summaryrefslogtreecommitdiffstats
path: root/Doc/lib/liboperator.tex
diff options
context:
space:
mode:
authorGeorg Brandl <georg@python.org>2007-08-15 14:27:07 (GMT)
committerGeorg Brandl <georg@python.org>2007-08-15 14:27:07 (GMT)
commit739c01d47b9118d04e5722333f0e6b4d0c8bdd9e (patch)
treef82b450d291927fc1758b96d981aa0610947b529 /Doc/lib/liboperator.tex
parent2d1649094402ef393ea2b128ba2c08c3937e6b93 (diff)
downloadcpython-739c01d47b9118d04e5722333f0e6b4d0c8bdd9e.zip
cpython-739c01d47b9118d04e5722333f0e6b4d0c8bdd9e.tar.gz
cpython-739c01d47b9118d04e5722333f0e6b4d0c8bdd9e.tar.bz2
Delete the LaTeX doc tree.
Diffstat (limited to 'Doc/lib/liboperator.tex')
-rw-r--r--Doc/lib/liboperator.tex530
1 files changed, 0 insertions, 530 deletions
diff --git a/Doc/lib/liboperator.tex b/Doc/lib/liboperator.tex
deleted file mode 100644
index 867c2ab..0000000
--- a/Doc/lib/liboperator.tex
+++ /dev/null
@@ -1,530 +0,0 @@
-\section{\module{operator} ---
- Standard operators as functions.}
-\declaremodule{builtin}{operator}
-\sectionauthor{Skip Montanaro}{skip@automatrix.com}
-
-\modulesynopsis{All Python's standard operators as built-in functions.}
-
-
-The \module{operator} module exports a set of functions implemented in C
-corresponding to the intrinsic operators of Python. For example,
-\code{operator.add(x, y)} is equivalent to the expression \code{x+y}. The
-function names are those used for special class methods; variants without
-leading and trailing \samp{__} are also provided for convenience.
-
-The functions fall into categories that perform object comparisons,
-logical operations, mathematical operations, sequence operations, and
-abstract type tests.
-
-The object comparison functions are useful for all objects, and are
-named after the rich comparison operators they support:
-
-\begin{funcdesc}{lt}{a, b}
-\funcline{le}{a, b}
-\funcline{eq}{a, b}
-\funcline{ne}{a, b}
-\funcline{ge}{a, b}
-\funcline{gt}{a, b}
-\funcline{__lt__}{a, b}
-\funcline{__le__}{a, b}
-\funcline{__eq__}{a, b}
-\funcline{__ne__}{a, b}
-\funcline{__ge__}{a, b}
-\funcline{__gt__}{a, b}
-Perform ``rich comparisons'' between \var{a} and \var{b}. Specifically,
-\code{lt(\var{a}, \var{b})} is equivalent to \code{\var{a} < \var{b}},
-\code{le(\var{a}, \var{b})} is equivalent to \code{\var{a} <= \var{b}},
-\code{eq(\var{a}, \var{b})} is equivalent to \code{\var{a} == \var{b}},
-\code{ne(\var{a}, \var{b})} is equivalent to \code{\var{a} != \var{b}},
-\code{gt(\var{a}, \var{b})} is equivalent to \code{\var{a} > \var{b}}
-and
-\code{ge(\var{a}, \var{b})} is equivalent to \code{\var{a} >= \var{b}}.
-Note that unlike the built-in \function{cmp()}, these functions can
-return any value, which may or may not be interpretable as a Boolean
-value. See the \citetitle[../ref/ref.html]{Python Reference Manual}
-for more information about rich comparisons.
-\versionadded{2.2}
-\end{funcdesc}
-
-
-The logical operations are also generally applicable to all objects,
-and support truth tests, identity tests, and boolean operations:
-
-\begin{funcdesc}{not_}{o}
-\funcline{__not__}{o}
-Return the outcome of \keyword{not} \var{o}. (Note that there is no
-\method{__not__()} method for object instances; only the interpreter
-core defines this operation. The result is affected by the
-\method{__bool__()} and \method{__len__()} methods.)
-\end{funcdesc}
-
-\begin{funcdesc}{truth}{o}
-Return \constant{True} if \var{o} is true, and \constant{False}
-otherwise. This is equivalent to using the \class{bool}
-constructor.
-\end{funcdesc}
-
-\begin{funcdesc}{is_}{a, b}
-Return \code{\var{a} is \var{b}}. Tests object identity.
-\versionadded{2.3}
-\end{funcdesc}
-
-\begin{funcdesc}{is_not}{a, b}
-Return \code{\var{a} is not \var{b}}. Tests object identity.
-\versionadded{2.3}
-\end{funcdesc}
-
-
-The mathematical and bitwise operations are the most numerous:
-
-\begin{funcdesc}{abs}{o}
-\funcline{__abs__}{o}
-Return the absolute value of \var{o}.
-\end{funcdesc}
-
-\begin{funcdesc}{add}{a, b}
-\funcline{__add__}{a, b}
-Return \var{a} \code{+} \var{b}, for \var{a} and \var{b} numbers.
-\end{funcdesc}
-
-\begin{funcdesc}{and_}{a, b}
-\funcline{__and__}{a, b}
-Return the bitwise and of \var{a} and \var{b}.
-\end{funcdesc}
-
-\begin{funcdesc}{div}{a, b}
-\funcline{__div__}{a, b}
-Return \var{a} \code{/} \var{b} when \code{__future__.division} is not
-in effect. This is also known as ``classic'' division.
-\end{funcdesc}
-
-\begin{funcdesc}{floordiv}{a, b}
-\funcline{__floordiv__}{a, b}
-Return \var{a} \code{//} \var{b}.
-\versionadded{2.2}
-\end{funcdesc}
-
-\begin{funcdesc}{inv}{o}
-\funcline{invert}{o}
-\funcline{__inv__}{o}
-\funcline{__invert__}{o}
-Return the bitwise inverse of the number \var{o}. This is equivalent
-to \code{\textasciitilde}\var{o}. The names \function{invert()} and
-\function{__invert__()} were added in Python 2.0.
-\end{funcdesc}
-
-\begin{funcdesc}{lshift}{a, b}
-\funcline{__lshift__}{a, b}
-Return \var{a} shifted left by \var{b}.
-\end{funcdesc}
-
-\begin{funcdesc}{mod}{a, b}
-\funcline{__mod__}{a, b}
-Return \var{a} \code{\%} \var{b}.
-\end{funcdesc}
-
-\begin{funcdesc}{mul}{a, b}
-\funcline{__mul__}{a, b}
-Return \var{a} \code{*} \var{b}, for \var{a} and \var{b} numbers.
-\end{funcdesc}
-
-\begin{funcdesc}{neg}{o}
-\funcline{__neg__}{o}
-Return \var{o} negated.
-\end{funcdesc}
-
-\begin{funcdesc}{or_}{a, b}
-\funcline{__or__}{a, b}
-Return the bitwise or of \var{a} and \var{b}.
-\end{funcdesc}
-
-\begin{funcdesc}{pos}{o}
-\funcline{__pos__}{o}
-Return \var{o} positive.
-\end{funcdesc}
-
-\begin{funcdesc}{pow}{a, b}
-\funcline{__pow__}{a, b}
-Return \var{a} \code{**} \var{b}, for \var{a} and \var{b} numbers.
-\versionadded{2.3}
-\end{funcdesc}
-
-\begin{funcdesc}{rshift}{a, b}
-\funcline{__rshift__}{a, b}
-Return \var{a} shifted right by \var{b}.
-\end{funcdesc}
-
-\begin{funcdesc}{sub}{a, b}
-\funcline{__sub__}{a, b}
-Return \var{a} \code{-} \var{b}.
-\end{funcdesc}
-
-\begin{funcdesc}{truediv}{a, b}
-\funcline{__truediv__}{a, b}
-Return \var{a} \code{/} \var{b} when \code{__future__.division} is in
-effect. This is also known as ``true'' division.
-\versionadded{2.2}
-\end{funcdesc}
-
-\begin{funcdesc}{xor}{a, b}
-\funcline{__xor__}{a, b}
-Return the bitwise exclusive or of \var{a} and \var{b}.
-\end{funcdesc}
-
-\begin{funcdesc}{index}{a}
-\funcline{__index__}{a}
-Return \var{a} converted to an integer. Equivalent to \var{a}\code{.__index__()}.
-\versionadded{2.5}
-\end{funcdesc}
-
-Operations which work with sequences include:
-
-\begin{funcdesc}{concat}{a, b}
-\funcline{__concat__}{a, b}
-Return \var{a} \code{+} \var{b} for \var{a} and \var{b} sequences.
-\end{funcdesc}
-
-\begin{funcdesc}{contains}{a, b}
-\funcline{__contains__}{a, b}
-Return the outcome of the test \var{b} \code{in} \var{a}.
-Note the reversed operands. The name \function{__contains__()} was
-added in Python 2.0.
-\end{funcdesc}
-
-\begin{funcdesc}{countOf}{a, b}
-Return the number of occurrences of \var{b} in \var{a}.
-\end{funcdesc}
-
-\begin{funcdesc}{delitem}{a, b}
-\funcline{__delitem__}{a, b}
-Remove the value of \var{a} at index \var{b}.
-\end{funcdesc}
-
-\begin{funcdesc}{delslice}{a, b, c}
-\funcline{__delslice__}{a, b, c}
-Delete the slice of \var{a} from index \var{b} to index \var{c}\code{-1}.
-\end{funcdesc}
-
-\begin{funcdesc}{getitem}{a, b}
-\funcline{__getitem__}{a, b}
-Return the value of \var{a} at index \var{b}.
-\end{funcdesc}
-
-\begin{funcdesc}{getslice}{a, b, c}
-\funcline{__getslice__}{a, b, c}
-Return the slice of \var{a} from index \var{b} to index \var{c}\code{-1}.
-\end{funcdesc}
-
-\begin{funcdesc}{indexOf}{a, b}
-Return the index of the first of occurrence of \var{b} in \var{a}.
-\end{funcdesc}
-
-\begin{funcdesc}{repeat}{a, b}
-\funcline{__repeat__}{a, b}
-Return \var{a} \code{*} \var{b} where \var{a} is a sequence and
-\var{b} is an integer.
-\end{funcdesc}
-
-\begin{funcdesc}{sequenceIncludes}{\unspecified}
-\deprecated{2.0}{Use \function{contains()} instead.}
-Alias for \function{contains()}.
-\end{funcdesc}
-
-\begin{funcdesc}{setitem}{a, b, c}
-\funcline{__setitem__}{a, b, c}
-Set the value of \var{a} at index \var{b} to \var{c}.
-\end{funcdesc}
-
-\begin{funcdesc}{setslice}{a, b, c, v}
-\funcline{__setslice__}{a, b, c, v}
-Set the slice of \var{a} from index \var{b} to index \var{c}\code{-1} to the
-sequence \var{v}.
-\end{funcdesc}
-
-
-Many operations have an ``in-place'' version. The following functions
-provide a more primitive access to in-place operators than the usual
-syntax does; for example, the statement \code{x += y} is equivalent to
-\code{x = operator.iadd(x, y)}. Another way to put it is to say that
-\code{z = operator.iadd(x, y)} is equivalent to the compound statement
-\code{z = x; z += y}.
-
-\begin{funcdesc}{iadd}{a, b}
-\funcline{__iadd__}{a, b}
-\code{a = iadd(a, b)} is equivalent to \code{a += b}.
-\versionadded{2.5}
-\end{funcdesc}
-
-\begin{funcdesc}{iand}{a, b}
-\funcline{__iand__}{a, b}
-\code{a = iand(a, b)} is equivalent to \code{a \&= b}.
-\versionadded{2.5}
-\end{funcdesc}
-
-\begin{funcdesc}{iconcat}{a, b}
-\funcline{__iconcat__}{a, b}
-\code{a = iconcat(a, b)} is equivalent to \code{a += b} for \var{a}
-and \var{b} sequences.
-\versionadded{2.5}
-\end{funcdesc}
-
-\begin{funcdesc}{idiv}{a, b}
-\funcline{__idiv__}{a, b}
-\code{a = idiv(a, b)} is equivalent to \code{a /= b} when
-\code{__future__.division} is not in effect.
-\versionadded{2.5}
-\end{funcdesc}
-
-\begin{funcdesc}{ifloordiv}{a, b}
-\funcline{__ifloordiv__}{a, b}
-\code{a = ifloordiv(a, b)} is equivalent to \code{a //= b}.
-\versionadded{2.5}
-\end{funcdesc}
-
-\begin{funcdesc}{ilshift}{a, b}
-\funcline{__ilshift__}{a, b}
-\code{a = ilshift(a, b)} is equivalent to \code{a <}\code{<= b}.
-\versionadded{2.5}
-\end{funcdesc}
-
-\begin{funcdesc}{imod}{a, b}
-\funcline{__imod__}{a, b}
-\code{a = imod(a, b)} is equivalent to \code{a \%= b}.
-\versionadded{2.5}
-\end{funcdesc}
-
-\begin{funcdesc}{imul}{a, b}
-\funcline{__imul__}{a, b}
-\code{a = imul(a, b)} is equivalent to \code{a *= b}.
-\versionadded{2.5}
-\end{funcdesc}
-
-\begin{funcdesc}{ior}{a, b}
-\funcline{__ior__}{a, b}
-\code{a = ior(a, b)} is equivalent to \code{a |= b}.
-\versionadded{2.5}
-\end{funcdesc}
-
-\begin{funcdesc}{ipow}{a, b}
-\funcline{__ipow__}{a, b}
-\code{a = ipow(a, b)} is equivalent to \code{a **= b}.
-\versionadded{2.5}
-\end{funcdesc}
-
-\begin{funcdesc}{irepeat}{a, b}
-\funcline{__irepeat__}{a, b}
-\code{a = irepeat(a, b)} is equivalent to \code{a *= b} where
-\var{a} is a sequence and \var{b} is an integer.
-\versionadded{2.5}
-\end{funcdesc}
-
-\begin{funcdesc}{irshift}{a, b}
-\funcline{__irshift__}{a, b}
-\code{a = irshift(a, b)} is equivalent to \code{a >>= b}.
-\versionadded{2.5}
-\end{funcdesc}
-
-\begin{funcdesc}{isub}{a, b}
-\funcline{__isub__}{a, b}
-\code{a = isub(a, b)} is equivalent to \code{a -= b}.
-\versionadded{2.5}
-\end{funcdesc}
-
-\begin{funcdesc}{itruediv}{a, b}
-\funcline{__itruediv__}{a, b}
-\code{a = itruediv(a, b)} is equivalent to \code{a /= b} when
-\code{__future__.division} is in effect.
-\versionadded{2.5}
-\end{funcdesc}
-
-\begin{funcdesc}{ixor}{a, b}
-\funcline{__ixor__}{a, b}
-\code{a = ixor(a, b)} is equivalent to \code{a \textasciicircum= b}.
-\versionadded{2.5}
-\end{funcdesc}
-
-
-The \module{operator} module also defines a few predicates to test the
-type of objects. \note{Be careful not to misinterpret the
-results of these functions; only \function{isCallable()} has any
-measure of reliability with instance objects. For example:}
-
-\begin{verbatim}
->>> class C:
-... pass
-...
->>> import operator
->>> o = C()
->>> operator.isMappingType(o)
-True
-\end{verbatim}
-
-\begin{funcdesc}{isCallable}{o}
-\deprecated{2.0}{Use the \function{callable()} built-in function instead.}
-Returns true if the object \var{o} can be called like a function,
-otherwise it returns false. True is returned for functions, bound and
-unbound methods, class objects, and instance objects which support the
-\method{__call__()} method.
-\end{funcdesc}
-
-\begin{funcdesc}{isMappingType}{o}
-Returns true if the object \var{o} supports the mapping interface.
-This is true for dictionaries and all instance objects defining
-\method{__getitem__}.
-\warning{There is no reliable way to test if an instance
-supports the complete mapping protocol since the interface itself is
-ill-defined. This makes this test less useful than it otherwise might
-be.}
-\end{funcdesc}
-
-\begin{funcdesc}{isNumberType}{o}
-Returns true if the object \var{o} represents a number. This is true
-for all numeric types implemented in C.
-\warning{There is no reliable way to test if an instance
-supports the complete numeric interface since the interface itself is
-ill-defined. This makes this test less useful than it otherwise might
-be.}
-\end{funcdesc}
-
-\begin{funcdesc}{isSequenceType}{o}
-Returns true if the object \var{o} supports the sequence protocol.
-This returns true for all objects which define sequence methods in C,
-and for all instance objects defining \method{__getitem__}.
-\warning{There is no reliable
-way to test if an instance supports the complete sequence interface
-since the interface itself is ill-defined. This makes this test less
-useful than it otherwise might be.}
-\end{funcdesc}
-
-
-Example: Build a dictionary that maps the ordinals from \code{0} to
-\code{255} to their character equivalents.
-
-\begin{verbatim}
->>> import operator
->>> d = {}
->>> keys = range(256)
->>> vals = map(chr, keys)
->>> map(operator.setitem, [d]*len(keys), keys, vals)
-\end{verbatim}
-
-
-The \module{operator} module also defines tools for generalized attribute
-and item lookups. These are useful for making fast field extractors
-as arguments for \function{map()}, \function{sorted()},
-\method{itertools.groupby()}, or other functions that expect a
-function argument.
-
-\begin{funcdesc}{attrgetter}{attr\optional{, args...}}
-Return a callable object that fetches \var{attr} from its operand.
-If more than one attribute is requested, returns a tuple of attributes.
-After, \samp{f=attrgetter('name')}, the call \samp{f(b)} returns
-\samp{b.name}. After, \samp{f=attrgetter('name', 'date')}, the call
-\samp{f(b)} returns \samp{(b.name, b.date)}.
-\versionadded{2.4}
-\versionchanged[Added support for multiple attributes]{2.5}
-\end{funcdesc}
-
-\begin{funcdesc}{itemgetter}{item\optional{, args...}}
-Return a callable object that fetches \var{item} from its operand.
-If more than one item is requested, returns a tuple of items.
-After, \samp{f=itemgetter(2)}, the call \samp{f(b)} returns
-\samp{b[2]}.
-After, \samp{f=itemgetter(2,5,3)}, the call \samp{f(b)} returns
-\samp{(b[2], b[5], b[3])}.
-\versionadded{2.4}
-\versionchanged[Added support for multiple item extraction]{2.5}
-\end{funcdesc}
-
-Examples:
-
-\begin{verbatim}
->>> from operator import itemgetter
->>> inventory = [('apple', 3), ('banana', 2), ('pear', 5), ('orange', 1)]
->>> getcount = itemgetter(1)
->>> map(getcount, inventory)
-[3, 2, 5, 1]
->>> sorted(inventory, key=getcount)
-[('orange', 1), ('banana', 2), ('apple', 3), ('pear', 5)]
-\end{verbatim}
-
-
-\subsection{Mapping Operators to Functions \label{operator-map}}
-
-This table shows how abstract operations correspond to operator
-symbols in the Python syntax and the functions in the
-\refmodule{operator} module.
-
-
-\begin{tableiii}{l|c|l}{textrm}{Operation}{Syntax}{Function}
- \lineiii{Addition}{\code{\var{a} + \var{b}}}
- {\code{add(\var{a}, \var{b})}}
- \lineiii{Concatenation}{\code{\var{seq1} + \var{seq2}}}
- {\code{concat(\var{seq1}, \var{seq2})}}
- \lineiii{Containment Test}{\code{\var{o} in \var{seq}}}
- {\code{contains(\var{seq}, \var{o})}}
- \lineiii{Division}{\code{\var{a} / \var{b}}}
- {\code{div(\var{a}, \var{b}) \#} without \code{__future__.division}}
- \lineiii{Division}{\code{\var{a} / \var{b}}}
- {\code{truediv(\var{a}, \var{b}) \#} with \code{__future__.division}}
- \lineiii{Division}{\code{\var{a} // \var{b}}}
- {\code{floordiv(\var{a}, \var{b})}}
- \lineiii{Bitwise And}{\code{\var{a} \&\ \var{b}}}
- {\code{and_(\var{a}, \var{b})}}
- \lineiii{Bitwise Exclusive Or}{\code{\var{a} \^\ \var{b}}}
- {\code{xor(\var{a}, \var{b})}}
- \lineiii{Bitwise Inversion}{\code{\~{} \var{a}}}
- {\code{invert(\var{a})}}
- \lineiii{Bitwise Or}{\code{\var{a} | \var{b}}}
- {\code{or_(\var{a}, \var{b})}}
- \lineiii{Exponentiation}{\code{\var{a} ** \var{b}}}
- {\code{pow(\var{a}, \var{b})}}
- \lineiii{Identity}{\code{\var{a} is \var{b}}}
- {\code{is_(\var{a}, \var{b})}}
- \lineiii{Identity}{\code{\var{a} is not \var{b}}}
- {\code{is_not(\var{a}, \var{b})}}
- \lineiii{Indexed Assignment}{\code{\var{o}[\var{k}] = \var{v}}}
- {\code{setitem(\var{o}, \var{k}, \var{v})}}
- \lineiii{Indexed Deletion}{\code{del \var{o}[\var{k}]}}
- {\code{delitem(\var{o}, \var{k})}}
- \lineiii{Indexing}{\code{\var{o}[\var{k}]}}
- {\code{getitem(\var{o}, \var{k})}}
- \lineiii{Left Shift}{\code{\var{a} <\code{<} \var{b}}}
- {\code{lshift(\var{a}, \var{b})}}
- \lineiii{Modulo}{\code{\var{a} \%\ \var{b}}}
- {\code{mod(\var{a}, \var{b})}}
- \lineiii{Multiplication}{\code{\var{a} * \var{b}}}
- {\code{mul(\var{a}, \var{b})}}
- \lineiii{Negation (Arithmetic)}{\code{- \var{a}}}
- {\code{neg(\var{a})}}
- \lineiii{Negation (Logical)}{\code{not \var{a}}}
- {\code{not_(\var{a})}}
- \lineiii{Right Shift}{\code{\var{a} >> \var{b}}}
- {\code{rshift(\var{a}, \var{b})}}
- \lineiii{Sequence Repitition}{\code{\var{seq} * \var{i}}}
- {\code{repeat(\var{seq}, \var{i})}}
- \lineiii{Slice Assignment}{\code{\var{seq}[\var{i}:\var{j}]} = \var{values}}
- {\code{setslice(\var{seq}, \var{i}, \var{j}, \var{values})}}
- \lineiii{Slice Deletion}{\code{del \var{seq}[\var{i}:\var{j}]}}
- {\code{delslice(\var{seq}, \var{i}, \var{j})}}
- \lineiii{Slicing}{\code{\var{seq}[\var{i}:\var{j}]}}
- {\code{getslice(\var{seq}, \var{i}, \var{j})}}
- \lineiii{String Formatting}{\code{\var{s} \%\ \var{o}}}
- {\code{mod(\var{s}, \var{o})}}
- \lineiii{Subtraction}{\code{\var{a} - \var{b}}}
- {\code{sub(\var{a}, \var{b})}}
- \lineiii{Truth Test}{\code{\var{o}}}
- {\code{truth(\var{o})}}
- \lineiii{Ordering}{\code{\var{a} < \var{b}}}
- {\code{lt(\var{a}, \var{b})}}
- \lineiii{Ordering}{\code{\var{a} <= \var{b}}}
- {\code{le(\var{a}, \var{b})}}
- \lineiii{Equality}{\code{\var{a} == \var{b}}}
- {\code{eq(\var{a}, \var{b})}}
- \lineiii{Difference}{\code{\var{a} != \var{b}}}
- {\code{ne(\var{a}, \var{b})}}
- \lineiii{Ordering}{\code{\var{a} >= \var{b}}}
- {\code{ge(\var{a}, \var{b})}}
- \lineiii{Ordering}{\code{\var{a} > \var{b}}}
- {\code{gt(\var{a}, \var{b})}}
-\end{tableiii}