summaryrefslogtreecommitdiffstats
path: root/Doc/library/itertools.rst
diff options
context:
space:
mode:
authorRaymond Hettinger <python@rcn.com>2008-07-19 23:58:47 (GMT)
committerRaymond Hettinger <python@rcn.com>2008-07-19 23:58:47 (GMT)
commitf1f46f0350390cf86ec015f9f60eda41a8210033 (patch)
tree6bfc82fedbc8676fefe4e74b30b19363fb3accf5 /Doc/library/itertools.rst
parent39e0eb766f02e18711d7eac9f948754a1ee569e3 (diff)
downloadcpython-f1f46f0350390cf86ec015f9f60eda41a8210033.zip
cpython-f1f46f0350390cf86ec015f9f60eda41a8210033.tar.gz
cpython-f1f46f0350390cf86ec015f9f60eda41a8210033.tar.bz2
Clean-up itertools docs and recipes.
Diffstat (limited to 'Doc/library/itertools.rst')
-rw-r--r--Doc/library/itertools.rst65
1 files changed, 19 insertions, 46 deletions
diff --git a/Doc/library/itertools.rst b/Doc/library/itertools.rst
index d8c3331..3cef985 100644
--- a/Doc/library/itertools.rst
+++ b/Doc/library/itertools.rst
@@ -35,18 +35,11 @@ equivalent result.
Likewise, the functional tools are designed to work well with the high-speed
functions provided by the :mod:`operator` module.
-The module author welcomes suggestions for other basic building blocks to be
-added to future versions of the module.
-
Whether cast in pure python form or compiled code, tools that use iterators are
-more memory efficient (and faster) than their list based counterparts. Adopting
+more memory efficient (and often faster) than their list based counterparts. Adopting
the principles of just-in-time manufacturing, they create data when and where
needed instead of consuming memory with the computer equivalent of "inventory".
-The performance advantage of iterators becomes more acute as the number of
-elements increases -- at some point, lists grow large enough to severely impact
-memory cache performance and start running slowly.
-
.. seealso::
@@ -598,55 +591,35 @@ which incur interpreter overhead.
.. testcode::
- def take(n, seq):
- return list(islice(seq, n))
+ def take(n, iterable):
+ "Return first n items of the iterable as a list"
+ return list(islice(iterable, n))
- def enumerate(iterable):
- return izip(count(), iterable)
+ def enumerate(iterable, start=0):
+ return izip(count(start), iterable)
- def tabulate(function):
+ def tabulate(function, start=0):
"Return function(0), function(1), ..."
- return imap(function, count())
-
- def iteritems(mapping):
- return izip(mapping.iterkeys(), mapping.itervalues())
+ return imap(function, count(start))
def nth(iterable, n):
- "Returns the nth item or raise StopIteration"
- return islice(iterable, n, None).next()
-
- def all(seq, pred=None):
- "Returns True if pred(x) is true for every element in the iterable"
- for elem in ifilterfalse(pred, seq):
- return False
- return True
-
- def any(seq, pred=None):
- "Returns True if pred(x) is true for at least one element in the iterable"
- for elem in ifilter(pred, seq):
- return True
- return False
-
- def no(seq, pred=None):
- "Returns True if pred(x) is false for every element in the iterable"
- for elem in ifilter(pred, seq):
- return False
- return True
-
- def quantify(seq, pred=None):
- "Count how many times the predicate is true in the sequence"
- return sum(imap(pred, seq))
-
- def padnone(seq):
+ "Returns the nth item or empty list"
+ return list(islice(iterable, n, n+1))
+
+ def quantify(iterable, pred=bool):
+ "Count how many times the predicate is true"
+ return sum(imap(pred, iterable))
+
+ def padnone(iterable):
"""Returns the sequence elements and then returns None indefinitely.
Useful for emulating the behavior of the built-in map() function.
"""
- return chain(seq, repeat(None))
+ return chain(iterable, repeat(None))
- def ncycles(seq, n):
+ def ncycles(iterable, n):
"Returns the sequence elements n times"
- return chain.from_iterable(repeat(seq, n))
+ return chain.from_iterable(repeat(iterable, n))
def dotproduct(vec1, vec2):
return sum(imap(operator.mul, vec1, vec2))