diff options
author | Fred Drake <fdrake@acm.org> | 1998-07-24 13:56:11 (GMT) |
---|---|---|
committer | Fred Drake <fdrake@acm.org> | 1998-07-24 13:56:11 (GMT) |
commit | 64e3b43583c0b660e49d430f1f4128460adea033 (patch) | |
tree | e02c5c6de79911e742e5f5976fdccb0d422b0d14 /Doc | |
parent | 889f53d4e0c3b701d5de0892a0ab8caabeb689b8 (diff) | |
download | cpython-64e3b43583c0b660e49d430f1f4128460adea033.zip cpython-64e3b43583c0b660e49d430f1f4128460adea033.tar.gz cpython-64e3b43583c0b660e49d430f1f4128460adea033.tar.bz2 |
Move files around to get the names to match the module names except for
case. Two modules (SocketServer, BaseHTTPServer) still don't match; those
names are just too long!
Diffstat (limited to 'Doc')
-rw-r--r-- | Doc/lib/lib.tex | 8 | ||||
-rw-r--r-- | Doc/lib/libposixpath.tex (renamed from Doc/lib/libppath.tex) | 0 | ||||
-rw-r--r-- | Doc/lib/libstdtypes.tex | 871 | ||||
-rw-r--r-- | Doc/lib/libstringio.tex (renamed from Doc/lib/libstrio.tex) | 0 | ||||
-rw-r--r-- | Doc/lib/libtypes2.tex | 129 |
5 files changed, 875 insertions, 133 deletions
diff --git a/Doc/lib/lib.tex b/Doc/lib/lib.tex index 0143e6a..67856fb 100644 --- a/Doc/lib/lib.tex +++ b/Doc/lib/lib.tex @@ -61,13 +61,13 @@ add new extensions to Python and how to embed it in other applications. \input{libintro} % Introduction \input{libobjs} % Built-in Types, Exceptions and Functions -\input{libtypes} +\input{libstdtypes} \input{libexcs} \input{libfuncs} \input{libpython} % Python Services \input{libsys} -\input{libtypes2} % types is already taken :-( +\input{libtypes} \input{libuserdict} \input{liboperator} \input{libtraceback} @@ -96,7 +96,7 @@ add new extensions to Python and how to embed it in other applications. \input{libregex} \input{libregsub} \input{libstruct} -\input{libstrio} +\input{libstringio} %\input{libsoundex} \input{libmisc} % Miscellaneous Services @@ -135,7 +135,7 @@ add new extensions to Python and how to embed it in other applications. \input{libunix} % UNIX Specific Services \input{libposix} -\input{libppath} % == posixpath +\input{libposixpath} \input{libpwd} \input{libgrp} \input{libcrypt} diff --git a/Doc/lib/libppath.tex b/Doc/lib/libposixpath.tex index 6373458..6373458 100644 --- a/Doc/lib/libppath.tex +++ b/Doc/lib/libposixpath.tex diff --git a/Doc/lib/libstdtypes.tex b/Doc/lib/libstdtypes.tex new file mode 100644 index 0000000..b612a0b --- /dev/null +++ b/Doc/lib/libstdtypes.tex @@ -0,0 +1,871 @@ +\section{Built-in Types} +\label{types} + +The following sections describe the standard types that are built into +the interpreter. These are the numeric types, sequence types, and +several others, including types themselves. There is no explicit +Boolean type; use integers instead. +\indexii{built-in}{types} +\indexii{Boolean}{type} + +Some operations are supported by several object types; in particular, +all objects can be compared, tested for truth value, and converted to +a string (with the \code{`{\rm \ldots}`} notation). The latter conversion is +implicitly used when an object is written by the \code{print} statement. +\stindex{print} + + +\subsection{Truth Value Testing} +\label{truth} + +Any object can be tested for truth value, for use in an \code{if} or +\code{while} condition or as operand of the Boolean operations below. +The following values are considered false: +\stindex{if} +\stindex{while} +\indexii{truth}{value} +\indexii{Boolean}{operations} +\index{false} + +\setindexsubitem{(Built-in object)} +\begin{itemize} + +\item \code{None} + \ttindex{None} + +\item zero of any numeric type, e.g., \code{0}, \code{0L}, \code{0.0}. + +\item any empty sequence, e.g., \code{''}, \code{()}, \code{[]}. + +\item any empty mapping, e.g., \code{\{\}}. + +\item instances of user-defined classes, if the class defines a + \code{__nonzero__()} or \code{__len__()} method, when that + method returns zero. + +\end{itemize} + +All other values are considered true --- so objects of many types are +always true. +\index{true} + +Operations and built-in functions that have a Boolean result always +return \code{0} for false and \code{1} for true, unless otherwise +stated. (Important exception: the Boolean operations +\samp{or}\opindex{or} and \samp{and}\opindex{and} always return one of +their operands.) + + +\subsection{Boolean Operations} +\label{boolean} + +These are the Boolean operations, ordered by ascending priority: +\indexii{Boolean}{operations} + +\begin{tableiii}{c|l|c}{code}{Operation}{Result}{Notes} + \lineiii{\var{x} or \var{y}}{if \var{x} is false, then \var{y}, else \var{x}}{(1)} + \lineiii{\var{x} and \var{y}}{if \var{x} is false, then \var{x}, else \var{y}}{(1)} + \hline + \lineiii{not \var{x}}{if \var{x} is false, then \code{1}, else \code{0}}{(2)} +\end{tableiii} +\opindex{and} +\opindex{or} +\opindex{not} + +\noindent +Notes: + +\begin{description} + +\item[(1)] +These only evaluate their second argument if needed for their outcome. + +\item[(2)] +\samp{not} has a lower priority than non-Boolean operators, so e.g. +\code{not a == b} is interpreted as \code{not(a == b)}, and +\code{a == not b} is a syntax error. + +\end{description} + + +\subsection{Comparisons} +\label{comparisons} + +Comparison operations are supported by all objects. They all have the +same priority (which is higher than that of the Boolean operations). +Comparisons can be chained arbitrarily, e.g. \code{x < y <= z} is +equivalent to \code{x < y and y <= z}, except that \code{y} is +evaluated only once (but in both cases \code{z} is not evaluated at +all when \code{x < y} is found to be false). +\indexii{chaining}{comparisons} + +This table summarizes the comparison operations: + +\begin{tableiii}{c|l|c}{code}{Operation}{Meaning}{Notes} + \lineiii{<}{strictly less than}{} + \lineiii{<=}{less than or equal}{} + \lineiii{>}{strictly greater than}{} + \lineiii{>=}{greater than or equal}{} + \lineiii{==}{equal}{} + \lineiii{<>}{not equal}{(1)} + \lineiii{!=}{not equal}{(1)} + \lineiii{is}{object identity}{} + \lineiii{is not}{negated object identity}{} +\end{tableiii} +\indexii{operator}{comparison} +\opindex{==} % XXX *All* others have funny characters < ! > +\opindex{is} +\opindex{is not} + +\noindent +Notes: + +\begin{description} + +\item[(1)] +\code{<>} and \code{!=} are alternate spellings for the same operator. +(I couldn't choose between \ABC{} and \C{}! :-) +\index{ABC language@\ABC{} language} +\index{language!ABC@\ABC{}} +\indexii{C@\C{}}{language} + +\end{description} + +Objects of different types, except different numeric types, never +compare equal; such objects are ordered consistently but arbitrarily +(so that sorting a heterogeneous array yields a consistent result). +Furthermore, some types (e.g., windows) support only a degenerate +notion of comparison where any two objects of that type are unequal. +Again, such objects are ordered arbitrarily but consistently. +\indexii{types}{numeric} +\indexii{objects}{comparing} + +(Implementation note: objects of different types except numbers are +ordered by their type names; objects of the same types that don't +support proper comparison are ordered by their address.) + +Two more operations with the same syntactic priority, \samp{in} and +\samp{not in}, are supported only by sequence types (below). +\opindex{in} +\opindex{not in} + + +\subsection{Numeric Types} +\label{typesnumeric} + +There are four numeric types: \dfn{plain integers}, \dfn{long integers}, +\dfn{floating point numbers}, and \dfn{complex numbers}. +Plain integers (also just called \dfn{integers}) +are implemented using \code{long} in \C{}, which gives them at least 32 +bits of precision. Long integers have unlimited precision. Floating +point numbers are implemented using \code{double} in \C{}. All bets on +their precision are off unless you happen to know the machine you are +working with. +\indexii{numeric}{types} +\indexii{integer}{types} +\indexii{integer}{type} +\indexiii{long}{integer}{type} +\indexii{floating point}{type} +\indexii{complex number}{type} +\indexii{C@\C{}}{language} + +Complex numbers have a real and imaginary part, which are both +implemented using \code{double} in \C{}. To extract these parts from +a complex number \var{z}, use \code{\var{z}.real} and \code{\var{z}.imag}. + +Numbers are created by numeric literals or as the result of built-in +functions and operators. Unadorned integer literals (including hex +and octal numbers) yield plain integers. Integer literals with an \samp{L} +or \samp{l} suffix yield long integers +(\samp{L} is preferred because \samp{1l} looks too much like eleven!). +Numeric literals containing a decimal point or an exponent sign yield +floating point numbers. Appending \samp{j} or \samp{J} to a numeric +literal yields a complex number. +\indexii{numeric}{literals} +\indexii{integer}{literals} +\indexiii{long}{integer}{literals} +\indexii{floating point}{literals} +\indexii{complex number}{literals} +\indexii{hexadecimal}{literals} +\indexii{octal}{literals} + +Python fully supports mixed arithmetic: when a binary arithmetic +operator has operands of different numeric types, the operand with the +``smaller'' type is converted to that of the other, where plain +integer is smaller than long integer is smaller than floating point is +smaller than complex. +Comparisons between numbers of mixed type use the same rule.% +\footnote{As a consequence, the list \code{[1, 2]} is considered equal + to \code{[1.0, 2.0]}, and similar for tuples.} +The functions \code{int()}, \code{long()}, \code{float()}, +and \code{complex()} can be used +to coerce numbers to a specific type. +\index{arithmetic} +\bifuncindex{int} +\bifuncindex{long} +\bifuncindex{float} +\bifuncindex{complex} + +All numeric types support the following operations, sorted by +ascending priority (operations in the same box have the same +priority; all numeric operations have a higher priority than +comparison operations): + +\begin{tableiii}{c|l|c}{code}{Operation}{Result}{Notes} + \lineiii{\var{x} + \var{y}}{sum of \var{x} and \var{y}}{} + \lineiii{\var{x} - \var{y}}{difference of \var{x} and \var{y}}{} + \hline + \lineiii{\var{x} * \var{y}}{product of \var{x} and \var{y}}{} + \lineiii{\var{x} / \var{y}}{quotient of \var{x} and \var{y}}{(1)} + \lineiii{\var{x} \%{} \var{y}}{remainder of \code{\var{x} / \var{y}}}{} + \hline + \lineiii{-\var{x}}{\var{x} negated}{} + \lineiii{+\var{x}}{\var{x} unchanged}{} + \hline + \lineiii{abs(\var{x})}{absolute value or magnitude of \var{x}}{} + \lineiii{int(\var{x})}{\var{x} converted to integer}{(2)} + \lineiii{long(\var{x})}{\var{x} converted to long integer}{(2)} + \lineiii{float(\var{x})}{\var{x} converted to floating point}{} + \lineiii{complex(\var{re},\var{im})}{a complex number with real part \var{re}, imaginary part \var{im}. \var{im} defaults to zero.}{} + \lineiii{divmod(\var{x}, \var{y})}{the pair \code{(\var{x} / \var{y}, \var{x} \%{} \var{y})}}{(3)} + \lineiii{pow(\var{x}, \var{y})}{\var{x} to the power \var{y}}{} + \lineiii{\var{x} ** \var{y}}{\var{x} to the power \var{y}}{} +\end{tableiii} +\indexiii{operations on}{numeric}{types} + +\noindent +Notes: +\begin{description} + +\item[(1)] +For (plain or long) integer division, the result is an integer. +The result is always rounded towards minus infinity: 1/2 is 0, +(-1)/2 is -1, 1/(-2) is -1, and (-1)/(-2) is 0. +\indexii{integer}{division} +\indexiii{long}{integer}{division} + +\item[(2)] +Conversion from floating point to (long or plain) integer may round or +truncate as in \C{}; see functions \code{floor()} and \code{ceil()} in +module \code{math} for well-defined conversions. +\bifuncindex{floor} +\bifuncindex{ceil} +\indexii{numeric}{conversions} +\refbimodindex{math} +\indexii{C@\C{}}{language} + +\item[(3)] +See the section on built-in functions for an exact definition. + +\end{description} +% XXXJH exceptions: overflow (when? what operations?) zerodivision + +\subsubsection{Bit-string Operations on Integer Types} +\nodename{Bit-string Operations} + +Plain and long integer types support additional operations that make +sense only for bit-strings. Negative numbers are treated as their 2's +complement value (for long integers, this assumes a sufficiently large +number of bits that no overflow occurs during the operation). + +The priorities of the binary bit-wise operations are all lower than +the numeric operations and higher than the comparisons; the unary +operation \samp{\~} has the same priority as the other unary numeric +operations (\samp{+} and \samp{-}). + +This table lists the bit-string operations sorted in ascending +priority (operations in the same box have the same priority): + +\begin{tableiii}{c|l|c}{code}{Operation}{Result}{Notes} + \lineiii{\var{x} | \var{y}}{bitwise \dfn{or} of \var{x} and \var{y}}{} + \lineiii{\var{x} \^{} \var{y}}{bitwise \dfn{exclusive or} of \var{x} and \var{y}}{} + \lineiii{\var{x} \&{} \var{y}}{bitwise \dfn{and} of \var{x} and \var{y}}{} + \lineiii{\var{x} << \var{n}}{\var{x} shifted left by \var{n} bits}{(1), (2)} + \lineiii{\var{x} >> \var{n}}{\var{x} shifted right by \var{n} bits}{(1), (3)} + \hline + \lineiii{\~\var{x}}{the bits of \var{x} inverted}{} +\end{tableiii} +\indexiii{operations on}{integer}{types} +\indexii{bit-string}{operations} +\indexii{shifting}{operations} +\indexii{masking}{operations} + +\noindent +Notes: +\begin{description} +\item[(1)] Negative shift counts are illegal and cause a +\exception{ValueError} to be raised. +\item[(2)] A left shift by \var{n} bits is equivalent to +multiplication by \code{pow(2, \var{n})} without overflow check. +\item[(3)] A right shift by \var{n} bits is equivalent to +division by \code{pow(2, \var{n})} without overflow check. +\end{description} + + +\subsection{Sequence Types} +\label{typesseq} + +There are three sequence types: strings, lists and tuples. + +Strings literals are written in single or double quotes: +\code{'xyzzy'}, \code{"frobozz"}. See Chapter 2 of the \emph{Python +Reference Manual} for more about string literals. Lists are +constructed with square brackets, separating items with commas: +\code{[a, b, c]}. Tuples are constructed by the comma operator (not +within square brackets), with or without enclosing parentheses, but an +empty tuple must have the enclosing parentheses, e.g., +\code{a, b, c} or \code{()}. A single item tuple must have a trailing +comma, e.g., \code{(d,)}. +\indexii{sequence}{types} +\indexii{string}{type} +\indexii{tuple}{type} +\indexii{list}{type} + +Sequence types support the following operations. The \samp{in} and +\samp{not in} operations have the same priorities as the comparison +operations. The \samp{+} and \samp{*} operations have the same +priority as the corresponding numeric operations.\footnote{They must +have since the parser can't tell the type of the operands.} + +This table lists the sequence operations sorted in ascending priority +(operations in the same box have the same priority). In the table, +\var{s} and \var{t} are sequences of the same type; \var{n}, \var{i} +and \var{j} are integers: + +\begin{tableiii}{c|l|c}{code}{Operation}{Result}{Notes} + \lineiii{\var{x} in \var{s}}{\code{1} if an item of \var{s} is equal to \var{x}, else \code{0}}{} + \lineiii{\var{x} not in \var{s}}{\code{0} if an item of \var{s} is +equal to \var{x}, else \code{1}}{} + \hline + \lineiii{\var{s} + \var{t}}{the concatenation of \var{s} and \var{t}}{} + \lineiii{\var{s} * \var{n}{\rm ,} \var{n} * \var{s}}{\var{n} copies of \var{s} concatenated}{(3)} + \hline + \lineiii{\var{s}[\var{i}]}{\var{i}'th item of \var{s}, origin 0}{(1)} + \lineiii{\var{s}[\var{i}:\var{j}]}{slice of \var{s} from \var{i} to \var{j}}{(1), (2)} + \hline + \lineiii{len(\var{s})}{length of \var{s}}{} + \lineiii{min(\var{s})}{smallest item of \var{s}}{} + \lineiii{max(\var{s})}{largest item of \var{s}}{} +\end{tableiii} +\indexiii{operations on}{sequence}{types} +\bifuncindex{len} +\bifuncindex{min} +\bifuncindex{max} +\indexii{concatenation}{operation} +\indexii{repetition}{operation} +\indexii{subscript}{operation} +\indexii{slice}{operation} +\opindex{in} +\opindex{not in} + +\noindent +Notes: + +\begin{description} + +\item[(1)] If \var{i} or \var{j} is negative, the index is relative to + the end of the string, i.e., \code{len(\var{s}) + \var{i}} or + \code{len(\var{s}) + \var{j}} is substituted. But note that \code{-0} is + still \code{0}. + +\item[(2)] The slice of \var{s} from \var{i} to \var{j} is defined as + the sequence of items with index \var{k} such that \code{\var{i} <= + \var{k} < \var{j}}. If \var{i} or \var{j} is greater than + \code{len(\var{s})}, use \code{len(\var{s})}. If \var{i} is omitted, + use \code{0}. If \var{j} is omitted, use \code{len(\var{s})}. If + \var{i} is greater than or equal to \var{j}, the slice is empty. + +\item[(3)] Values of \var{n} less than \code{0} are treated as + \code{0} (which yields an empty sequence of the same type as + \var{s}). + +\end{description} + +\subsubsection{More String Operations} + +String objects have one unique built-in operation: the \code{\%} +operator (modulo) with a string left argument interprets this string +as a \C{} \cfunction{sprintf()} format string to be applied to the +right argument, and returns the string resulting from this formatting +operation. + +The right argument should be a tuple with one item for each argument +required by the format string; if the string requires a single +argument, the right argument may also be a single non-tuple object.% +\footnote{A tuple object in this case should be a singleton.} +The following format characters are understood: +\code{\%}, \code{c}, \code{s}, \code{i}, \code{d}, \code{u}, \code{o}, +\code{x}, \code{X}, \code{e}, \code{E}, \code{f}, \code{g}, \code{G}. +Width and precision may be a \code{*} to specify that an integer argument +specifies the actual width or precision. The flag characters +\code{-}, \code{+}, blank, \code{\#} and \code{0} are understood. The +size specifiers \code{h}, \code{l} or \code{L} may be +present but are ignored. The \code{\%s} conversion takes any Python +object and converts it to a string using \code{str()} before +formatting it. The ANSI features \code{\%p} and \code{\%n} +are not supported. Since Python strings have an explicit length, +\code{\%s} conversions don't assume that \code{'\e0'} is the end of +the string. + +For safety reasons, floating point precisions are clipped to 50; +\code{\%f} conversions for numbers whose absolute value is over 1e25 +are replaced by \code{\%g} conversions.% +\footnote{These numbers are fairly arbitrary. They are intended to +avoid printing endless strings of meaningless digits without hampering +correct use and without having to know the exact precision of floating +point values on a particular machine.} +All other errors raise exceptions. + +If the right argument is a dictionary (or any kind of mapping), then +the formats in the string must have a parenthesized key into that +dictionary inserted immediately after the \character{\%} character, +and each format formats the corresponding entry from the mapping. +For example: + +\begin{verbatim} +>>> count = 2 +>>> language = 'Python' +>>> print '%(language)s has %(count)03d quote types.' % vars() +Python has 002 quote types. +\end{verbatim} + +In this case no \code{*} specifiers may occur in a format (since they +require a sequential parameter list). + +Additional string operations are defined in standard module +\module{string} and in built-in module \module{re}. +\refstmodindex{string} +\refbimodindex{re} + +\subsubsection{Mutable Sequence Types} + +List objects support additional operations that allow in-place +modification of the object. +These operations would be supported by other mutable sequence types +(when added to the language) as well. +Strings and tuples are immutable sequence types and such objects cannot +be modified once created. +The following operations are defined on mutable sequence types (where +\var{x} is an arbitrary object): +\indexiii{mutable}{sequence}{types} +\indexii{list}{type} + +\begin{tableiii}{c|l|c}{code}{Operation}{Result}{Notes} + \lineiii{\var{s}[\var{i}] = \var{x}} + {item \var{i} of \var{s} is replaced by \var{x}}{} + \lineiii{\var{s}[\var{i}:\var{j}] = \var{t}} + {slice of \var{s} from \var{i} to \var{j} is replaced by \var{t}}{} + \lineiii{del \var{s}[\var{i}:\var{j}]} + {same as \code{\var{s}[\var{i}:\var{j}] = []}}{} + \lineiii{\var{s}.append(\var{x})} + {same as \code{\var{s}[len(\var{s}):len(\var{s})] = [\var{x}]}}{} + \lineiii{\var{s}.count(\var{x})} + {return number of \var{i}'s for which \code{\var{s}[\var{i}] == \var{x}}}{} + \lineiii{\var{s}.index(\var{x})} + {return smallest \var{i} such that \code{\var{s}[\var{i}] == \var{x}}}{(1)} + \lineiii{\var{s}.insert(\var{i}, \var{x})} + {same as \code{\var{s}[\var{i}:\var{i}] = [\var{x}]} + if \code{\var{i} >= 0}}{} + \lineiii{\var{s}.pop(\optional{\var{i}})} + {same as \code{\var{x} = \var{s}[\var{i}]; del \var{s}[\var{i}]; return \var{x}}}{(4)} + \lineiii{\var{s}.remove(\var{x})} + {same as \code{del \var{s}[\var{s}.index(\var{x})]}}{(1)} + \lineiii{\var{s}.reverse()} + {reverses the items of \var{s} in place}{(3)} + \lineiii{\var{s}.sort(\optional{\var{cmpfunc}})} + {sort the items of \var{s} in place}{(2), (3)} +\end{tableiii} +\indexiv{operations on}{mutable}{sequence}{types} +\indexiii{operations on}{sequence}{types} +\indexiii{operations on}{list}{type} +\indexii{subscript}{assignment} +\indexii{slice}{assignment} +\stindex{del} +\setindexsubitem{(list method)} +\ttindex{append} +\ttindex{count} +\ttindex{index} +\ttindex{insert} +\ttindex{pop} +\ttindex{remove} +\ttindex{reverse} +\ttindex{sort} + +\noindent +Notes: +\begin{description} +\item[(1)] Raises an exception when \var{x} is not found in \var{s}. + +\item[(2)] The \code{sort()} method takes an optional argument + specifying a comparison function of two arguments (list items) which + should return \code{-1}, \code{0} or \code{1} depending on whether the + first argument is considered smaller than, equal to, or larger than the + second argument. Note that this slows the sorting process down + considerably; e.g. to sort a list in reverse order it is much faster + to use calls to \code{sort()} and \code{reverse()} than to use + \code{sort()} with a comparison function that reverses the ordering of + the elements. + +\item[(3)] The \code{sort()} and \code{reverse()} methods modify the +list in place for economy of space when sorting or reversing a large +list. They don't return the sorted or reversed list to remind you of +this side effect. + +\item[(4)] The \method{pop()} method is experimental and not supported +by other mutable sequence types than lists. +The optional argument \var{i} defaults to \code{-1}, so that +by default the last item is removed and returned. + +\end{description} + + +\subsection{Mapping Types} +\label{typesmapping} + +A \dfn{mapping} object maps values of one type (the key type) to +arbitrary objects. Mappings are mutable objects. There is currently +only one standard mapping type, the \dfn{dictionary}. A dictionary's keys are +almost arbitrary values. The only types of values not acceptable as +keys are values containing lists or dictionaries or other mutable +types that are compared by value rather than by object identity. +Numeric types used for keys obey the normal rules for numeric +comparison: if two numbers compare equal (e.g. \code{1} and +\code{1.0}) then they can be used interchangeably to index the same +dictionary entry. + +\indexii{mapping}{types} +\indexii{dictionary}{type} + +Dictionaries are created by placing a comma-separated list of +\code{\var{key}: \var{value}} pairs within braces, for example: +\code{\{'jack': 4098, 'sjoerd': 4127\}} or +\code{\{4098: 'jack', 4127: 'sjoerd'\}}. + +The following operations are defined on mappings (where \var{a} is a +mapping, \var{k} is a key and \var{x} is an arbitrary object): + +\begin{tableiii}{c|l|c}{code}{Operation}{Result}{Notes} + \lineiii{len(\var{a})}{the number of items in \var{a}}{} + \lineiii{\var{a}[\var{k}]}{the item of \var{a} with key \var{k}}{(1)} + \lineiii{\var{a}[\var{k}] = \var{x}}{set \code{\var{a}[\var{k}]} to \var{x}}{} + \lineiii{del \var{a}[\var{k}]}{remove \code{\var{a}[\var{k}]} from \var{a}}{(1)} + \lineiii{\var{a}.clear()}{remove all items from \code{a}}{} + \lineiii{\var{a}.copy()}{a (shallow) copy of \code{a}}{} + \lineiii{\var{a}.has_key(\var{k})}{\code{1} if \var{a} has a key \var{k}, else \code{0}}{} + \lineiii{\var{a}.items()}{a copy of \var{a}'s list of (key, item) pairs}{(2)} + \lineiii{\var{a}.keys()}{a copy of \var{a}'s list of keys}{(2)} + \lineiii{\var{a}.update(\var{b})}{\code{for k, v in \var{b}.items(): \var{a}[k] = v}}{(3)} + \lineiii{\var{a}.values()}{a copy of \var{a}'s list of values}{(2)} + \lineiii{\var{a}.get(\var{k}\optional{, \var{f}})}{the item of \var{a} with key \var{k}}{(4)} +\end{tableiii} +\indexiii{operations on}{mapping}{types} +\indexiii{operations on}{dictionary}{type} +\stindex{del} +\bifuncindex{len} +\setindexsubitem{(dictionary method)} +\ttindex{keys} +\ttindex{has_key} + +\noindent +Notes: +\begin{description} +\item[(1)] Raises an exception if \var{k} is not in the map. + +\item[(2)] Keys and values are listed in random order. + +\item[(3)] \var{b} must be of the same type as \var{a}. + +\item[(4)] Never raises an exception if \var{k} is not in the map, +instead it returns \var{f}. \var{f} is optional, when not provided +and \var{k} is not in the map, \code{None} is returned. +\end{description} + + +\subsection{Other Built-in Types} +\label{typesother} + +The interpreter supports several other kinds of objects. +Most of these support only one or two operations. + +\subsubsection{Modules} + +The only special operation on a module is attribute access: +\code{\var{m}.\var{name}}, where \var{m} is a module and \var{name} +accesses a name defined in \var{m}'s symbol table. Module attributes +can be assigned to. (Note that the \code{import} statement is not, +strictly spoking, an operation on a module object; \code{import +\var{foo}} does not require a module object named \var{foo} to exist, +rather it requires an (external) \emph{definition} for a module named +\var{foo} somewhere.) + +A special member of every module is \code{__dict__}. +This is the dictionary containing the module's symbol table. +Modifying this dictionary will actually change the module's symbol +table, but direct assignment to the \code{__dict__} attribute is not +possible (i.e., you can write \code{\var{m}.__dict__['a'] = 1}, which +defines \code{\var{m}.a} to be \code{1}, but you can't write +\code{\var{m}.__dict__ = \{\}}. + +Modules are written like this: \code{<module 'sys'>}. + +\subsubsection{Classes and Class Instances} +\nodename{Classes and Instances} + +See Chapters 3 and 7 of the \emph{Python Reference Manual} for these. + +\subsubsection{Functions} + +Function objects are created by function definitions. The only +operation on a function object is to call it: +\code{\var{func}(\var{argument-list})}. + +There are really two flavors of function objects: built-in functions +and user-defined functions. Both support the same operation (to call +the function), but the implementation is different, hence the +different object types. + +The implementation adds two special read-only attributes: +\code{\var{f}.func_code} is a function's \dfn{code +object}\obindex{code} (see below) and \code{\var{f}.func_globals} is +the dictionary used as the function's global name space (this is the +same as \code{\var{m}.__dict__} where \var{m} is the module in which +the function \var{f} was defined). + + +\subsubsection{Methods} +\obindex{method} + +Methods are functions that are called using the attribute notation. +There are two flavors: built-in methods (such as \code{append()} on +lists) and class instance methods. Built-in methods are described +with the types that support them. + +The implementation adds two special read-only attributes to class +instance methods: \code{\var{m}.im_self} is the object whose method this +is, and \code{\var{m}.im_func} is the function implementing the method. +Calling \code{\var{m}(\var{arg-1}, \var{arg-2}, {\rm \ldots}, +\var{arg-n})} is completely equivalent to calling +\code{\var{m}.im_func(\var{m}.im_self, \var{arg-1}, \var{arg-2}, {\rm +\ldots}, \var{arg-n})}. + +See the \emph{Python Reference Manual} for more information. + +\subsubsection{Code Objects} +\obindex{code} + +Code objects are used by the implementation to represent +``pseudo-compiled'' executable Python code such as a function body. +They differ from function objects because they don't contain a +reference to their global execution environment. Code objects are +returned by the built-in \code{compile()} function and can be +extracted from function objects through their \code{func_code} +attribute. +\bifuncindex{compile} +\ttindex{func_code} + +A code object can be executed or evaluated by passing it (instead of a +source string) to the \code{exec} statement or the built-in +\code{eval()} function. +\stindex{exec} +\bifuncindex{eval} + +See the \emph{Python Reference Manual} for more information. + +\subsubsection{Type Objects} +\label{bltin-type-objects} + +Type objects represent the various object types. An object's type is +accessed by the built-in function \code{type()}. There are no special +operations on types. The standard module \code{types} defines names +for all standard built-in types. +\bifuncindex{type} +\refstmodindex{types} + +Types are written like this: \code{<type 'int'>}. + +\subsubsection{The Null Object} +\label{bltin-null-object} + +This object is returned by functions that don't explicitly return a +value. It supports no special operations. There is exactly one null +object, named \code{None} (a built-in name). + +It is written as \code{None}. + +\subsubsection{File Objects} +\label{bltin-file-objects} + +File objects are implemented using \C{}'s \code{stdio} package and can be +created with the built-in function \code{open()} described under +Built-in Functions below. They are also returned by some other +built-in functions and methods, e.g.\ \code{posix.popen()} and +\code{posix.fdopen()} and the \code{makefile()} method of socket +objects. +\bifuncindex{open} +\refbimodindex{posix} +\refbimodindex{socket} + +When a file operation fails for an I/O-related reason, the exception +\code{IOError} is raised. This includes situations where the +operation is not defined for some reason, like \code{seek()} on a tty +device or writing a file opened for reading. + +Files have the following methods: + + +\begin{methoddesc}[file]{close}{} + Close the file. A closed file cannot be read or written anymore. +\end{methoddesc} + +\begin{methoddesc}[file]{flush}{} + Flush the internal buffer, like \code{stdio}'s \code{fflush()}. +\end{methoddesc} + +\begin{methoddesc}[file]{isatty}{} + Return \code{1} if the file is connected to a tty(-like) device, else + \code{0}. +\end{methoddesc} + +\begin{methoddesc}[file]{fileno}{} +Return the integer ``file descriptor'' that is used by the underlying +implementation to request I/O operations from the operating system. +This can be useful for other, lower level interfaces that use file +descriptors, e.g. module \code{fcntl} or \code{os.read()} and friends. +\refbimodindex{fcntl} +\end{methoddesc} + +\begin{methoddesc}[file]{read}{\optional{size}} + Read at most \var{size} bytes from the file (less if the read hits + \EOF{} or no more data is immediately available on a pipe, tty or + similar device). If the \var{size} argument is negative or omitted, + read all data until \EOF{} is reached. The bytes are returned as a string + object. An empty string is returned when \EOF{} is encountered + immediately. (For certain files, like ttys, it makes sense to + continue reading after an \EOF{} is hit.) +\end{methoddesc} + +\begin{methoddesc}[file]{readline}{\optional{size}} + Read one entire line from the file. A trailing newline character is + kept in the string% +\footnote{The advantage of leaving the newline on is that an empty string + can be returned to mean \EOF{} without being ambiguous. Another + advantage is that (in cases where it might matter, e.g. if you + want to make an exact copy of a file while scanning its lines) + you can tell whether the last line of a file ended in a newline + or not (yes this happens!).} + (but may be absent when a file ends with an + incomplete line). If the \var{size} argument is present and + non-negative, it is a maximum byte count (including the trailing + newline) and an incomplete line may be returned. + An empty string is returned when \EOF{} is hit + immediately. Note: unlike \code{stdio}'s \cfunction{fgets()}, the returned + string contains null characters (\code{'\e 0'}) if they occurred in the + input. +\end{methoddesc} + +\begin{methoddesc}[file]{readlines}{\optional{sizehint}} + Read until \EOF{} using \method{readline()} and return a list containing + the lines thus read. If the optional \var{sizehint} argument is + present, instead of reading up to \EOF{}, whole lines totalling + approximately \var{sizehint} bytes (possibly after rounding up to an + internal buffer size) are read. +\end{methoddesc} + +\begin{methoddesc}[file]{seek}{offset\optional{, whence}} + Set the file's current position, like \code{stdio}'s \cfunction{fseek()}. + The \var{whence} argument is optional and defaults to \code{0} + (absolute file positioning); other values are \code{1} (seek + relative to the current position) and \code{2} (seek relative to the + file's end). There is no return value. +\end{methoddesc} + +\begin{methoddesc}[file]{tell}{} + Return the file's current position, like \code{stdio}'s + \cfunction{ftell()}. +\end{methoddesc} + +\begin{methoddesc}[file]{truncate}{\optional{size}} +Truncate the file's size. If the optional size argument present, the +file is truncated to (at most) that size. The size defaults to the +current position. Availability of this function depends on the +operating system version (e.g., not all \UNIX{} versions support this +operation). +\end{methoddesc} + +\begin{methoddesc}[file]{write}{str} +Write a string to the file. There is no return value. Note: due to +buffering, the string may not actually show up in the file until +the \method{flush()} or \method{close()} method is called. +\end{methoddesc} + +\begin{methoddesc}[file]{writelines}{list} +Write a list of strings to the file. There is no return value. +(The name is intended to match \method{readlines()}; +\method{writelines()} does not add line separators.) +\end{methoddesc} + + +File objects also offer the following attributes: + +\begin{memberdesc}[file]{closed} +Boolean indicating the current state of the file object. This is a +read-only attribute; the \method{close()} method changes the value. +\end{memberdesc} + +\begin{memberdesc}[file]{mode} +The I/O mode for the file. If the file was created using the +\function{open()} built-in function, this will be the value of the +\var{mode} parameter. This is a read-only attribute. +\end{memberdesc} + +\begin{memberdesc}[file]{name} +If the file object was created using \function{open()}, the name of +the file. Otherwise, some string that indicates the source of the +file object, of the form \samp{<\mbox{\ldots}>}. This is a read-only +attribute. +\end{memberdesc} + +\begin{memberdesc}[file]{softspace} +Boolean that indicates whether a space character needs to be printed +before another value when using the \keyword{print} statement. +Classes that are trying to simulate a file object should also have a +writable \member{softspace} attribute, which should be initialized to +zero. This will be automatic for classes implemented in Python; types +implemented in \C{} will have to provide a writable \member{softspace} +attribute. +\end{memberdesc} + +\subsubsection{Internal Objects} + +See the \emph{Python Reference Manual} for this information. It +describes code objects, stack frame objects, traceback objects, and +slice objects. + + +\subsection{Special Attributes} +\label{specialattrs} + +The implementation adds a few special read-only attributes to several +object types, where they are relevant: + +\begin{itemize} + +\item +\code{\var{x}.__dict__} is a dictionary of some sort used to store an +object's (writable) attributes; + +\item +\code{\var{x}.__methods__} lists the methods of many built-in object types, +e.g., \code{[].__methods__} yields +\code{['append', 'count', 'index', 'insert', 'pop', 'remove', 'reverse', 'sort']}; + +\item +\code{\var{x}.__members__} lists data attributes; + +\item +\code{\var{x}.__class__} is the class to which a class instance belongs; + +\item +\code{\var{x}.__bases__} is the tuple of base classes of a class object. + +\end{itemize} diff --git a/Doc/lib/libstrio.tex b/Doc/lib/libstringio.tex index 6b7d2c5..6b7d2c5 100644 --- a/Doc/lib/libstrio.tex +++ b/Doc/lib/libstringio.tex diff --git a/Doc/lib/libtypes2.tex b/Doc/lib/libtypes2.tex deleted file mode 100644 index 07bf35a..0000000 --- a/Doc/lib/libtypes2.tex +++ /dev/null @@ -1,129 +0,0 @@ -\section{Standard Module \module{types}} -\declaremodule{standard}{types} - -\modulesynopsis{Names for all built-in types.} - - - -This module defines names for all object types that are used by the -standard Python interpreter, but not for the types defined by various -extension modules. It is safe to use \samp{from types import *} --- -the module does not export any names besides the ones listed here. -New names exported by future versions of this module will all end in -\samp{Type}. - -Typical use is for functions that do different things depending on -their argument types, like the following: - -\begin{verbatim} -from types import * -def delete(list, item): - if type(item) is IntType: - del list[item] - else: - list.remove(item) -\end{verbatim} - -The module defines the following names: - -\begin{datadesc}{NoneType} -The type of \code{None}. -\end{datadesc} - -\begin{datadesc}{TypeType} -The type of type objects (such as returned by -\function{type()}\bifuncindex{type}). -\end{datadesc} - -\begin{datadesc}{IntType} -The type of integers (e.g. \code{1}). -\end{datadesc} - -\begin{datadesc}{LongType} -The type of long integers (e.g. \code{1L}). -\end{datadesc} - -\begin{datadesc}{FloatType} -The type of floating point numbers (e.g. \code{1.0}). -\end{datadesc} - -\begin{datadesc}{StringType} -The type of character strings (e.g. \code{'Spam'}). -\end{datadesc} - -\begin{datadesc}{TupleType} -The type of tuples (e.g. \code{(1, 2, 3, 'Spam')}). -\end{datadesc} - -\begin{datadesc}{ListType} -The type of lists (e.g. \code{[0, 1, 2, 3]}). -\end{datadesc} - -\begin{datadesc}{DictType} -The type of dictionaries (e.g. \code{\{'Bacon': 1, 'Ham': 0\}}). -\end{datadesc} - -\begin{datadesc}{DictionaryType} -An alternate name for \code{DictType}. -\end{datadesc} - -\begin{datadesc}{FunctionType} -The type of user-defined functions and lambdas. -\end{datadesc} - -\begin{datadesc}{LambdaType} -An alternate name for \code{FunctionType}. -\end{datadesc} - -\begin{datadesc}{CodeType} -The type for code objects such as returned by -\function{compile()}\bifuncindex{compile}. -\end{datadesc} - -\begin{datadesc}{ClassType} -The type of user-defined classes. -\end{datadesc} - -\begin{datadesc}{InstanceType} -The type of instances of user-defined classes. -\end{datadesc} - -\begin{datadesc}{MethodType} -The type of methods of user-defined class instances. -\end{datadesc} - -\begin{datadesc}{UnboundMethodType} -An alternate name for \code{MethodType}. -\end{datadesc} - -\begin{datadesc}{BuiltinFunctionType} -The type of built-in functions like \function{len()} or -\function{sys.exit()}. -\end{datadesc} - -\begin{datadesc}{BuiltinMethodType} -An alternate name for \code{BuiltinFunction}. -\end{datadesc} - -\begin{datadesc}{ModuleType} -The type of modules. -\end{datadesc} - -\begin{datadesc}{FileType} -The type of open file objects such as \code{sys.stdout}. -\end{datadesc} - -\begin{datadesc}{XRangeType} -The type of range objects returned by -\function{xrange()}\bifuncindex{xrange}. -\end{datadesc} - -\begin{datadesc}{TracebackType} -The type of traceback objects such as found in -\code{sys.exc_traceback}. -\end{datadesc} - -\begin{datadesc}{FrameType} -The type of frame objects such as found in \code{tb.tb_frame} if -\code{tb} is a traceback object. -\end{datadesc} |