help", "copyright", "credits" or "license" for more information. + >>> import sys + >>> sys.prefix + '/usr' + >>> sys.exec_prefix + '/usr' + +If you don't want to install modules to the standard location, or if you don't +have permission to write there, then you need to read about alternate +installations in section :ref:`packaging-alt-install`. If you want to customize your +installation directories more heavily, see section :ref:`packaging-custom-install`. + + +.. _packaging-alt-install: + +Alternate installation +====================== + +Often, it is necessary or desirable to install modules to a location other than +the standard location for third-party Python modules. For example, on a Unix +system you might not have permission to write to the standard third-party module +directory. Or you might wish to try out a module before making it a standard +part of your local Python installation. This is especially true when upgrading +a distribution already present: you want to make sure your existing base of +scripts still works with the new version before actually upgrading. + +The Packaging :command:`install_dist` command is designed to make installing module +distributions to an alternate location simple and painless. The basic idea is +that you supply a base directory for the installation, and the +:command:`install_dist` command picks a set of directories (called an *installation +scheme*) under this base directory in which to install files. The details +differ across platforms, so read whichever of the following sections applies to +you. + + +.. _packaging-alt-install-prefix: + +Alternate installation: the home scheme +--------------------------------------- + +The idea behind the "home scheme" is that you build and maintain a personal +stash of Python modules. This scheme's name is derived from the concept of a +"home" directory on Unix, since it's not unusual for a Unix user to make their +home directory have a layout similar to :file:`/usr/` or :file:`/usr/local/`. +In spite of its name's origin, this scheme can be used by anyone, regardless +of the operating system. + +Installing a new module distribution in this way is as simple as :: + + pysetup run install_dist --home <dir> + +where you can supply any directory you like for the :option:`--home` option. On +Unix, lazy typists can just type a tilde (``~``); the :command:`install_dist` command +will expand this to your home directory:: + + pysetup run install_dist --home ~ + +The :option:`--home` option defines the base directory for the installation. +Under it, files are installed to the following directories: + ++------------------------------+---------------------------+-----------------------------+ +| Type of file | Installation Directory | Override option | ++==============================+===========================+=============================+ +| pure module distribution | :file:`{home}/lib/python` | :option:`--install-purelib` | ++------------------------------+---------------------------+-----------------------------+ +| non-pure module distribution | :file:`{home}/lib/python` | :option:`--install-platlib` | ++------------------------------+---------------------------+-----------------------------+ +| scripts | :file:`{home}/bin` | :option:`--install-scripts` | ++------------------------------+---------------------------+-----------------------------+ +| data | :file:`{home}/share` | :option:`--install-data` | ++------------------------------+---------------------------+-----------------------------+ + + +.. _packaging-alt-install-home: + +Alternate installation: Unix (the prefix scheme) +------------------------------------------------ + +The "prefix scheme" is useful when you wish to use one Python installation to +run the build command, but install modules into the third-party module directory +of a different Python installation (or something that looks like a different +Python installation). If this sounds a trifle unusual, it is ---that's why the +"home scheme" comes first. However, there are at least two known cases where the +prefix scheme will be useful. + +First, consider that many Linux distributions put Python in :file:`/usr`, rather +than the more traditional :file:`/usr/local`. This is entirely appropriate, +since in those cases Python is part of "the system" rather than a local add-on. +However, if you are installing Python modules from source, you probably want +them to go in :file:`/usr/local/lib/python2.{X}` rather than +:file:`/usr/lib/python2.{X}`. This can be done with :: + + pysetup run install_dist --prefix /usr/local + +Another possibility is a network filesystem where the name used to write to a +remote directory is different from the name used to read it: for example, the +Python interpreter accessed as :file:`/usr/local/bin/python` might search for +modules in :file:`/usr/local/lib/python2.{X}`, but those modules would have to +be installed to, say, :file:`/mnt/{@server}/export/lib/python2.{X}`. This could +be done with :: + + pysetup run install_dist --prefix=/mnt/@server/export + +In either case, the :option:`--prefix` option defines the installation base, and +the :option:`--exec-prefix` option defines the platform-specific installation +base, which is used for platform-specific files. (Currently, this just means +non-pure module distributions, but could be expanded to C libraries, binary +executables, etc.) If :option:`--exec-prefix` is not supplied, it defaults to +:option:`--prefix`. Files are installed as follows: + ++------------------------------+-----------------------------------------------------+-----------------------------+ +| Type of file | Installation Directory | Override option | ++==============================+=====================================================+=============================+ +| pure module distribution | :file:`{prefix}/lib/python{X.Y}/site-packages` | :option:`--install-purelib` | ++------------------------------+-----------------------------------------------------+-----------------------------+ +| non-pure module distribution | :file:`{exec-prefix}/lib/python{X.Y}/site-packages` | :option:`--install-platlib` | ++------------------------------+-----------------------------------------------------+-----------------------------+ +| scripts | :file:`{prefix}/bin` | :option:`--install-scripts` | ++------------------------------+-----------------------------------------------------+-----------------------------+ +| data | :file:`{prefix}/share` | :option:`--install-data` | ++------------------------------+-----------------------------------------------------+-----------------------------+ + +There is no requirement that :option:`--prefix` or :option:`--exec-prefix` +actually point to an alternate Python installation; if the directories listed +above do not already exist, they are created at installation time. + +Incidentally, the real reason the prefix scheme is important is simply that a +standard Unix installation uses the prefix scheme, but with :option:`--prefix` +and :option:`--exec-prefix` supplied by Python itself as ``sys.prefix`` and +``sys.exec_prefix``. Thus, you might think you'll never use the prefix scheme, +but every time you run ``pysetup run install_dist`` without any other +options, you're using it. + +Note that installing extensions to an alternate Python installation doesn't have +anything to do with how those extensions are built: in particular, extensions +will be compiled using the Python header files (:file:`Python.h` and friends) +installed with the Python interpreter used to run the build command. It is +therefore your responsibility to ensure compatibility between the interpreter +intended to run extensions installed in this way and the interpreter used to +build these same extensions. To avoid problems, it is best to make sure that +the two interpreters are the same version of Python (possibly different builds, +or possibly copies of the same build). (Of course, if your :option:`--prefix` +and :option:`--exec-prefix` don't even point to an alternate Python installation, +this is immaterial.) + + +.. _packaging-alt-install-windows: + +Alternate installation: Windows (the prefix scheme) +--------------------------------------------------- + +Windows has a different and vaguer notion of home directories than Unix, and +since its standard Python installation is simpler, the :option:`--prefix` option +has traditionally been used to install additional packages to arbitrary +locations. :: + + pysetup run install_dist --prefix "\Temp\Python" + +to install modules to the :file:`\\Temp\\Python` directory on the current drive. + +The installation base is defined by the :option:`--prefix` option; the +:option:`--exec-prefix` option is unsupported under Windows. Files are +installed as follows: + ++------------------------------+---------------------------+-----------------------------+ +| Type of file | Installation Directory | Override option | ++==============================+===========================+=============================+ +| pure module distribution | :file:`{prefix}` | :option:`--install-purelib` | ++------------------------------+---------------------------+-----------------------------+ +| non-pure module distribution | :file:`{prefix}` | :option:`--install-platlib` | ++------------------------------+---------------------------+-----------------------------+ +| scripts | :file:`{prefix}\\Scripts` | :option:`--install-scripts` | ++------------------------------+---------------------------+-----------------------------+ +| data | :file:`{prefix}\\Data` | :option:`--install-data` | ++------------------------------+---------------------------+-----------------------------+ + + +.. _packaging-custom-install: + +Custom installation +=================== + +Sometimes, the alternate installation schemes described in section +:ref:`packaging-alt-install` just don't do what you want. You might want to tweak +just one or two directories while keeping everything under the same base +directory, or you might want to completely redefine the installation scheme. +In either case, you're creating a *custom installation scheme*. + +You probably noticed the column of "override options" in the tables describing +the alternate installation schemes above. Those options are how you define a +custom installation scheme. These override options can be relative, absolute, +or explicitly defined in terms of one of the installation base directories. +(There are two installation base directories, and they are normally the same +---they only differ when you use the Unix "prefix scheme" and supply different +:option:`--prefix` and :option:`--exec-prefix` options.) + +For example, say you're installing a module distribution to your home directory +under Unix, but you want scripts to go in :file:`~/scripts` rather than +:file:`~/bin`. As you might expect, you can override this directory with the +:option:`--install-scripts` option and, in this case, it makes most sense to supply +a relative path, which will be interpreted relative to the installation base +directory (in our example, your home directory):: + + pysetup run install_dist --home ~ --install-scripts scripts + +Another Unix example: suppose your Python installation was built and installed +with a prefix of :file:`/usr/local/python`. Thus, in a standard installation, +scripts will wind up in :file:`/usr/local/python/bin`. If you want them in +:file:`/usr/local/bin` instead, you would supply this absolute directory for +the :option:`--install-scripts` option:: + + pysetup run install_dist --install-scripts /usr/local/bin + +This command performs an installation using the "prefix scheme", where the +prefix is whatever your Python interpreter was installed with ---in this case, +:file:`/usr/local/python`. + +If you maintain Python on Windows, you might want third-party modules to live in +a subdirectory of :file:`{prefix}`, rather than right in :file:`{prefix}` +itself. This is almost as easy as customizing the script installation directory +---you just have to remember that there are two types of modules to worry about, +pure modules and non-pure modules (i.e., modules from a non-pure distribution). +For example:: + + pysetup run install_dist --install-purelib Site --install-platlib Site + +.. XXX Nothing is installed right under prefix in windows, is it?? + +The specified installation directories are relative to :file:`{prefix}`. Of +course, you also have to ensure that these directories are in Python's module +search path, such as by putting a :file:`.pth` file in :file:`{prefix}`. See +section :ref:`packaging-search-path` to find out how to modify Python's search path. + +If you want to define an entire installation scheme, you just have to supply all +of the installation directory options. Using relative paths is recommended here. +For example, if you want to maintain all Python module-related files under +:file:`python` in your home directory, and you want a separate directory for +each platform that you use your home directory from, you might define the +following installation scheme:: + + pysetup run install_dist --home ~ \ + --install-purelib python/lib \ + --install-platlib python/'lib.$PLAT' \ + --install-scripts python/scripts \ + --install-data python/data + +or, equivalently, :: + + pysetup run install_dist --home ~/python \ + --install-purelib lib \ + --install-platlib 'lib.$PLAT' \ + --install-scripts scripts \ + --install-data data + +``$PLAT`` doesn't need to be defined as an environment variable ---it will also +be expanded by Packaging as it parses your command line options, just as it +does when parsing your configuration file(s). (More on that later.) + +Obviously, specifying the entire installation scheme every time you install a +new module distribution would be very tedious. To spare you all that work, you +can store it in a Packaging configuration file instead (see section +:ref:`packaging-config-files`), like so:: + + [install_dist] + install-base = $HOME + install-purelib = python/lib + install-platlib = python/lib.$PLAT + install-scripts = python/scripts + install-data = python/data + +or, equivalently, :: + + [install_dist] + install-base = $HOME/python + install-purelib = lib + install-platlib = lib.$PLAT + install-scripts = scripts + install-data = data + +Note that these two are *not* equivalent if you override their installation +base directory when running the setup script. For example, :: + + pysetup run install_dist --install-base /tmp + +would install pure modules to :file:`/tmp/python/lib` in the first case, and +to :file:`/tmp/lib` in the second case. (For the second case, you'd probably +want to supply an installation base of :file:`/tmp/python`.) + +You may have noticed the use of ``$HOME`` and ``$PLAT`` in the sample +configuration file. These are Packaging configuration variables, which +bear a strong resemblance to environment variables. In fact, you can use +environment variables in configuration files on platforms that have such a notion, but +Packaging additionally defines a few extra variables that may not be in your +environment, such as ``$PLAT``. Of course, on systems that don't have +environment variables, such as Mac OS 9, the configuration variables supplied by +the Packaging are the only ones you can use. See section :ref:`packaging-config-files` +for details. + +.. XXX which vars win out eventually in case of clash env or Packaging? + +.. XXX need some Windows examples---when would custom installation schemes be + needed on those platforms? + + +.. XXX Move this section to Doc/using + +.. _packaging-search-path: + +Modifying Python's search path +------------------------------ + +When the Python interpreter executes an :keyword:`import` statement, it searches +for both Python code and extension modules along a search path. A default value +for this path is configured into the Python binary when the interpreter is built. +You can obtain the search path by importing the :mod:`sys` module and printing +the value of ``sys.path``. :: + + $ python + Python 2.2 (#11, Oct 3 2002, 13:31:27) + [GCC 2.96 20000731 (Red Hat Linux 7.3 2.96-112)] on linux2 + Type "help", "copyright", "credits" or "license" for more information. + >>> import sys + >>> sys.path + ['', '/usr/local/lib/python2.3', '/usr/local/lib/python2.3/plat-linux2', + '/usr/local/lib/python2.3/lib-tk', '/usr/local/lib/python2.3/lib-dynload', + '/usr/local/lib/python2.3/site-packages'] + >>> + +The null string in ``sys.path`` represents the current working directory. + +The expected convention for locally installed packages is to put them in the +:file:`{...}/site-packages/` directory, but you may want to choose a different +location for some reason. For example, if your site kept by convention all web +server-related software under :file:`/www`. Add-on Python modules might then +belong in :file:`/www/python`, and in order to import them, this directory would +have to be added to ``sys.path``. There are several ways to solve this problem. + +The most convenient way is to add a path configuration file to a directory +that's already on Python's path, usually to the :file:`.../site-packages/` +directory. Path configuration files have an extension of :file:`.pth`, and each +line must contain a single path that will be appended to ``sys.path``. (Because +the new paths are appended to ``sys.path``, modules in the added directories +will not override standard modules. This means you can't use this mechanism for +installing fixed versions of standard modules.) + +Paths can be absolute or relative, in which case they're relative to the +directory containing the :file:`.pth` file. See the documentation of +the :mod:`site` module for more information. + +A slightly less convenient way is to edit the :file:`site.py` file in Python's +standard library, and modify ``sys.path``. :file:`site.py` is automatically +imported when the Python interpreter is executed, unless the :option:`-S` switch +is supplied to suppress this behaviour. So you could simply edit +:file:`site.py` and add two lines to it:: + + import sys + sys.path.append('/www/python/') + +However, if you reinstall the same major version of Python (perhaps when +upgrading from 3.3 to 3.3.1, for example) :file:`site.py` will be overwritten by +the stock version. You'd have to remember that it was modified and save a copy +before doing the installation. + +Alternatively, there are two environment variables that can modify ``sys.path``. +:envvar:`PYTHONHOME` sets an alternate value for the prefix of the Python +installation. For example, if :envvar:`PYTHONHOME` is set to ``/www/python``, +the search path will be set to ``['', '/www/python/lib/pythonX.Y/', +'/www/python/lib/pythonX.Y/plat-linux2', ...]``. + +The :envvar:`PYTHONPATH` variable can be set to a list of paths that will be +added to the beginning of ``sys.path``. For example, if :envvar:`PYTHONPATH` is +set to ``/www/python:/opt/py``, the search path will begin with +``['/www/python', '/opt/py']``. (Note that directories must exist in order to +be added to ``sys.path``; the :mod:`site` module removes non-existent paths.) + +Finally, ``sys.path`` is just a regular Python list, so any Python application +can modify it by adding or removing entries. + + +.. _packaging-config-files: + +Configuration files for Packaging +================================= + +As mentioned above, you can use configuration files to store personal or site +preferences for any option supported by any Packaging command. Depending on your +platform, you can use one of two or three possible configuration files. These +files will be read before parsing the command-line, so they take precedence over +default values. In turn, the command-line will override configuration files. +Lastly, if there are multiple configuration files, values from files read +earlier will be overridden by values from files read later. + +.. XXX "one of two or three possible..." seems wrong info. Below always 3 files + are indicated in the tables. + + +.. _packaging-config-filenames: + +Location and names of configuration files +----------------------------------------- + +The name and location of the configuration files vary slightly across +platforms. On Unix and Mac OS X, these are the three configuration files listed +in the order they are processed: + ++--------------+----------------------------------------------------------+-------+ +| Type of file | Location and filename | Notes | ++==============+==========================================================+=======+ +| system | :file:`{prefix}/lib/python{ver}/packaging/packaging.cfg` | \(1) | ++--------------+----------------------------------------------------------+-------+ +| personal | :file:`$HOME/.pydistutils.cfg` | \(2) | ++--------------+----------------------------------------------------------+-------+ +| local | :file:`setup.cfg` | \(3) | ++--------------+----------------------------------------------------------+-------+ + +Similarly, the configuration files on Windows ---also listed in the order they +are processed--- are these: + ++--------------+-------------------------------------------------+-------+ +| Type of file | Location and filename | Notes | ++==============+=================================================+=======+ +| system | :file:`{prefix}\\Lib\\packaging\\packaging.cfg` | \(4) | ++--------------+-------------------------------------------------+-------+ +| personal | :file:`%HOME%\\pydistutils.cfg` | \(5) | ++--------------+-------------------------------------------------+-------+ +| local | :file:`setup.cfg` | \(3) | ++--------------+-------------------------------------------------+-------+ + +On all platforms, the *personal* file can be temporarily disabled by +means of the `--no-user-cfg` option. + +Notes: + +(1) + Strictly speaking, the system-wide configuration file lives in the directory + where Packaging is installed. + +(2) + On Unix, if the :envvar:`HOME` environment variable is not defined, the + user's home directory will be determined with the :func:`getpwuid` function + from the standard :mod:`pwd` module. Packaging uses the + :func:`os.path.expanduser` function to do this. + +(3) + I.e., in the current directory (usually the location of the setup script). + +(4) + (See also note (1).) Python's default installation prefix is + :file:`C:\\Python`, so the system configuration file is normally + :file:`C:\\Python\\Lib\\packaging\\packaging.cfg`. + +(5) + On Windows, if the :envvar:`HOME` environment variable is not defined, + :envvar:`USERPROFILE` then :envvar:`HOMEDRIVE` and :envvar:`HOMEPATH` will + be tried. Packaging uses the :func:`os.path.expanduser` function to do this. + + +.. _packaging-config-syntax: + +Syntax of configuration files +----------------------------- + +All Packaging configuration files share the same syntax. Options defined in +them are grouped into sections, and each Packaging command gets its own section. +Additionally, there's a ``global`` section for options that affect every command. +Sections consist of one or more lines containing a single option specified as +``option = value``. + +For example, here's a complete configuration file that forces all commands to +run quietly by default:: + + [global] + verbose = 0 + +If this was the system configuration file, it would affect all processing +of any Python module distribution by any user on the current system. If it was +installed as your personal configuration file (on systems that support them), +it would affect only module distributions processed by you. Lastly, if it was +used as the :file:`setup.cfg` for a particular module distribution, it would +affect that distribution only. + +.. XXX "(on systems that support them)" seems wrong info + +If you wanted to, you could override the default "build base" directory and +make the :command:`build\*` commands always forcibly rebuild all files with +the following:: + + [build] + build-base = blib + force = 1 + +which corresponds to the command-line arguments:: + + pysetup run build --build-base blib --force + +except that including the :command:`build` command on the command-line means +that command will be run. Including a particular command in configuration files +has no such implication; it only means that if the command is run, the options +for it in the configuration file will apply. (This is also true if you run +other commands that derive values from it.) + +You can find out the complete list of options for any command using the +:option:`--help` option, e.g.:: + + pysetup run build --help + +and you can find out the complete list of global options by using +:option:`--help` without a command:: + + pysetup run --help + +See also the "Reference" section of the "Distributing Python Modules" manual. + +.. XXX no links to the relevant section exist. + + +.. _packaging-building-ext: + +Building extensions: tips and tricks +==================================== + +Whenever possible, Packaging tries to use the configuration information made +available by the Python interpreter used to run `pysetup`. +For example, the same compiler and linker flags used to compile Python will also +be used for compiling extensions. Usually this will work well, but in +complicated situations this might be inappropriate. This section discusses how +to override the usual Packaging behaviour. + + +.. _packaging-tweak-flags: + +Tweaking compiler/linker flags +------------------------------ + +Compiling a Python extension written in C or C++ will sometimes require +specifying custom flags for the compiler and linker in order to use a particular +library or produce a special kind of object code. This is especially true if the +extension hasn't been tested on your platform, or if you're trying to +cross-compile Python. + +.. TODO update to new setup.cfg + +In the most general case, the extension author might have foreseen that +compiling the extensions would be complicated, and provided a :file:`Setup` file +for you to edit. This will likely only be done if the module distribution +contains many separate extension modules, or if they often require elaborate +sets of compiler flags in order to work. + +A :file:`Setup` file, if present, is parsed in order to get a list of extensions +to build. Each line in a :file:`Setup` describes a single module. Lines have +the following structure:: + + module ... [sourcefile ...] [cpparg ...] [library ...] + + +Let's examine each of the fields in turn. + +* *module* is the name of the extension module to be built, and should be a + valid Python identifier. You can't just change this in order to rename a module + (edits to the source code would also be needed), so this should be left alone. + +* *sourcefile* is anything that's likely to be a source code file, at least + judging by the filename. Filenames ending in :file:`.c` are assumed to be + written in C, filenames ending in :file:`.C`, :file:`.cc`, and :file:`.c++` are + assumed to be C++, and filenames ending in :file:`.m` or :file:`.mm` are assumed + to be in Objective C. + +* *cpparg* is an argument for the C preprocessor, and is anything starting with + :option:`-I`, :option:`-D`, :option:`-U` or :option:`-C`. + +* *library* is anything ending in :file:`.a` or beginning with :option:`-l` or + :option:`-L`. + +If a particular platform requires a special library on your platform, you can +add it by editing the :file:`Setup` file and running ``pysetup run build``. +For example, if the module defined by the line :: + + foo foomodule.c + +must be linked with the math library :file:`libm.a` on your platform, simply add +:option:`-lm` to the line:: + + foo foomodule.c -lm + +Arbitrary switches intended for the compiler or the linker can be supplied with +the :option:`-Xcompiler` *arg* and :option:`-Xlinker` *arg* options:: + + foo foomodule.c -Xcompiler -o32 -Xlinker -shared -lm + +The next option after :option:`-Xcompiler` and :option:`-Xlinker` will be +appended to the proper command line, so in the above example the compiler will +be passed the :option:`-o32` option, and the linker will be passed +:option:`-shared`. If a compiler option requires an argument, you'll have to +supply multiple :option:`-Xcompiler` options; for example, to pass ``-x c++`` +the :file:`Setup` file would have to contain ``-Xcompiler -x -Xcompiler c++``. + +Compiler flags can also be supplied through setting the :envvar:`CFLAGS` +environment variable. If set, the contents of :envvar:`CFLAGS` will be added to +the compiler flags specified in the :file:`Setup` file. + + +.. _packaging-non-ms-compilers: + +Using non-Microsoft compilers on Windows +---------------------------------------- + +.. sectionauthor:: Rene Liebscher <R.Liebscher@gmx.de> + + + +Borland/CodeGear C++ +^^^^^^^^^^^^^^^^^^^^ + +This subsection describes the necessary steps to use Packaging with the Borland +C++ compiler version 5.5. First you have to know that Borland's object file +format (OMF) is different from the format used by the Python version you can +download from the Python or ActiveState Web site. (Python is built with +Microsoft Visual C++, which uses COFF as the object file format.) For this +reason, you have to convert Python's library :file:`python25.lib` into the +Borland format. You can do this as follows: + +.. Should we mention that users have to create cfg-files for the compiler? +.. see also http://community.borland.com/article/0,1410,21205,00.html + +:: + + coff2omf python25.lib python25_bcpp.lib + +The :file:`coff2omf` program comes with the Borland compiler. The file +:file:`python25.lib` is in the :file:`Libs` directory of your Python +installation. If your extension uses other libraries (zlib, ...) you have to +convert them too. + +The converted files have to reside in the same directories as the normal +libraries. + +How does Packaging manage to use these libraries with their changed names? If +the extension needs a library (eg. :file:`foo`) Packaging checks first if it +finds a library with suffix :file:`_bcpp` (eg. :file:`foo_bcpp.lib`) and then +uses this library. In the case it doesn't find such a special library it uses +the default name (:file:`foo.lib`.) [#]_ + +To let Packaging compile your extension with Borland, C++ you now have to +type:: + + pysetup run build --compiler bcpp + +If you want to use the Borland C++ compiler as the default, you could specify +this in your personal or system-wide configuration file for Packaging (see +section :ref:`packaging-config-files`.) + + +.. seealso:: + + `C++Builder Compiler <http://www.codegear.com/downloads/free/cppbuilder>`_ + Information about the free C++ compiler from Borland, including links to the + download pages. + + `Creating Python Extensions Using Borland's Free Compiler <http://www.cyberus.ca/~g_will/pyExtenDL.shtml>`_ + Document describing how to use Borland's free command-line C++ compiler to build + Python. + + +GNU C / Cygwin / MinGW +^^^^^^^^^^^^^^^^^^^^^^ + +This section describes the necessary steps to use Packaging with the GNU C/C++ +compilers in their Cygwin and MinGW distributions. [#]_ For a Python interpreter +that was built with Cygwin, everything should work without any of these +following steps. + +Not all extensions can be built with MinGW or Cygwin, but many can. Extensions +most likely to not work are those that use C++ or depend on Microsoft Visual C +extensions. + +To let Packaging compile your extension with Cygwin, you have to type:: + + pysetup run build --compiler=cygwin + +and for Cygwin in no-cygwin mode [#]_ or for MinGW, type:: + + pysetup run build --compiler=mingw32 + +If you want to use any of these options/compilers as default, you should +consider writing it in your personal or system-wide configuration file for +Packaging (see section :ref:`packaging-config-files`.) + +Older Versions of Python and MinGW +"""""""""""""""""""""""""""""""""" +The following instructions only apply if you're using a version of Python +inferior to 2.4.1 with a MinGW inferior to 3.0.0 (with +:file:`binutils-2.13.90-20030111-1`). + +These compilers require some special libraries. This task is more complex than +for Borland's C++, because there is no program to convert the library. First +you have to create a list of symbols which the Python DLL exports. (You can find +a good program for this task at +http://www.emmestech.com/software/pexports-0.43/download_pexports.html). + +.. I don't understand what the next line means. --amk + (inclusive the references on data structures.) + +:: + + pexports python25.dll > python25.def + +The location of an installed :file:`python25.dll` will depend on the +installation options and the version and language of Windows. In a "just for +me" installation, it will appear in the root of the installation directory. In +a shared installation, it will be located in the system directory. + +Then you can create from these information an import library for gcc. :: + + /cygwin/bin/dlltool --dllname python25.dll --def python25.def --output-lib libpython25.a + +The resulting library has to be placed in the same directory as +:file:`python25.lib`. (Should be the :file:`libs` directory under your Python +installation directory.) + +If your extension uses other libraries (zlib,...) you might have to convert +them too. The converted files have to reside in the same directories as the +normal libraries do. + + +.. seealso:: + + `Building Python modules on MS Windows platform with MinGW <http://www.zope.org/Members/als/tips/win32_mingw_modules>`_ + Information about building the required libraries for the MinGW + environment. + + +.. rubric:: Footnotes + +.. [#] This also means you could replace all existing COFF-libraries with + OMF-libraries of the same name. + +.. [#] Check http://sources.redhat.com/cygwin/ and http://www.mingw.org/ for + more information. + +.. [#] Then you have no POSIX emulation available, but you also don't need + :file:`cygwin1.dll`. diff --git a/Doc/install/pysetup-config.rst b/Doc/install/pysetup-config.rst new file mode 100644 index 0000000..0ce9022 --- /dev/null +++ b/Doc/install/pysetup-config.rst @@ -0,0 +1,44 @@ +.. _packaging-pysetup-config: + +===================== +Pysetup Configuration +===================== + +Pysetup supports two configuration files: :file:`.pypirc` and :file:`packaging.cfg`. + +.. FIXME integrate with configfile instead of duplicating + +Configuring indexes +------------------- + +You can configure additional indexes in :file:`.pypirc` to be used for index-related +operations. By default, all configured index-servers and package-servers will be used +in an additive fashion. To limit operations to specific indexes, use the :option:`--index` +and :option:`--package-server options`:: + + $ pysetup install --index pypi --package-server django some.project + +Adding indexes to :file:`.pypirc`:: + + [packaging] + index-servers = + pypi + other + + package-servers = + django + + [pypi] + repository: <repository-url> + username: <username> + password: <password> + + [other] + repository: <repository-url> + username: <username> + password: <password> + + [django] + repository: <repository-url> + username: <username> + password: <password> diff --git a/Doc/install/pysetup-servers.rst b/Doc/install/pysetup-servers.rst new file mode 100644 index 0000000..ddaaa5b --- /dev/null +++ b/Doc/install/pysetup-servers.rst @@ -0,0 +1,61 @@ +.. _packaging-pysetup-servers: + +=============== +Package Servers +=============== + +Pysetup supports installing Python packages from *Package Servers* in addition +to PyPI indexes and mirrors. + +Package Servers are simple directory listings of Python distributions. Directories +can be served via HTTP or a local file system. This is useful when you want to +dump source distributions in a directory and not worry about the full index structure. + +Serving distributions from Apache +--------------------------------- +:: + + $ mkdir -p /var/www/html/python/distributions + $ cp *.tar.gz /var/www/html/python/distributions/ + + <VirtualHost python.example.org:80> + ServerAdmin webmaster@domain.com + DocumentRoot "/var/www/html/python" + ServerName python.example.org + ErrorLog logs/python.example.org-error.log + CustomLog logs/python.example.org-access.log common + Options Indexes FollowSymLinks MultiViews + DirectoryIndex index.html index.htm + + <Directory "/var/www/html/python/distributions"> + Options Indexes FollowSymLinks MultiViews + Order allow,deny + Allow from all + </Directory> + </VirtualHost> + +Add the Apache based distribution server to :file:`.pypirc`:: + + [packaging] + package-servers = + apache + + [apache] + repository: http://python.example.org/distributions/ + + +Serving distributions from a file system +---------------------------------------- +:: + + $ mkdir -p /data/python/distributions + $ cp *.tar.gz /data/python/distributions/ + +Add the directory to :file:`.pypirc`:: + + [packaging] + package-servers = + local + + [local] + repository: file:///data/python/distributions/ diff --git a/Doc/install/pysetup.rst b/Doc/install/pysetup.rst new file mode 100644 index 0000000..b88c8e1 --- /dev/null +++ b/Doc/install/pysetup.rst @@ -0,0 +1,163 @@ +.. _packaging-pysetup: + +================ +Pysetup Tutorial +================ + +Getting started +--------------- + +Pysetup is a simple script that supports the following features: + +- install, remove, list, and verify Python packages; +- search for available packages on PyPI or any *Simple Index*; +- verify installed packages (md5sum, installed files, version). + + +Finding out what's installed +---------------------------- + +Pysetup makes it easy to find out what Python packages are installed:: + + $ pysetup search virtualenv + virtualenv 1.6 at /opt/python3.3/lib/python3.3/site-packages/virtualenv-1.6-py3.3.egg-info + + $ pysetup search --all + pyverify 0.8.1 at /opt/python3.3/lib/python3.3/site-packages/pyverify-0.8.1.dist-info + virtualenv 1.6 at /opt/python3.3/lib/python3.3/site-packages/virtualenv-1.6-py3.3.egg-info + wsgiref 0.1.2 at /opt/python3.3/lib/python3.3/wsgiref.egg-info + ... + + +Installing a distribution +------------------------- + +Pysetup can install a Python project from the following sources: + +- PyPI and Simple Indexes; +- source directories containing a valid :file:`setup.py` or :file:`setup.cfg`; +- distribution source archives (:file:`project-1.0.tar.gz`, :file:`project-1.0.zip`); +- HTTP (http://host/packages/project-1.0.tar.gz). + + +Installing from PyPI and Simple Indexes:: + + $ pysetup install project + $ pysetup install project==1.0 + +Installing from a distribution source archive:: + + $ pysetup install project-1.0.tar.gz + +Installing from a source directory containing a valid :file:`setup.py` or +:file:`setup.cfg`:: + + $ cd path/to/source/directory + $ pysetup install + + $ pysetup install path/to/source/directory + +Installing from HTTP:: + + $ pysetup install http://host/packages/project-1.0.tar.gz + + +Retrieving metadata +------------------- + +You can gather metadata from two sources, a project's source directory or an +installed distribution. The `pysetup metadata` command can retrieve one or +more metadata fields using the `-f` option and a metadata field as the +argument. :: + + $ pysetup metadata virtualenv -f version -f name + Version: + 1.6 + Name: + virtualenv + + $ pysetup metadata virtualenv --all + Metadata-Version: + 1.0 + Name: + virtualenv + Version: + 1.6 + Platform: + UNKNOWN + Summary: + Virtual Python Environment builder + ... + +.. seealso:: + + There are three metadata versions, 1.0, 1.1, and 1.2. The following PEPs + describe specifics of the field names, and their semantics and usage. 1.0 + :PEP:`241`, 1.1 :PEP:`314`, and 1.2 :PEP:`345` + + +Removing a distribution +----------------------- + +You can remove one or more installed distributions using the `pysetup remove` +command:: + + $ pysetup remove virtualenv + removing 'virtualenv': + /opt/python3.3/lib/python3.3/site-packages/virtualenv-1.6-py3.3.egg-info/dependency_links.txt + /opt/python3.3/lib/python3.3/site-packages/virtualenv-1.6-py3.3.egg-info/entry_points.txt + /opt/python3.3/lib/python3.3/site-packages/virtualenv-1.6-py3.3.egg-info/not-zip-safe + /opt/python3.3/lib/python3.3/site-packages/virtualenv-1.6-py3.3.egg-info/PKG-INFO + /opt/python3.3/lib/python3.3/site-packages/virtualenv-1.6-py3.3.egg-info/SOURCES.txt + /opt/python3.3/lib/python3.3/site-packages/virtualenv-1.6-py3.3.egg-info/top_level.txt + Proceed (y/n)? y + success: removed 6 files and 1 dirs + +The optional '-y' argument auto confirms, skipping the conformation prompt:: + + $ pysetup remove virtualenv -y + + +Getting help +------------ + +All pysetup actions take the `-h` and `--help` options which prints the commands +help string to stdout. :: + + $ pysetup remove -h + Usage: pysetup remove dist [-y] + or: pysetup remove --help + + Uninstall a Python package. + + positional arguments: + dist installed distribution name + + optional arguments: + -y auto confirm package removal + +Getting a list of all pysetup actions and global options:: + + $ pysetup --help + Usage: pysetup [options] action [action_options] + + Actions: + run: Run one or several commands + metadata: Display the metadata of a project + install: Install a project + remove: Remove a project + search: Search for a project + graph: Display a graph + create: Create a Project + + To get more help on an action, use: + + pysetup action --help + + Global options: + --verbose (-v) run verbosely (default) + --quiet (-q) run quietly (turns verbosity off) + --dry-run (-n) don't actually do anything + --help (-h) show detailed help message + --no-user-cfg ignore pydistutils.cfg in your home directory + --version Display the version |