diff options
author | Raymond Hettinger <rhettinger@users.noreply.github.com> | 2019-08-25 07:57:26 (GMT) |
---|---|---|
committer | GitHub <noreply@github.com> | 2019-08-25 07:57:26 (GMT) |
commit | 8371799e300475c8f9f967e900816218d3500e5d (patch) | |
tree | 8187aac65dc7b206a5e2e929ebd9d1ae5f7937d4 /Doc/library/statistics.rst | |
parent | d4b4c00b57d24f6ee2cf3a96213406bb09953df3 (diff) | |
download | cpython-8371799e300475c8f9f967e900816218d3500e5d.zip cpython-8371799e300475c8f9f967e900816218d3500e5d.tar.gz cpython-8371799e300475c8f9f967e900816218d3500e5d.tar.bz2 |
bpo-37905: Improve docs for NormalDist (GH-15486)
Diffstat (limited to 'Doc/library/statistics.rst')
-rw-r--r-- | Doc/library/statistics.rst | 27 |
1 files changed, 7 insertions, 20 deletions
diff --git a/Doc/library/statistics.rst b/Doc/library/statistics.rst index bb77228..04b731d 100644 --- a/Doc/library/statistics.rst +++ b/Doc/library/statistics.rst @@ -667,12 +667,8 @@ of applications in statistics. .. method:: NormalDist.overlap(other) - Compute the `overlapping coefficient (OVL) - <http://www.iceaaonline.com/ready/wp-content/uploads/2014/06/MM-9-Presentation-Meet-the-Overlapping-Coefficient-A-Measure-for-Elevator-Speeches.pdf>`_ - between two normal distributions, giving a measure of agreement. - Returns a value between 0.0 and 1.0 giving `the overlapping area for - the two probability density functions - <https://www.rasch.org/rmt/rmt101r.htm>`_. + Returns a value between 0.0 and 1.0 giving the overlapping area for + the two probability density functions. Instances of :class:`NormalDist` support addition, subtraction, multiplication and division by a constant. These operations @@ -734,16 +730,6 @@ Find the `quartiles <https://en.wikipedia.org/wiki/Quartile>`_ and `deciles >>> [round(sat.inv_cdf(p / 10)) for p in range(1, 10)] [810, 896, 958, 1011, 1060, 1109, 1162, 1224, 1310] -What percentage of men and women will have the same height in `two normally -distributed populations with known means and standard deviations -<http://www.usablestats.com/lessons/normal>`_? - - >>> men = NormalDist(70, 4) - >>> women = NormalDist(65, 3.5) - >>> ovl = men.overlap(women) - >>> round(ovl * 100.0, 1) - 50.3 - To estimate the distribution for a model than isn't easy to solve analytically, :class:`NormalDist` can generate input samples for a `Monte Carlo simulation <https://en.wikipedia.org/wiki/Monte_Carlo_method>`_: @@ -754,11 +740,12 @@ Carlo simulation <https://en.wikipedia.org/wiki/Monte_Carlo_method>`_: ... return (3*x + 7*x*y - 5*y) / (11 * z) ... >>> n = 100_000 - >>> X = NormalDist(10, 2.5).samples(n) - >>> Y = NormalDist(15, 1.75).samples(n) - >>> Z = NormalDist(5, 1.25).samples(n) + >>> seed = 86753099035768 + >>> X = NormalDist(10, 2.5).samples(n, seed=seed) + >>> Y = NormalDist(15, 1.75).samples(n, seed=seed) + >>> Z = NormalDist(50, 1.25).samples(n, seed=seed) >>> NormalDist.from_samples(map(model, X, Y, Z)) # doctest: +SKIP - NormalDist(mu=19.640137307085507, sigma=47.03273142191088) + NormalDist(mu=1.8661894803304777, sigma=0.65238717376862) Normal distributions commonly arise in machine learning problems. |