summaryrefslogtreecommitdiffstats
path: root/Lib/Complex.py
diff options
context:
space:
mode:
authorGuido van Rossum <guido@python.org>1995-01-12 12:29:47 (GMT)
committerGuido van Rossum <guido@python.org>1995-01-12 12:29:47 (GMT)
commit9a22de101fd66c6e0d1a6dda515a7b31d8c9c9aa (patch)
treef01184c19f4618c3881a08a5c7d21a26e701570c /Lib/Complex.py
parent8d2080d043629702a5a79b968e778bcf991dfd73 (diff)
downloadcpython-9a22de101fd66c6e0d1a6dda515a7b31d8c9c9aa.zip
cpython-9a22de101fd66c6e0d1a6dda515a7b31d8c9c9aa.tar.gz
cpython-9a22de101fd66c6e0d1a6dda515a7b31d8c9c9aa.tar.bz2
new files
Diffstat (limited to 'Lib/Complex.py')
-rw-r--r--Lib/Complex.py275
1 files changed, 275 insertions, 0 deletions
diff --git a/Lib/Complex.py b/Lib/Complex.py
new file mode 100644
index 0000000..f4892f3
--- /dev/null
+++ b/Lib/Complex.py
@@ -0,0 +1,275 @@
+# Complex numbers
+# ---------------
+
+# This module represents complex numbers as instances of the class Complex.
+# A Complex instance z has two data attribues, z.re (the real part) and z.im
+# (the imaginary part). In fact, z.re and z.im can have any value -- all
+# arithmetic operators work regardless of the type of z.re and z.im (as long
+# as they support numerical operations).
+#
+# The following functions exist (Complex is actually a class):
+# Complex([re [,im]) -> creates a complex number from a real and an imaginary part
+# IsComplex(z) -> true iff z is a complex number (== has .re and .im attributes)
+# Polar([r [,phi [,fullcircle]]]) ->
+# the complex number z for which r == z.radius() and phi == z.angle(fullcircle)
+# (r and phi default to 0)
+#
+# Complex numbers have the following methods:
+# z.abs() -> absolute value of z
+# z.radius() == z.abs()
+# z.angle([fullcircle]) -> angle from positive X axis; fullcircle gives units
+# z.phi([fullcircle]) == z.angle(fullcircle)
+#
+# These standard functions and unary operators accept complex arguments:
+# abs(z)
+# -z
+# +z
+# not z
+# repr(z) == `z`
+# str(z)
+# hash(z) -> a combination of hash(z.re) and hash(z.im) such that if z.im is zero
+# the result equals hash(z.re)
+# Note that hex(z) and oct(z) are not defined.
+#
+# These conversions accept complex arguments only if their imaginary part is zero:
+# int(z)
+# long(z)
+# float(z)
+#
+# The following operators accept two complex numbers, or one complex number
+# and one real number (int, long or float):
+# z1 + z2
+# z1 - z2
+# z1 * z2
+# z1 / z2
+# pow(z1, z2)
+# cmp(z1, z2)
+# Note that z1 % z2 and divmod(z1, z2) are not defined,
+# nor are shift and mask operations.
+#
+# The standard module math does not support complex numbers.
+# (I suppose it would be easy to implement a cmath module.)
+#
+# Idea:
+# add a class Polar(r, phi) and mixed-mode arithmetic which
+# chooses the most appropriate type for the result:
+# Complex for +,-,cmp
+# Polar for *,/,pow
+
+
+import types, math
+
+if not hasattr(math, 'hypot'):
+ def hypot(x, y):
+ # XXX I know there's a way to compute this without possibly causing
+ # overflow, but I can't remember what it is right now...
+ return math.sqrt(x*x + y*y)
+ math.hypot = hypot
+
+twopi = math.pi*2.0
+halfpi = math.pi/2.0
+
+def IsComplex(obj):
+ return hasattr(obj, 're') and hasattr(obj, 'im')
+
+def Polar(r = 0, phi = 0, fullcircle = twopi):
+ phi = phi * (twopi / fullcircle)
+ return Complex(math.cos(phi)*r, math.sin(phi)*r)
+
+class Complex:
+
+ def __init__(self, re=0, im=0):
+ if IsComplex(re):
+ im = im + re.im
+ re = re.re
+ if IsComplex(im):
+ re = re - im.im
+ im = im.re
+ self.re = re
+ self.im = im
+
+ def __setattr__(self, name, value):
+ if hasattr(self, name):
+ raise TypeError, "Complex numbers have set-once attributes"
+ self.__dict__[name] = value
+
+ def __repr__(self):
+ if not self.im:
+ return 'Complex(%s)' % `self.re`
+ else:
+ return 'Complex(%s, %s)' % (`self.re`, `self.im`)
+
+ def __str__(self):
+ if not self.im:
+ return `self.re`
+ else:
+ return 'Complex(%s, %s)' % (`self.re`, `self.im`)
+
+ def __coerce__(self, other):
+ if IsComplex(other):
+ return self, other
+ return self, Complex(other) # May fail
+
+ def __cmp__(self, other):
+ return cmp(self.re, other.re) or cmp(self.im, other.im)
+
+ def __hash__(self):
+ if not self.im: return hash(self.re)
+ mod = sys.maxint + 1L
+ return int((hash(self.re) + 2L*hash(self.im) + mod) % (2L*mod) - mod)
+
+ def __neg__(self):
+ return Complex(-self.re, -self.im)
+
+ def __pos__(self):
+ return self
+
+ def __abs__(self):
+ return math.hypot(self.re, self.im)
+ ##return math.sqrt(self.re*self.re + self.im*self.im)
+
+
+ def __int__(self):
+ if self.im:
+ raise ValueError, "can't convert Complex with nonzero im to int"
+ return int(self.re)
+
+ def __long__(self):
+ if self.im:
+ raise ValueError, "can't convert Complex with nonzero im to long"
+ return long(self.re)
+
+ def __float__(self):
+ if self.im:
+ raise ValueError, "can't convert Complex with nonzero im to float"
+ return float(self.re)
+
+ def __nonzero__(self):
+ return not (self.re == self.im == 0)
+
+ abs = radius = __abs__
+
+ def angle(self, fullcircle = twopi):
+ return (fullcircle/twopi) * ((halfpi - math.atan2(self.re, self.im)) % twopi)
+
+ phi = angle
+
+ def __add__(self, other):
+ return Complex(self.re + other.re, self.im + other.im)
+
+ __radd__ = __add__
+
+ def __sub__(self, other):
+ return Complex(self.re - other.re, self.im - other.im)
+
+ def __rsub__(self, other):
+ return Complex(other.re - self.re, other.im - self.im)
+
+ def __mul__(self, other):
+ return Complex(self.re*other.re - self.im*other.im,
+ self.re*other.im + self.im*other.re)
+
+ __rmul__ = __mul__
+
+ def __div__(self, other):
+ # Deviating from the general principle of not forcing re or im
+ # to be floats, we cast to float here, otherwise division
+ # of Complex numbers with integer re and im parts would use
+ # the (truncating) integer division
+ d = float(other.re*other.re + other.im*other.im)
+ if not d: raise ZeroDivisionError, 'Complex division'
+ return Complex((self.re*other.re + self.im*other.im) / d,
+ (self.im*other.re - self.re*other.im) / d)
+
+ def __rdiv__(self, other):
+ return other / self
+
+ def __pow__(self, n, z=None):
+ if z is not None:
+ raise TypeError, 'Complex does not support ternary pow()'
+ if IsComplex(n):
+ if n.im: raise TypeError, 'Complex to the Complex power'
+ n = n.re
+ r = pow(self.abs(), n)
+ phi = n*self.angle()
+ return Complex(math.cos(phi)*r, math.sin(phi)*r)
+
+ def __rpow__(self, base):
+ return pow(base, self)
+
+
+# Everything below this point is part of the test suite
+
+def checkop(expr, a, b, value, fuzz = 1e-6):
+ import sys
+ print ' ', a, 'and', b,
+ try:
+ result = eval(expr)
+ except:
+ result = sys.exc_type
+ print '->', result
+ if (type(result) == type('') or type(value) == type('')):
+ ok = result == value
+ else:
+ ok = abs(result - value) <= fuzz
+ if not ok:
+ print '!!\t!!\t!! should be', value, 'diff', abs(result - value)
+
+
+def test():
+ testsuite = {
+ 'a+b': [
+ (1, 10, 11),
+ (1, Complex(0,10), Complex(1,10)),
+ (Complex(0,10), 1, Complex(1,10)),
+ (Complex(0,10), Complex(1), Complex(1,10)),
+ (Complex(1), Complex(0,10), Complex(1,10)),
+ ],
+ 'a-b': [
+ (1, 10, -9),
+ (1, Complex(0,10), Complex(1,-10)),
+ (Complex(0,10), 1, Complex(-1,10)),
+ (Complex(0,10), Complex(1), Complex(-1,10)),
+ (Complex(1), Complex(0,10), Complex(1,-10)),
+ ],
+ 'a*b': [
+ (1, 10, 10),
+ (1, Complex(0,10), Complex(0, 10)),
+ (Complex(0,10), 1, Complex(0,10)),
+ (Complex(0,10), Complex(1), Complex(0,10)),
+ (Complex(1), Complex(0,10), Complex(0,10)),
+ ],
+ 'a/b': [
+ (1., 10, 0.1),
+ (1, Complex(0,10), Complex(0, -0.1)),
+ (Complex(0, 10), 1, Complex(0, 10)),
+ (Complex(0, 10), Complex(1), Complex(0, 10)),
+ (Complex(1), Complex(0,10), Complex(0, -0.1)),
+ ],
+ 'pow(a,b)': [
+ (1, 10, 1),
+ (1, Complex(0,10), 'TypeError'),
+ (Complex(0,10), 1, Complex(0,10)),
+ (Complex(0,10), Complex(1), Complex(0,10)),
+ (Complex(1), Complex(0,10), 'TypeError'),
+ (2, Complex(4,0), 16),
+ ],
+ 'cmp(a,b)': [
+ (1, 10, -1),
+ (1, Complex(0,10), 1),
+ (Complex(0,10), 1, -1),
+ (Complex(0,10), Complex(1), -1),
+ (Complex(1), Complex(0,10), 1),
+ ],
+ }
+ exprs = testsuite.keys()
+ exprs.sort()
+ for expr in exprs:
+ print expr + ':'
+ t = (expr,)
+ for item in testsuite[expr]:
+ apply(checkop, t+item)
+
+
+if __name__ == '__main__':
+ test()