diff options
author | Georg Brandl <georg@python.org> | 2007-08-15 14:27:07 (GMT) |
---|---|---|
committer | Georg Brandl <georg@python.org> | 2007-08-15 14:27:07 (GMT) |
commit | 739c01d47b9118d04e5722333f0e6b4d0c8bdd9e (patch) | |
tree | f82b450d291927fc1758b96d981aa0610947b529 /Doc/lib/liboperator.tex | |
parent | 2d1649094402ef393ea2b128ba2c08c3937e6b93 (diff) | |
download | cpython-739c01d47b9118d04e5722333f0e6b4d0c8bdd9e.zip cpython-739c01d47b9118d04e5722333f0e6b4d0c8bdd9e.tar.gz cpython-739c01d47b9118d04e5722333f0e6b4d0c8bdd9e.tar.bz2 |
Delete the LaTeX doc tree.
Diffstat (limited to 'Doc/lib/liboperator.tex')
-rw-r--r-- | Doc/lib/liboperator.tex | 530 |
1 files changed, 0 insertions, 530 deletions
diff --git a/Doc/lib/liboperator.tex b/Doc/lib/liboperator.tex deleted file mode 100644 index 867c2ab..0000000 --- a/Doc/lib/liboperator.tex +++ /dev/null @@ -1,530 +0,0 @@ -\section{\module{operator} --- - Standard operators as functions.} -\declaremodule{builtin}{operator} -\sectionauthor{Skip Montanaro}{skip@automatrix.com} - -\modulesynopsis{All Python's standard operators as built-in functions.} - - -The \module{operator} module exports a set of functions implemented in C -corresponding to the intrinsic operators of Python. For example, -\code{operator.add(x, y)} is equivalent to the expression \code{x+y}. The -function names are those used for special class methods; variants without -leading and trailing \samp{__} are also provided for convenience. - -The functions fall into categories that perform object comparisons, -logical operations, mathematical operations, sequence operations, and -abstract type tests. - -The object comparison functions are useful for all objects, and are -named after the rich comparison operators they support: - -\begin{funcdesc}{lt}{a, b} -\funcline{le}{a, b} -\funcline{eq}{a, b} -\funcline{ne}{a, b} -\funcline{ge}{a, b} -\funcline{gt}{a, b} -\funcline{__lt__}{a, b} -\funcline{__le__}{a, b} -\funcline{__eq__}{a, b} -\funcline{__ne__}{a, b} -\funcline{__ge__}{a, b} -\funcline{__gt__}{a, b} -Perform ``rich comparisons'' between \var{a} and \var{b}. Specifically, -\code{lt(\var{a}, \var{b})} is equivalent to \code{\var{a} < \var{b}}, -\code{le(\var{a}, \var{b})} is equivalent to \code{\var{a} <= \var{b}}, -\code{eq(\var{a}, \var{b})} is equivalent to \code{\var{a} == \var{b}}, -\code{ne(\var{a}, \var{b})} is equivalent to \code{\var{a} != \var{b}}, -\code{gt(\var{a}, \var{b})} is equivalent to \code{\var{a} > \var{b}} -and -\code{ge(\var{a}, \var{b})} is equivalent to \code{\var{a} >= \var{b}}. -Note that unlike the built-in \function{cmp()}, these functions can -return any value, which may or may not be interpretable as a Boolean -value. See the \citetitle[../ref/ref.html]{Python Reference Manual} -for more information about rich comparisons. -\versionadded{2.2} -\end{funcdesc} - - -The logical operations are also generally applicable to all objects, -and support truth tests, identity tests, and boolean operations: - -\begin{funcdesc}{not_}{o} -\funcline{__not__}{o} -Return the outcome of \keyword{not} \var{o}. (Note that there is no -\method{__not__()} method for object instances; only the interpreter -core defines this operation. The result is affected by the -\method{__bool__()} and \method{__len__()} methods.) -\end{funcdesc} - -\begin{funcdesc}{truth}{o} -Return \constant{True} if \var{o} is true, and \constant{False} -otherwise. This is equivalent to using the \class{bool} -constructor. -\end{funcdesc} - -\begin{funcdesc}{is_}{a, b} -Return \code{\var{a} is \var{b}}. Tests object identity. -\versionadded{2.3} -\end{funcdesc} - -\begin{funcdesc}{is_not}{a, b} -Return \code{\var{a} is not \var{b}}. Tests object identity. -\versionadded{2.3} -\end{funcdesc} - - -The mathematical and bitwise operations are the most numerous: - -\begin{funcdesc}{abs}{o} -\funcline{__abs__}{o} -Return the absolute value of \var{o}. -\end{funcdesc} - -\begin{funcdesc}{add}{a, b} -\funcline{__add__}{a, b} -Return \var{a} \code{+} \var{b}, for \var{a} and \var{b} numbers. -\end{funcdesc} - -\begin{funcdesc}{and_}{a, b} -\funcline{__and__}{a, b} -Return the bitwise and of \var{a} and \var{b}. -\end{funcdesc} - -\begin{funcdesc}{div}{a, b} -\funcline{__div__}{a, b} -Return \var{a} \code{/} \var{b} when \code{__future__.division} is not -in effect. This is also known as ``classic'' division. -\end{funcdesc} - -\begin{funcdesc}{floordiv}{a, b} -\funcline{__floordiv__}{a, b} -Return \var{a} \code{//} \var{b}. -\versionadded{2.2} -\end{funcdesc} - -\begin{funcdesc}{inv}{o} -\funcline{invert}{o} -\funcline{__inv__}{o} -\funcline{__invert__}{o} -Return the bitwise inverse of the number \var{o}. This is equivalent -to \code{\textasciitilde}\var{o}. The names \function{invert()} and -\function{__invert__()} were added in Python 2.0. -\end{funcdesc} - -\begin{funcdesc}{lshift}{a, b} -\funcline{__lshift__}{a, b} -Return \var{a} shifted left by \var{b}. -\end{funcdesc} - -\begin{funcdesc}{mod}{a, b} -\funcline{__mod__}{a, b} -Return \var{a} \code{\%} \var{b}. -\end{funcdesc} - -\begin{funcdesc}{mul}{a, b} -\funcline{__mul__}{a, b} -Return \var{a} \code{*} \var{b}, for \var{a} and \var{b} numbers. -\end{funcdesc} - -\begin{funcdesc}{neg}{o} -\funcline{__neg__}{o} -Return \var{o} negated. -\end{funcdesc} - -\begin{funcdesc}{or_}{a, b} -\funcline{__or__}{a, b} -Return the bitwise or of \var{a} and \var{b}. -\end{funcdesc} - -\begin{funcdesc}{pos}{o} -\funcline{__pos__}{o} -Return \var{o} positive. -\end{funcdesc} - -\begin{funcdesc}{pow}{a, b} -\funcline{__pow__}{a, b} -Return \var{a} \code{**} \var{b}, for \var{a} and \var{b} numbers. -\versionadded{2.3} -\end{funcdesc} - -\begin{funcdesc}{rshift}{a, b} -\funcline{__rshift__}{a, b} -Return \var{a} shifted right by \var{b}. -\end{funcdesc} - -\begin{funcdesc}{sub}{a, b} -\funcline{__sub__}{a, b} -Return \var{a} \code{-} \var{b}. -\end{funcdesc} - -\begin{funcdesc}{truediv}{a, b} -\funcline{__truediv__}{a, b} -Return \var{a} \code{/} \var{b} when \code{__future__.division} is in -effect. This is also known as ``true'' division. -\versionadded{2.2} -\end{funcdesc} - -\begin{funcdesc}{xor}{a, b} -\funcline{__xor__}{a, b} -Return the bitwise exclusive or of \var{a} and \var{b}. -\end{funcdesc} - -\begin{funcdesc}{index}{a} -\funcline{__index__}{a} -Return \var{a} converted to an integer. Equivalent to \var{a}\code{.__index__()}. -\versionadded{2.5} -\end{funcdesc} - -Operations which work with sequences include: - -\begin{funcdesc}{concat}{a, b} -\funcline{__concat__}{a, b} -Return \var{a} \code{+} \var{b} for \var{a} and \var{b} sequences. -\end{funcdesc} - -\begin{funcdesc}{contains}{a, b} -\funcline{__contains__}{a, b} -Return the outcome of the test \var{b} \code{in} \var{a}. -Note the reversed operands. The name \function{__contains__()} was -added in Python 2.0. -\end{funcdesc} - -\begin{funcdesc}{countOf}{a, b} -Return the number of occurrences of \var{b} in \var{a}. -\end{funcdesc} - -\begin{funcdesc}{delitem}{a, b} -\funcline{__delitem__}{a, b} -Remove the value of \var{a} at index \var{b}. -\end{funcdesc} - -\begin{funcdesc}{delslice}{a, b, c} -\funcline{__delslice__}{a, b, c} -Delete the slice of \var{a} from index \var{b} to index \var{c}\code{-1}. -\end{funcdesc} - -\begin{funcdesc}{getitem}{a, b} -\funcline{__getitem__}{a, b} -Return the value of \var{a} at index \var{b}. -\end{funcdesc} - -\begin{funcdesc}{getslice}{a, b, c} -\funcline{__getslice__}{a, b, c} -Return the slice of \var{a} from index \var{b} to index \var{c}\code{-1}. -\end{funcdesc} - -\begin{funcdesc}{indexOf}{a, b} -Return the index of the first of occurrence of \var{b} in \var{a}. -\end{funcdesc} - -\begin{funcdesc}{repeat}{a, b} -\funcline{__repeat__}{a, b} -Return \var{a} \code{*} \var{b} where \var{a} is a sequence and -\var{b} is an integer. -\end{funcdesc} - -\begin{funcdesc}{sequenceIncludes}{\unspecified} -\deprecated{2.0}{Use \function{contains()} instead.} -Alias for \function{contains()}. -\end{funcdesc} - -\begin{funcdesc}{setitem}{a, b, c} -\funcline{__setitem__}{a, b, c} -Set the value of \var{a} at index \var{b} to \var{c}. -\end{funcdesc} - -\begin{funcdesc}{setslice}{a, b, c, v} -\funcline{__setslice__}{a, b, c, v} -Set the slice of \var{a} from index \var{b} to index \var{c}\code{-1} to the -sequence \var{v}. -\end{funcdesc} - - -Many operations have an ``in-place'' version. The following functions -provide a more primitive access to in-place operators than the usual -syntax does; for example, the statement \code{x += y} is equivalent to -\code{x = operator.iadd(x, y)}. Another way to put it is to say that -\code{z = operator.iadd(x, y)} is equivalent to the compound statement -\code{z = x; z += y}. - -\begin{funcdesc}{iadd}{a, b} -\funcline{__iadd__}{a, b} -\code{a = iadd(a, b)} is equivalent to \code{a += b}. -\versionadded{2.5} -\end{funcdesc} - -\begin{funcdesc}{iand}{a, b} -\funcline{__iand__}{a, b} -\code{a = iand(a, b)} is equivalent to \code{a \&= b}. -\versionadded{2.5} -\end{funcdesc} - -\begin{funcdesc}{iconcat}{a, b} -\funcline{__iconcat__}{a, b} -\code{a = iconcat(a, b)} is equivalent to \code{a += b} for \var{a} -and \var{b} sequences. -\versionadded{2.5} -\end{funcdesc} - -\begin{funcdesc}{idiv}{a, b} -\funcline{__idiv__}{a, b} -\code{a = idiv(a, b)} is equivalent to \code{a /= b} when -\code{__future__.division} is not in effect. -\versionadded{2.5} -\end{funcdesc} - -\begin{funcdesc}{ifloordiv}{a, b} -\funcline{__ifloordiv__}{a, b} -\code{a = ifloordiv(a, b)} is equivalent to \code{a //= b}. -\versionadded{2.5} -\end{funcdesc} - -\begin{funcdesc}{ilshift}{a, b} -\funcline{__ilshift__}{a, b} -\code{a = ilshift(a, b)} is equivalent to \code{a <}\code{<= b}. -\versionadded{2.5} -\end{funcdesc} - -\begin{funcdesc}{imod}{a, b} -\funcline{__imod__}{a, b} -\code{a = imod(a, b)} is equivalent to \code{a \%= b}. -\versionadded{2.5} -\end{funcdesc} - -\begin{funcdesc}{imul}{a, b} -\funcline{__imul__}{a, b} -\code{a = imul(a, b)} is equivalent to \code{a *= b}. -\versionadded{2.5} -\end{funcdesc} - -\begin{funcdesc}{ior}{a, b} -\funcline{__ior__}{a, b} -\code{a = ior(a, b)} is equivalent to \code{a |= b}. -\versionadded{2.5} -\end{funcdesc} - -\begin{funcdesc}{ipow}{a, b} -\funcline{__ipow__}{a, b} -\code{a = ipow(a, b)} is equivalent to \code{a **= b}. -\versionadded{2.5} -\end{funcdesc} - -\begin{funcdesc}{irepeat}{a, b} -\funcline{__irepeat__}{a, b} -\code{a = irepeat(a, b)} is equivalent to \code{a *= b} where -\var{a} is a sequence and \var{b} is an integer. -\versionadded{2.5} -\end{funcdesc} - -\begin{funcdesc}{irshift}{a, b} -\funcline{__irshift__}{a, b} -\code{a = irshift(a, b)} is equivalent to \code{a >>= b}. -\versionadded{2.5} -\end{funcdesc} - -\begin{funcdesc}{isub}{a, b} -\funcline{__isub__}{a, b} -\code{a = isub(a, b)} is equivalent to \code{a -= b}. -\versionadded{2.5} -\end{funcdesc} - -\begin{funcdesc}{itruediv}{a, b} -\funcline{__itruediv__}{a, b} -\code{a = itruediv(a, b)} is equivalent to \code{a /= b} when -\code{__future__.division} is in effect. -\versionadded{2.5} -\end{funcdesc} - -\begin{funcdesc}{ixor}{a, b} -\funcline{__ixor__}{a, b} -\code{a = ixor(a, b)} is equivalent to \code{a \textasciicircum= b}. -\versionadded{2.5} -\end{funcdesc} - - -The \module{operator} module also defines a few predicates to test the -type of objects. \note{Be careful not to misinterpret the -results of these functions; only \function{isCallable()} has any -measure of reliability with instance objects. For example:} - -\begin{verbatim} ->>> class C: -... pass -... ->>> import operator ->>> o = C() ->>> operator.isMappingType(o) -True -\end{verbatim} - -\begin{funcdesc}{isCallable}{o} -\deprecated{2.0}{Use the \function{callable()} built-in function instead.} -Returns true if the object \var{o} can be called like a function, -otherwise it returns false. True is returned for functions, bound and -unbound methods, class objects, and instance objects which support the -\method{__call__()} method. -\end{funcdesc} - -\begin{funcdesc}{isMappingType}{o} -Returns true if the object \var{o} supports the mapping interface. -This is true for dictionaries and all instance objects defining -\method{__getitem__}. -\warning{There is no reliable way to test if an instance -supports the complete mapping protocol since the interface itself is -ill-defined. This makes this test less useful than it otherwise might -be.} -\end{funcdesc} - -\begin{funcdesc}{isNumberType}{o} -Returns true if the object \var{o} represents a number. This is true -for all numeric types implemented in C. -\warning{There is no reliable way to test if an instance -supports the complete numeric interface since the interface itself is -ill-defined. This makes this test less useful than it otherwise might -be.} -\end{funcdesc} - -\begin{funcdesc}{isSequenceType}{o} -Returns true if the object \var{o} supports the sequence protocol. -This returns true for all objects which define sequence methods in C, -and for all instance objects defining \method{__getitem__}. -\warning{There is no reliable -way to test if an instance supports the complete sequence interface -since the interface itself is ill-defined. This makes this test less -useful than it otherwise might be.} -\end{funcdesc} - - -Example: Build a dictionary that maps the ordinals from \code{0} to -\code{255} to their character equivalents. - -\begin{verbatim} ->>> import operator ->>> d = {} ->>> keys = range(256) ->>> vals = map(chr, keys) ->>> map(operator.setitem, [d]*len(keys), keys, vals) -\end{verbatim} - - -The \module{operator} module also defines tools for generalized attribute -and item lookups. These are useful for making fast field extractors -as arguments for \function{map()}, \function{sorted()}, -\method{itertools.groupby()}, or other functions that expect a -function argument. - -\begin{funcdesc}{attrgetter}{attr\optional{, args...}} -Return a callable object that fetches \var{attr} from its operand. -If more than one attribute is requested, returns a tuple of attributes. -After, \samp{f=attrgetter('name')}, the call \samp{f(b)} returns -\samp{b.name}. After, \samp{f=attrgetter('name', 'date')}, the call -\samp{f(b)} returns \samp{(b.name, b.date)}. -\versionadded{2.4} -\versionchanged[Added support for multiple attributes]{2.5} -\end{funcdesc} - -\begin{funcdesc}{itemgetter}{item\optional{, args...}} -Return a callable object that fetches \var{item} from its operand. -If more than one item is requested, returns a tuple of items. -After, \samp{f=itemgetter(2)}, the call \samp{f(b)} returns -\samp{b[2]}. -After, \samp{f=itemgetter(2,5,3)}, the call \samp{f(b)} returns -\samp{(b[2], b[5], b[3])}. -\versionadded{2.4} -\versionchanged[Added support for multiple item extraction]{2.5} -\end{funcdesc} - -Examples: - -\begin{verbatim} ->>> from operator import itemgetter ->>> inventory = [('apple', 3), ('banana', 2), ('pear', 5), ('orange', 1)] ->>> getcount = itemgetter(1) ->>> map(getcount, inventory) -[3, 2, 5, 1] ->>> sorted(inventory, key=getcount) -[('orange', 1), ('banana', 2), ('apple', 3), ('pear', 5)] -\end{verbatim} - - -\subsection{Mapping Operators to Functions \label{operator-map}} - -This table shows how abstract operations correspond to operator -symbols in the Python syntax and the functions in the -\refmodule{operator} module. - - -\begin{tableiii}{l|c|l}{textrm}{Operation}{Syntax}{Function} - \lineiii{Addition}{\code{\var{a} + \var{b}}} - {\code{add(\var{a}, \var{b})}} - \lineiii{Concatenation}{\code{\var{seq1} + \var{seq2}}} - {\code{concat(\var{seq1}, \var{seq2})}} - \lineiii{Containment Test}{\code{\var{o} in \var{seq}}} - {\code{contains(\var{seq}, \var{o})}} - \lineiii{Division}{\code{\var{a} / \var{b}}} - {\code{div(\var{a}, \var{b}) \#} without \code{__future__.division}} - \lineiii{Division}{\code{\var{a} / \var{b}}} - {\code{truediv(\var{a}, \var{b}) \#} with \code{__future__.division}} - \lineiii{Division}{\code{\var{a} // \var{b}}} - {\code{floordiv(\var{a}, \var{b})}} - \lineiii{Bitwise And}{\code{\var{a} \&\ \var{b}}} - {\code{and_(\var{a}, \var{b})}} - \lineiii{Bitwise Exclusive Or}{\code{\var{a} \^\ \var{b}}} - {\code{xor(\var{a}, \var{b})}} - \lineiii{Bitwise Inversion}{\code{\~{} \var{a}}} - {\code{invert(\var{a})}} - \lineiii{Bitwise Or}{\code{\var{a} | \var{b}}} - {\code{or_(\var{a}, \var{b})}} - \lineiii{Exponentiation}{\code{\var{a} ** \var{b}}} - {\code{pow(\var{a}, \var{b})}} - \lineiii{Identity}{\code{\var{a} is \var{b}}} - {\code{is_(\var{a}, \var{b})}} - \lineiii{Identity}{\code{\var{a} is not \var{b}}} - {\code{is_not(\var{a}, \var{b})}} - \lineiii{Indexed Assignment}{\code{\var{o}[\var{k}] = \var{v}}} - {\code{setitem(\var{o}, \var{k}, \var{v})}} - \lineiii{Indexed Deletion}{\code{del \var{o}[\var{k}]}} - {\code{delitem(\var{o}, \var{k})}} - \lineiii{Indexing}{\code{\var{o}[\var{k}]}} - {\code{getitem(\var{o}, \var{k})}} - \lineiii{Left Shift}{\code{\var{a} <\code{<} \var{b}}} - {\code{lshift(\var{a}, \var{b})}} - \lineiii{Modulo}{\code{\var{a} \%\ \var{b}}} - {\code{mod(\var{a}, \var{b})}} - \lineiii{Multiplication}{\code{\var{a} * \var{b}}} - {\code{mul(\var{a}, \var{b})}} - \lineiii{Negation (Arithmetic)}{\code{- \var{a}}} - {\code{neg(\var{a})}} - \lineiii{Negation (Logical)}{\code{not \var{a}}} - {\code{not_(\var{a})}} - \lineiii{Right Shift}{\code{\var{a} >> \var{b}}} - {\code{rshift(\var{a}, \var{b})}} - \lineiii{Sequence Repitition}{\code{\var{seq} * \var{i}}} - {\code{repeat(\var{seq}, \var{i})}} - \lineiii{Slice Assignment}{\code{\var{seq}[\var{i}:\var{j}]} = \var{values}} - {\code{setslice(\var{seq}, \var{i}, \var{j}, \var{values})}} - \lineiii{Slice Deletion}{\code{del \var{seq}[\var{i}:\var{j}]}} - {\code{delslice(\var{seq}, \var{i}, \var{j})}} - \lineiii{Slicing}{\code{\var{seq}[\var{i}:\var{j}]}} - {\code{getslice(\var{seq}, \var{i}, \var{j})}} - \lineiii{String Formatting}{\code{\var{s} \%\ \var{o}}} - {\code{mod(\var{s}, \var{o})}} - \lineiii{Subtraction}{\code{\var{a} - \var{b}}} - {\code{sub(\var{a}, \var{b})}} - \lineiii{Truth Test}{\code{\var{o}}} - {\code{truth(\var{o})}} - \lineiii{Ordering}{\code{\var{a} < \var{b}}} - {\code{lt(\var{a}, \var{b})}} - \lineiii{Ordering}{\code{\var{a} <= \var{b}}} - {\code{le(\var{a}, \var{b})}} - \lineiii{Equality}{\code{\var{a} == \var{b}}} - {\code{eq(\var{a}, \var{b})}} - \lineiii{Difference}{\code{\var{a} != \var{b}}} - {\code{ne(\var{a}, \var{b})}} - \lineiii{Ordering}{\code{\var{a} >= \var{b}}} - {\code{ge(\var{a}, \var{b})}} - \lineiii{Ordering}{\code{\var{a} > \var{b}}} - {\code{gt(\var{a}, \var{b})}} -\end{tableiii} |