diff options
author | Georg Brandl <georg@python.org> | 2007-08-15 14:28:22 (GMT) |
---|---|---|
committer | Georg Brandl <georg@python.org> | 2007-08-15 14:28:22 (GMT) |
commit | 116aa62bf54a39697e25f21d6cf6799f7faa1349 (patch) | |
tree | 8db5729518ed4ca88e26f1e26cc8695151ca3eb3 /Doc/library/collections.rst | |
parent | 739c01d47b9118d04e5722333f0e6b4d0c8bdd9e (diff) | |
download | cpython-116aa62bf54a39697e25f21d6cf6799f7faa1349.zip cpython-116aa62bf54a39697e25f21d6cf6799f7faa1349.tar.gz cpython-116aa62bf54a39697e25f21d6cf6799f7faa1349.tar.bz2 |
Move the 3k reST doc tree in place.
Diffstat (limited to 'Doc/library/collections.rst')
-rw-r--r-- | Doc/library/collections.rst | 414 |
1 files changed, 414 insertions, 0 deletions
diff --git a/Doc/library/collections.rst b/Doc/library/collections.rst new file mode 100644 index 0000000..c2c9262 --- /dev/null +++ b/Doc/library/collections.rst @@ -0,0 +1,414 @@ + +:mod:`collections` --- High-performance container datatypes +=========================================================== + +.. module:: collections + :synopsis: High-performance datatypes +.. moduleauthor:: Raymond Hettinger <python@rcn.com> +.. sectionauthor:: Raymond Hettinger <python@rcn.com> + + +.. versionadded:: 2.4 + +This module implements high-performance container datatypes. Currently, +there are two datatypes, :class:`deque` and :class:`defaultdict`, and +one datatype factory function, :func:`NamedTuple`. Python already +includes built-in containers, :class:`dict`, :class:`list`, +:class:`set`, and :class:`tuple`. In addition, the optional :mod:`bsddb` +module has a :meth:`bsddb.btopen` method that can be used to create in-memory +or file based ordered dictionaries with string keys. + +Future editions of the standard library may include balanced trees and +ordered dictionaries. + +.. versionchanged:: 2.5 + Added :class:`defaultdict`. + +.. versionchanged:: 2.6 + Added :class:`NamedTuple`. + + +.. _deque-objects: + +:class:`deque` objects +---------------------- + + +.. class:: deque([iterable]) + + Returns a new deque object initialized left-to-right (using :meth:`append`) with + data from *iterable*. If *iterable* is not specified, the new deque is empty. + + Deques are a generalization of stacks and queues (the name is pronounced "deck" + and is short for "double-ended queue"). Deques support thread-safe, memory + efficient appends and pops from either side of the deque with approximately the + same O(1) performance in either direction. + + Though :class:`list` objects support similar operations, they are optimized for + fast fixed-length operations and incur O(n) memory movement costs for + ``pop(0)`` and ``insert(0, v)`` operations which change both the size and + position of the underlying data representation. + + .. versionadded:: 2.4 + +Deque objects support the following methods: + + +.. method:: deque.append(x) + + Add *x* to the right side of the deque. + + +.. method:: deque.appendleft(x) + + Add *x* to the left side of the deque. + + +.. method:: deque.clear() + + Remove all elements from the deque leaving it with length 0. + + +.. method:: deque.extend(iterable) + + Extend the right side of the deque by appending elements from the iterable + argument. + + +.. method:: deque.extendleft(iterable) + + Extend the left side of the deque by appending elements from *iterable*. Note, + the series of left appends results in reversing the order of elements in the + iterable argument. + + +.. method:: deque.pop() + + Remove and return an element from the right side of the deque. If no elements + are present, raises an :exc:`IndexError`. + + +.. method:: deque.popleft() + + Remove and return an element from the left side of the deque. If no elements are + present, raises an :exc:`IndexError`. + + +.. method:: deque.remove(value) + + Removed the first occurrence of *value*. If not found, raises a + :exc:`ValueError`. + + .. versionadded:: 2.5 + + +.. method:: deque.rotate(n) + + Rotate the deque *n* steps to the right. If *n* is negative, rotate to the + left. Rotating one step to the right is equivalent to: + ``d.appendleft(d.pop())``. + +In addition to the above, deques support iteration, pickling, ``len(d)``, +``reversed(d)``, ``copy.copy(d)``, ``copy.deepcopy(d)``, membership testing with +the :keyword:`in` operator, and subscript references such as ``d[-1]``. + +Example:: + + >>> from collections import deque + >>> d = deque('ghi') # make a new deque with three items + >>> for elem in d: # iterate over the deque's elements + ... print elem.upper() + G + H + I + + >>> d.append('j') # add a new entry to the right side + >>> d.appendleft('f') # add a new entry to the left side + >>> d # show the representation of the deque + deque(['f', 'g', 'h', 'i', 'j']) + + >>> d.pop() # return and remove the rightmost item + 'j' + >>> d.popleft() # return and remove the leftmost item + 'f' + >>> list(d) # list the contents of the deque + ['g', 'h', 'i'] + >>> d[0] # peek at leftmost item + 'g' + >>> d[-1] # peek at rightmost item + 'i' + + >>> list(reversed(d)) # list the contents of a deque in reverse + ['i', 'h', 'g'] + >>> 'h' in d # search the deque + True + >>> d.extend('jkl') # add multiple elements at once + >>> d + deque(['g', 'h', 'i', 'j', 'k', 'l']) + >>> d.rotate(1) # right rotation + >>> d + deque(['l', 'g', 'h', 'i', 'j', 'k']) + >>> d.rotate(-1) # left rotation + >>> d + deque(['g', 'h', 'i', 'j', 'k', 'l']) + + >>> deque(reversed(d)) # make a new deque in reverse order + deque(['l', 'k', 'j', 'i', 'h', 'g']) + >>> d.clear() # empty the deque + >>> d.pop() # cannot pop from an empty deque + Traceback (most recent call last): + File "<pyshell#6>", line 1, in -toplevel- + d.pop() + IndexError: pop from an empty deque + + >>> d.extendleft('abc') # extendleft() reverses the input order + >>> d + deque(['c', 'b', 'a']) + + +.. _deque-recipes: + +Recipes +^^^^^^^ + +This section shows various approaches to working with deques. + +The :meth:`rotate` method provides a way to implement :class:`deque` slicing and +deletion. For example, a pure python implementation of ``del d[n]`` relies on +the :meth:`rotate` method to position elements to be popped:: + + def delete_nth(d, n): + d.rotate(-n) + d.popleft() + d.rotate(n) + +To implement :class:`deque` slicing, use a similar approach applying +:meth:`rotate` to bring a target element to the left side of the deque. Remove +old entries with :meth:`popleft`, add new entries with :meth:`extend`, and then +reverse the rotation. + +With minor variations on that approach, it is easy to implement Forth style +stack manipulations such as ``dup``, ``drop``, ``swap``, ``over``, ``pick``, +``rot``, and ``roll``. + +A roundrobin task server can be built from a :class:`deque` using +:meth:`popleft` to select the current task and :meth:`append` to add it back to +the tasklist if the input stream is not exhausted:: + + >>> def roundrobin(*iterables): + ... pending = deque(iter(i) for i in iterables) + ... while pending: + ... task = pending.popleft() + ... try: + ... yield next(task) + ... except StopIteration: + ... continue + ... pending.append(task) + ... + >>> for value in roundrobin('abc', 'd', 'efgh'): + ... print value + + a + d + e + b + f + c + g + h + + +Multi-pass data reduction algorithms can be succinctly expressed and efficiently +coded by extracting elements with multiple calls to :meth:`popleft`, applying +the reduction function, and calling :meth:`append` to add the result back to the +queue. + +For example, building a balanced binary tree of nested lists entails reducing +two adjacent nodes into one by grouping them in a list:: + + >>> def maketree(iterable): + ... d = deque(iterable) + ... while len(d) > 1: + ... pair = [d.popleft(), d.popleft()] + ... d.append(pair) + ... return list(d) + ... + >>> print maketree('abcdefgh') + [[[['a', 'b'], ['c', 'd']], [['e', 'f'], ['g', 'h']]]] + + + +.. _defaultdict-objects: + +:class:`defaultdict` objects +---------------------------- + + +.. class:: defaultdict([default_factory[, ...]]) + + Returns a new dictionary-like object. :class:`defaultdict` is a subclass of the + builtin :class:`dict` class. It overrides one method and adds one writable + instance variable. The remaining functionality is the same as for the + :class:`dict` class and is not documented here. + + The first argument provides the initial value for the :attr:`default_factory` + attribute; it defaults to ``None``. All remaining arguments are treated the same + as if they were passed to the :class:`dict` constructor, including keyword + arguments. + + .. versionadded:: 2.5 + +:class:`defaultdict` objects support the following method in addition to the +standard :class:`dict` operations: + + +.. method:: defaultdict.__missing__(key) + + If the :attr:`default_factory` attribute is ``None``, this raises an + :exc:`KeyError` exception with the *key* as argument. + + If :attr:`default_factory` is not ``None``, it is called without arguments to + provide a default value for the given *key*, this value is inserted in the + dictionary for the *key*, and returned. + + If calling :attr:`default_factory` raises an exception this exception is + propagated unchanged. + + This method is called by the :meth:`__getitem__` method of the :class:`dict` + class when the requested key is not found; whatever it returns or raises is then + returned or raised by :meth:`__getitem__`. + +:class:`defaultdict` objects support the following instance variable: + + +.. attribute:: defaultdict.default_factory + + This attribute is used by the :meth:`__missing__` method; it is initialized from + the first argument to the constructor, if present, or to ``None``, if absent. + + +.. _defaultdict-examples: + +:class:`defaultdict` Examples +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +Using :class:`list` as the :attr:`default_factory`, it is easy to group a +sequence of key-value pairs into a dictionary of lists:: + + >>> s = [('yellow', 1), ('blue', 2), ('yellow', 3), ('blue', 4), ('red', 1)] + >>> d = defaultdict(list) + >>> for k, v in s: + ... d[k].append(v) + ... + >>> d.items() + [('blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])] + +When each key is encountered for the first time, it is not already in the +mapping; so an entry is automatically created using the :attr:`default_factory` +function which returns an empty :class:`list`. The :meth:`list.append` +operation then attaches the value to the new list. When keys are encountered +again, the look-up proceeds normally (returning the list for that key) and the +:meth:`list.append` operation adds another value to the list. This technique is +simpler and faster than an equivalent technique using :meth:`dict.setdefault`:: + + >>> d = {} + >>> for k, v in s: + ... d.setdefault(k, []).append(v) + ... + >>> d.items() + [('blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])] + +Setting the :attr:`default_factory` to :class:`int` makes the +:class:`defaultdict` useful for counting (like a bag or multiset in other +languages):: + + >>> s = 'mississippi' + >>> d = defaultdict(int) + >>> for k in s: + ... d[k] += 1 + ... + >>> d.items() + [('i', 4), ('p', 2), ('s', 4), ('m', 1)] + +When a letter is first encountered, it is missing from the mapping, so the +:attr:`default_factory` function calls :func:`int` to supply a default count of +zero. The increment operation then builds up the count for each letter. + +The function :func:`int` which always returns zero is just a special case of +constant functions. A faster and more flexible way to create constant functions +is to use a lambda function which can supply any constant value (not just +zero):: + + >>> def constant_factory(value): + ... return lambda: value + >>> d = defaultdict(constant_factory('<missing>')) + >>> d.update(name='John', action='ran') + >>> '%(name)s %(action)s to %(object)s' % d + 'John ran to <missing>' + +Setting the :attr:`default_factory` to :class:`set` makes the +:class:`defaultdict` useful for building a dictionary of sets:: + + >>> s = [('red', 1), ('blue', 2), ('red', 3), ('blue', 4), ('red', 1), ('blue', 4)] + >>> d = defaultdict(set) + >>> for k, v in s: + ... d[k].add(v) + ... + >>> d.items() + [('blue', set([2, 4])), ('red', set([1, 3]))] + + +.. _named-tuple-factory: + +:func:`NamedTuple` datatype factory function +-------------------------------------------- + + +.. function:: NamedTuple(typename, fieldnames) + + Returns a new tuple subclass named *typename*. The new subclass is used to + create tuple-like objects that have fields accessable by attribute lookup as + well as being indexable and iterable. Instances of the subclass also have a + helpful docstring (with typename and fieldnames) and a helpful :meth:`__repr__` + method which lists the tuple contents in a ``name=value`` format. + + .. versionadded:: 2.6 + + The *fieldnames* are specified in a single string and are separated by spaces. + Any valid Python identifier may be used for a field name. + + Example:: + + >>> Point = NamedTuple('Point', 'x y') + >>> Point.__doc__ # docstring for the new datatype + 'Point(x, y)' + >>> p = Point(11, y=22) # instantiate with positional or keyword arguments + >>> p[0] + p[1] # works just like the tuple (11, 22) + 33 + >>> x, y = p # unpacks just like a tuple + >>> x, y + (11, 22) + >>> p.x + p.y # fields also accessable by name + 33 + >>> p # readable __repr__ with name=value style + Point(x=11, y=22) + + The use cases are the same as those for tuples. The named factories assign + meaning to each tuple position and allow for more readable, self-documenting + code. Named tuples can also be used to assign field names to tuples returned + by the :mod:`csv` or :mod:`sqlite3` modules. For example:: + + from itertools import starmap + import csv + EmployeeRecord = NamedTuple('EmployeeRecord', 'name age title department paygrade') + for record in starmap(EmployeeRecord, csv.reader(open("employees.csv", "rb"))): + print record + + To cast an individual record stored as :class:`list`, :class:`tuple`, or some + other iterable type, use the star-operator to unpack the values:: + + >>> Color = NamedTuple('Color', 'name code') + >>> m = dict(red=1, green=2, blue=3) + >>> print Color(*m.popitem()) + Color(name='blue', code=3) + |