diff options
author | Raymond Hettinger <python@rcn.com> | 2008-07-19 23:58:47 (GMT) |
---|---|---|
committer | Raymond Hettinger <python@rcn.com> | 2008-07-19 23:58:47 (GMT) |
commit | f1f46f0350390cf86ec015f9f60eda41a8210033 (patch) | |
tree | 6bfc82fedbc8676fefe4e74b30b19363fb3accf5 /Doc/library/itertools.rst | |
parent | 39e0eb766f02e18711d7eac9f948754a1ee569e3 (diff) | |
download | cpython-f1f46f0350390cf86ec015f9f60eda41a8210033.zip cpython-f1f46f0350390cf86ec015f9f60eda41a8210033.tar.gz cpython-f1f46f0350390cf86ec015f9f60eda41a8210033.tar.bz2 |
Clean-up itertools docs and recipes.
Diffstat (limited to 'Doc/library/itertools.rst')
-rw-r--r-- | Doc/library/itertools.rst | 65 |
1 files changed, 19 insertions, 46 deletions
diff --git a/Doc/library/itertools.rst b/Doc/library/itertools.rst index d8c3331..3cef985 100644 --- a/Doc/library/itertools.rst +++ b/Doc/library/itertools.rst @@ -35,18 +35,11 @@ equivalent result. Likewise, the functional tools are designed to work well with the high-speed functions provided by the :mod:`operator` module. -The module author welcomes suggestions for other basic building blocks to be -added to future versions of the module. - Whether cast in pure python form or compiled code, tools that use iterators are -more memory efficient (and faster) than their list based counterparts. Adopting +more memory efficient (and often faster) than their list based counterparts. Adopting the principles of just-in-time manufacturing, they create data when and where needed instead of consuming memory with the computer equivalent of "inventory". -The performance advantage of iterators becomes more acute as the number of -elements increases -- at some point, lists grow large enough to severely impact -memory cache performance and start running slowly. - .. seealso:: @@ -598,55 +591,35 @@ which incur interpreter overhead. .. testcode:: - def take(n, seq): - return list(islice(seq, n)) + def take(n, iterable): + "Return first n items of the iterable as a list" + return list(islice(iterable, n)) - def enumerate(iterable): - return izip(count(), iterable) + def enumerate(iterable, start=0): + return izip(count(start), iterable) - def tabulate(function): + def tabulate(function, start=0): "Return function(0), function(1), ..." - return imap(function, count()) - - def iteritems(mapping): - return izip(mapping.iterkeys(), mapping.itervalues()) + return imap(function, count(start)) def nth(iterable, n): - "Returns the nth item or raise StopIteration" - return islice(iterable, n, None).next() - - def all(seq, pred=None): - "Returns True if pred(x) is true for every element in the iterable" - for elem in ifilterfalse(pred, seq): - return False - return True - - def any(seq, pred=None): - "Returns True if pred(x) is true for at least one element in the iterable" - for elem in ifilter(pred, seq): - return True - return False - - def no(seq, pred=None): - "Returns True if pred(x) is false for every element in the iterable" - for elem in ifilter(pred, seq): - return False - return True - - def quantify(seq, pred=None): - "Count how many times the predicate is true in the sequence" - return sum(imap(pred, seq)) - - def padnone(seq): + "Returns the nth item or empty list" + return list(islice(iterable, n, n+1)) + + def quantify(iterable, pred=bool): + "Count how many times the predicate is true" + return sum(imap(pred, iterable)) + + def padnone(iterable): """Returns the sequence elements and then returns None indefinitely. Useful for emulating the behavior of the built-in map() function. """ - return chain(seq, repeat(None)) + return chain(iterable, repeat(None)) - def ncycles(seq, n): + def ncycles(iterable, n): "Returns the sequence elements n times" - return chain.from_iterable(repeat(seq, n)) + return chain.from_iterable(repeat(iterable, n)) def dotproduct(vec1, vec2): return sum(imap(operator.mul, vec1, vec2)) |