summaryrefslogtreecommitdiffstats
path: root/Doc/library/random.rst
diff options
context:
space:
mode:
authorRaymond Hettinger <rhettinger@users.noreply.github.com>2020-04-21 23:11:00 (GMT)
committerGitHub <noreply@github.com>2020-04-21 23:11:00 (GMT)
commitd3a8d616faf3364b22fde18dce8c168de9368146 (patch)
tree69073a73fbc6a982bc189125c4ba737d60d00061 /Doc/library/random.rst
parent9c82ea7868a1c5ecf88891c627b5c399357eb05e (diff)
downloadcpython-d3a8d616faf3364b22fde18dce8c168de9368146.zip
cpython-d3a8d616faf3364b22fde18dce8c168de9368146.tar.gz
cpython-d3a8d616faf3364b22fde18dce8c168de9368146.tar.bz2
Small improvements to the recipes and examples. (GH-19635)
* Add underscores to long numbers to improve readability * Use bigger dataset in the bootstrapping example * Convert single-server queue example to more useful multi-server queue
Diffstat (limited to 'Doc/library/random.rst')
-rw-r--r--Doc/library/random.rst56
1 files changed, 26 insertions, 30 deletions
diff --git a/Doc/library/random.rst b/Doc/library/random.rst
index 82e900d..291eca3 100644
--- a/Doc/library/random.rst
+++ b/Doc/library/random.rst
@@ -425,29 +425,28 @@ Simulations::
>>> def trial():
... return choices('HT', cum_weights=(0.60, 1.00), k=7).count('H') >= 5
...
- >>> sum(trial() for i in range(10000)) / 10000
+ >>> sum(trial() for i in range(10_000)) / 10_000
0.4169
>>> # Probability of the median of 5 samples being in middle two quartiles
>>> def trial():
- ... return 2500 <= sorted(choices(range(10000), k=5))[2] < 7500
+ ... return 2_500 <= sorted(choices(range(10_000), k=5))[2] < 7_500
...
- >>> sum(trial() for i in range(10000)) / 10000
+ >>> sum(trial() for i in range(10_000)) / 10_000
0.7958
Example of `statistical bootstrapping
<https://en.wikipedia.org/wiki/Bootstrapping_(statistics)>`_ using resampling
-with replacement to estimate a confidence interval for the mean of a sample of
-size five::
+with replacement to estimate a confidence interval for the mean of a sample::
# http://statistics.about.com/od/Applications/a/Example-Of-Bootstrapping.htm
from statistics import fmean as mean
from random import choices
- data = 1, 2, 4, 4, 10
- means = sorted(mean(choices(data, k=5)) for i in range(20))
+ data = [41, 50, 29, 37, 81, 30, 73, 63, 20, 35, 68, 22, 60, 31, 95]
+ means = sorted(mean(choices(data, k=len(data))) for i in range(100))
print(f'The sample mean of {mean(data):.1f} has a 90% confidence '
- f'interval from {means[1]:.1f} to {means[-2]:.1f}')
+ f'interval from {means[5]:.1f} to {means[94]:.1f}')
Example of a `resampling permutation test
<https://en.wikipedia.org/wiki/Resampling_(statistics)#Permutation_tests>`_
@@ -463,7 +462,7 @@ between the effects of a drug versus a placebo::
placebo = [54, 51, 58, 44, 55, 52, 42, 47, 58, 46]
observed_diff = mean(drug) - mean(placebo)
- n = 10000
+ n = 10_000
count = 0
combined = drug + placebo
for i in range(n):
@@ -476,32 +475,29 @@ between the effects of a drug versus a placebo::
print(f'The one-sided p-value of {count / n:.4f} leads us to reject the null')
print(f'hypothesis that there is no difference between the drug and the placebo.')
-Simulation of arrival times and service deliveries in a single server queue::
+Simulation of arrival times and service deliveries for a multiserver queue::
+ from heapq import heappush, heappop
from random import expovariate, gauss
from statistics import mean, median, stdev
average_arrival_interval = 5.6
- average_service_time = 5.0
- stdev_service_time = 0.5
-
- num_waiting = 0
- arrivals = []
- starts = []
- arrival = service_end = 0.0
- for i in range(20000):
- if arrival <= service_end:
- num_waiting += 1
- arrival += expovariate(1.0 / average_arrival_interval)
- arrivals.append(arrival)
- else:
- num_waiting -= 1
- service_start = service_end if num_waiting else arrival
- service_time = gauss(average_service_time, stdev_service_time)
- service_end = service_start + service_time
- starts.append(service_start)
-
- waits = [start - arrival for arrival, start in zip(arrivals, starts)]
+ average_service_time = 15.0
+ stdev_service_time = 3.5
+ num_servers = 3
+
+ waits = []
+ arrival_time = 0.0
+ servers = [0.0] * num_servers # time when each server becomes available
+ for i in range(100_000):
+ arrival_time += expovariate(1.0 / average_arrival_interval)
+ next_server_available = heappop(servers)
+ wait = max(0.0, next_server_available - arrival_time)
+ waits.append(wait)
+ service_duration = gauss(average_service_time, stdev_service_time)
+ service_completed = arrival_time + wait + service_duration
+ heappush(servers, service_completed)
+
print(f'Mean wait: {mean(waits):.1f}. Stdev wait: {stdev(waits):.1f}.')
print(f'Median wait: {median(waits):.1f}. Max wait: {max(waits):.1f}.')