summaryrefslogtreecommitdiffstats
path: root/Doc/tutorial/floatingpoint.rst
diff options
context:
space:
mode:
authorGeorg Brandl <georg@python.org>2007-08-15 14:28:22 (GMT)
committerGeorg Brandl <georg@python.org>2007-08-15 14:28:22 (GMT)
commit116aa62bf54a39697e25f21d6cf6799f7faa1349 (patch)
tree8db5729518ed4ca88e26f1e26cc8695151ca3eb3 /Doc/tutorial/floatingpoint.rst
parent739c01d47b9118d04e5722333f0e6b4d0c8bdd9e (diff)
downloadcpython-116aa62bf54a39697e25f21d6cf6799f7faa1349.zip
cpython-116aa62bf54a39697e25f21d6cf6799f7faa1349.tar.gz
cpython-116aa62bf54a39697e25f21d6cf6799f7faa1349.tar.bz2
Move the 3k reST doc tree in place.
Diffstat (limited to 'Doc/tutorial/floatingpoint.rst')
-rw-r--r--Doc/tutorial/floatingpoint.rst220
1 files changed, 220 insertions, 0 deletions
diff --git a/Doc/tutorial/floatingpoint.rst b/Doc/tutorial/floatingpoint.rst
new file mode 100644
index 0000000..cbf7008
--- /dev/null
+++ b/Doc/tutorial/floatingpoint.rst
@@ -0,0 +1,220 @@
+.. _tut-fp-issues:
+
+**************************************************
+Floating Point Arithmetic: Issues and Limitations
+**************************************************
+
+.. sectionauthor:: Tim Peters <tim_one@users.sourceforge.net>
+
+
+Floating-point numbers are represented in computer hardware as base 2 (binary)
+fractions. For example, the decimal fraction ::
+
+ 0.125
+
+has value 1/10 + 2/100 + 5/1000, and in the same way the binary fraction ::
+
+ 0.001
+
+has value 0/2 + 0/4 + 1/8. These two fractions have identical values, the only
+real difference being that the first is written in base 10 fractional notation,
+and the second in base 2.
+
+Unfortunately, most decimal fractions cannot be represented exactly as binary
+fractions. A consequence is that, in general, the decimal floating-point
+numbers you enter are only approximated by the binary floating-point numbers
+actually stored in the machine.
+
+The problem is easier to understand at first in base 10. Consider the fraction
+1/3. You can approximate that as a base 10 fraction::
+
+ 0.3
+
+or, better, ::
+
+ 0.33
+
+or, better, ::
+
+ 0.333
+
+and so on. No matter how many digits you're willing to write down, the result
+will never be exactly 1/3, but will be an increasingly better approximation of
+1/3.
+
+In the same way, no matter how many base 2 digits you're willing to use, the
+decimal value 0.1 cannot be represented exactly as a base 2 fraction. In base
+2, 1/10 is the infinitely repeating fraction ::
+
+ 0.0001100110011001100110011001100110011001100110011...
+
+Stop at any finite number of bits, and you get an approximation. This is why
+you see things like::
+
+ >>> 0.1
+ 0.10000000000000001
+
+On most machines today, that is what you'll see if you enter 0.1 at a Python
+prompt. You may not, though, because the number of bits used by the hardware to
+store floating-point values can vary across machines, and Python only prints a
+decimal approximation to the true decimal value of the binary approximation
+stored by the machine. On most machines, if Python were to print the true
+decimal value of the binary approximation stored for 0.1, it would have to
+display ::
+
+ >>> 0.1
+ 0.1000000000000000055511151231257827021181583404541015625
+
+instead! The Python prompt uses the builtin :func:`repr` function to obtain a
+string version of everything it displays. For floats, ``repr(float)`` rounds
+the true decimal value to 17 significant digits, giving ::
+
+ 0.10000000000000001
+
+``repr(float)`` produces 17 significant digits because it turns out that's
+enough (on most machines) so that ``eval(repr(x)) == x`` exactly for all finite
+floats *x*, but rounding to 16 digits is not enough to make that true.
+
+Note that this is in the very nature of binary floating-point: this is not a bug
+in Python, and it is not a bug in your code either. You'll see the same kind of
+thing in all languages that support your hardware's floating-point arithmetic
+(although some languages may not *display* the difference by default, or in all
+output modes).
+
+Python's builtin :func:`str` function produces only 12 significant digits, and
+you may wish to use that instead. It's unusual for ``eval(str(x))`` to
+reproduce *x*, but the output may be more pleasant to look at::
+
+ >>> print str(0.1)
+ 0.1
+
+It's important to realize that this is, in a real sense, an illusion: the value
+in the machine is not exactly 1/10, you're simply rounding the *display* of the
+true machine value.
+
+Other surprises follow from this one. For example, after seeing ::
+
+ >>> 0.1
+ 0.10000000000000001
+
+you may be tempted to use the :func:`round` function to chop it back to the
+single digit you expect. But that makes no difference::
+
+ >>> round(0.1, 1)
+ 0.10000000000000001
+
+The problem is that the binary floating-point value stored for "0.1" was already
+the best possible binary approximation to 1/10, so trying to round it again
+can't make it better: it was already as good as it gets.
+
+Another consequence is that since 0.1 is not exactly 1/10, summing ten values of
+0.1 may not yield exactly 1.0, either::
+
+ >>> sum = 0.0
+ >>> for i in range(10):
+ ... sum += 0.1
+ ...
+ >>> sum
+ 0.99999999999999989
+
+Binary floating-point arithmetic holds many surprises like this. The problem
+with "0.1" is explained in precise detail below, in the "Representation Error"
+section. See `The Perils of Floating Point <http://www.lahey.com/float.htm>`_
+for a more complete account of other common surprises.
+
+As that says near the end, "there are no easy answers." Still, don't be unduly
+wary of floating-point! The errors in Python float operations are inherited
+from the floating-point hardware, and on most machines are on the order of no
+more than 1 part in 2\*\*53 per operation. That's more than adequate for most
+tasks, but you do need to keep in mind that it's not decimal arithmetic, and
+that every float operation can suffer a new rounding error.
+
+While pathological cases do exist, for most casual use of floating-point
+arithmetic you'll see the result you expect in the end if you simply round the
+display of your final results to the number of decimal digits you expect.
+:func:`str` usually suffices, and for finer control see the discussion of
+Python's ``%`` format operator: the ``%g``, ``%f`` and ``%e`` format codes
+supply flexible and easy ways to round float results for display.
+
+
+.. _tut-fp-error:
+
+Representation Error
+====================
+
+This section explains the "0.1" example in detail, and shows how you can perform
+an exact analysis of cases like this yourself. Basic familiarity with binary
+floating-point representation is assumed.
+
+:dfn:`Representation error` refers to the fact that some (most, actually)
+decimal fractions cannot be represented exactly as binary (base 2) fractions.
+This is the chief reason why Python (or Perl, C, C++, Java, Fortran, and many
+others) often won't display the exact decimal number you expect::
+
+ >>> 0.1
+ 0.10000000000000001
+
+Why is that? 1/10 is not exactly representable as a binary fraction. Almost all
+machines today (November 2000) use IEEE-754 floating point arithmetic, and
+almost all platforms map Python floats to IEEE-754 "double precision". 754
+doubles contain 53 bits of precision, so on input the computer strives to
+convert 0.1 to the closest fraction it can of the form *J*/2\*\**N* where *J* is
+an integer containing exactly 53 bits. Rewriting ::
+
+ 1 / 10 ~= J / (2**N)
+
+as ::
+
+ J ~= 2**N / 10
+
+and recalling that *J* has exactly 53 bits (is ``>= 2**52`` but ``< 2**53``),
+the best value for *N* is 56::
+
+ >>> 2**52
+ 4503599627370496L
+ >>> 2**53
+ 9007199254740992L
+ >>> 2**56/10
+ 7205759403792793L
+
+That is, 56 is the only value for *N* that leaves *J* with exactly 53 bits. The
+best possible value for *J* is then that quotient rounded::
+
+ >>> q, r = divmod(2**56, 10)
+ >>> r
+ 6L
+
+Since the remainder is more than half of 10, the best approximation is obtained
+by rounding up::
+
+ >>> q+1
+ 7205759403792794L
+
+Therefore the best possible approximation to 1/10 in 754 double precision is
+that over 2\*\*56, or ::
+
+ 7205759403792794 / 72057594037927936
+
+Note that since we rounded up, this is actually a little bit larger than 1/10;
+if we had not rounded up, the quotient would have been a little bit smaller than
+1/10. But in no case can it be *exactly* 1/10!
+
+So the computer never "sees" 1/10: what it sees is the exact fraction given
+above, the best 754 double approximation it can get::
+
+ >>> .1 * 2**56
+ 7205759403792794.0
+
+If we multiply that fraction by 10\*\*30, we can see the (truncated) value of
+its 30 most significant decimal digits::
+
+ >>> 7205759403792794 * 10**30 / 2**56
+ 100000000000000005551115123125L
+
+meaning that the exact number stored in the computer is approximately equal to
+the decimal value 0.100000000000000005551115123125. Rounding that to 17
+significant digits gives the 0.10000000000000001 that Python displays (well,
+will display on any 754-conforming platform that does best-possible input and
+output conversions in its C library --- yours may not!).
+
+