summaryrefslogtreecommitdiffstats
path: root/Doc/library/math.rst
diff options
context:
space:
mode:
authorRaymond Hettinger <python@rcn.com>2011-03-31 19:04:53 (GMT)
committerRaymond Hettinger <python@rcn.com>2011-03-31 19:04:53 (GMT)
commit1081d488899b81857ee32e9062811e3333961e2f (patch)
treea0a2f6c558238f691c7339fb6240066cc9d374a3 /Doc/library/math.rst
parent27181ac778fdb8432d79f280922eac0f70af5194 (diff)
downloadcpython-1081d488899b81857ee32e9062811e3333961e2f.zip
cpython-1081d488899b81857ee32e9062811e3333961e2f.tar.gz
cpython-1081d488899b81857ee32e9062811e3333961e2f.tar.bz2
Add links to make the math docs more usable.
Diffstat (limited to 'Doc/library/math.rst')
-rw-r--r--Doc/library/math.rst30
1 files changed, 23 insertions, 7 deletions
diff --git a/Doc/library/math.rst b/Doc/library/math.rst
index ec3955d..a5be90e 100644
--- a/Doc/library/math.rst
+++ b/Doc/library/math.rst
@@ -156,10 +156,10 @@ Power and logarithmic functions
.. function:: expm1(x)
- Return ``e**x - 1``. For small floats *x*, the subtraction in
- ``exp(x) - 1`` can result in a significant loss of precision; the
- :func:`expm1` function provides a way to compute this quantity to
- full precision::
+ Return ``e**x - 1``. For small floats *x*, the subtraction in ``exp(x) - 1``
+ can result in a `significant loss of precision
+ <http://en.wikipedia.org/wiki/Loss_of_significance>`_\; the :func:`expm1`
+ function provides a way to compute this quantity to full precision::
>>> from math import exp, expm1
>>> exp(1e-5) - 1 # gives result accurate to 11 places
@@ -269,6 +269,9 @@ Angular conversion
Hyperbolic functions
--------------------
+`Hyperbolic functions <http://en.wikipedia.org/wiki/Hyperbolic_function>`_
+are analogs of trigonometric functions that are based on hyperbolas
+instead of circles.
.. function:: acosh(x)
@@ -305,21 +308,34 @@ Special functions
.. function:: erf(x)
- Return the error function at *x*.
+ Return the `error function <http://en.wikipedia.org/wiki/Error_function>`_ at
+ *x*.
+
+ The :func:`erf` function can be used to compute traditional statistical
+ functions such as the `cumulative standard normal distribution
+ <http://en.wikipedia.org/wiki/Normal_distribution#Cumulative_distribution_function>`_::
+
+ def phi(x):
+ 'Cumulative distribution function for the standard normal distribution'
+ return (1.0 + erf(x / sqrt(2.0))) / 2.0
.. versionadded:: 3.2
.. function:: erfc(x)
- Return the complementary error function at *x*.
+ Return the complementary error function at *x*. The `complementary error
+ function <http://en.wikipedia.org/wiki/Error_function>`_ is defined as
+ ``1.0 - erf(x)``. It is used for large values of *x* where a straight
+ substraction from *1* would cause a `loss of significance
+ <http://en.wikipedia.org/wiki/Loss_of_significance>`_\.
.. versionadded:: 3.2
.. function:: gamma(x)
- Return the Gamma function at *x*.
+ Return the `Gamma function<http://en.wikipedia.org/wiki/Gamma_function>` at *x*.
.. versionadded:: 3.2