summaryrefslogtreecommitdiffstats
path: root/Lib/collections.py
diff options
context:
space:
mode:
authorRaymond Hettinger <python@rcn.com>2011-02-22 00:41:50 (GMT)
committerRaymond Hettinger <python@rcn.com>2011-02-22 00:41:50 (GMT)
commit158c9c26fca16dee2f7a8d89707cf9c149bd04f2 (patch)
tree0d2dc227cb3abcf338e4dd4883fe5469f7c10d4e /Lib/collections.py
parentecc26923cd8a0a3511e1fb89b4b13d74a1391b87 (diff)
downloadcpython-158c9c26fca16dee2f7a8d89707cf9c149bd04f2.zip
cpython-158c9c26fca16dee2f7a8d89707cf9c149bd04f2.tar.gz
cpython-158c9c26fca16dee2f7a8d89707cf9c149bd04f2.tar.bz2
Issue #11085: Moved collections abstract base classes into a separate module
called collections.abc, following the pattern used by importlib.abc. For backwards compatibility, the names continue to also be imported into the collections module.
Diffstat (limited to 'Lib/collections.py')
-rw-r--r--Lib/collections.py1031
1 files changed, 0 insertions, 1031 deletions
diff --git a/Lib/collections.py b/Lib/collections.py
deleted file mode 100644
index 2f19459..0000000
--- a/Lib/collections.py
+++ /dev/null
@@ -1,1031 +0,0 @@
-__all__ = ['deque', 'defaultdict', 'namedtuple', 'UserDict', 'UserList',
- 'UserString', 'Counter', 'OrderedDict']
-# For bootstrapping reasons, the collection ABCs are defined in _abcoll.py.
-# They should however be considered an integral part of collections.py.
-from _abcoll import *
-import _abcoll
-__all__ += _abcoll.__all__
-
-from _collections import deque, defaultdict
-from operator import itemgetter as _itemgetter
-from keyword import iskeyword as _iskeyword
-import sys as _sys
-import heapq as _heapq
-from weakref import proxy as _proxy
-from itertools import repeat as _repeat, chain as _chain, starmap as _starmap
-from reprlib import recursive_repr as _recursive_repr
-
-################################################################################
-### OrderedDict
-################################################################################
-
-class _Link(object):
- __slots__ = 'prev', 'next', 'key', '__weakref__'
-
-class OrderedDict(dict):
- 'Dictionary that remembers insertion order'
- # An inherited dict maps keys to values.
- # The inherited dict provides __getitem__, __len__, __contains__, and get.
- # The remaining methods are order-aware.
- # Big-O running times for all methods are the same as for regular dictionaries.
-
- # The internal self.__map dictionary maps keys to links in a doubly linked list.
- # The circular doubly linked list starts and ends with a sentinel element.
- # The sentinel element never gets deleted (this simplifies the algorithm).
- # The sentinel is stored in self.__hardroot with a weakref proxy in self.__root.
- # The prev/next links are weakref proxies (to prevent circular references).
- # Individual links are kept alive by the hard reference in self.__map.
- # Those hard references disappear when a key is deleted from an OrderedDict.
-
- def __init__(self, *args, **kwds):
- '''Initialize an ordered dictionary. Signature is the same as for
- regular dictionaries, but keyword arguments are not recommended
- because their insertion order is arbitrary.
-
- '''
- if len(args) > 1:
- raise TypeError('expected at most 1 arguments, got %d' % len(args))
- try:
- self.__root
- except AttributeError:
- self.__hardroot = _Link()
- self.__root = root = _proxy(self.__hardroot)
- root.prev = root.next = root
- self.__map = {}
- self.__update(*args, **kwds)
-
- def __setitem__(self, key, value,
- dict_setitem=dict.__setitem__, proxy=_proxy, Link=_Link):
- 'od.__setitem__(i, y) <==> od[i]=y'
- # Setting a new item creates a new link which goes at the end of the linked
- # list, and the inherited dictionary is updated with the new key/value pair.
- if key not in self:
- self.__map[key] = link = Link()
- root = self.__root
- last = root.prev
- link.prev, link.next, link.key = last, root, key
- last.next = link
- root.prev = proxy(link)
- dict_setitem(self, key, value)
-
- def __delitem__(self, key, dict_delitem=dict.__delitem__):
- 'od.__delitem__(y) <==> del od[y]'
- # Deleting an existing item uses self.__map to find the link which is
- # then removed by updating the links in the predecessor and successor nodes.
- dict_delitem(self, key)
- link = self.__map.pop(key)
- link_prev = link.prev
- link_next = link.next
- link_prev.next = link_next
- link_next.prev = link_prev
-
- def __iter__(self):
- 'od.__iter__() <==> iter(od)'
- # Traverse the linked list in order.
- root = self.__root
- curr = root.next
- while curr is not root:
- yield curr.key
- curr = curr.next
-
- def __reversed__(self):
- 'od.__reversed__() <==> reversed(od)'
- # Traverse the linked list in reverse order.
- root = self.__root
- curr = root.prev
- while curr is not root:
- yield curr.key
- curr = curr.prev
-
- def clear(self):
- 'od.clear() -> None. Remove all items from od.'
- root = self.__root
- root.prev = root.next = root
- self.__map.clear()
- dict.clear(self)
-
- def popitem(self, last=True):
- '''od.popitem() -> (k, v), return and remove a (key, value) pair.
- Pairs are returned in LIFO order if last is true or FIFO order if false.
-
- '''
- if not self:
- raise KeyError('dictionary is empty')
- root = self.__root
- if last:
- link = root.prev
- link_prev = link.prev
- link_prev.next = root
- root.prev = link_prev
- else:
- link = root.next
- link_next = link.next
- root.next = link_next
- link_next.prev = root
- key = link.key
- del self.__map[key]
- value = dict.pop(self, key)
- return key, value
-
- def move_to_end(self, key, last=True):
- '''Move an existing element to the end (or beginning if last==False).
-
- Raises KeyError if the element does not exist.
- When last=True, acts like a fast version of self[key]=self.pop(key).
-
- '''
- link = self.__map[key]
- link_prev = link.prev
- link_next = link.next
- link_prev.next = link_next
- link_next.prev = link_prev
- root = self.__root
- if last:
- last = root.prev
- link.prev = last
- link.next = root
- last.next = root.prev = link
- else:
- first = root.next
- link.prev = root
- link.next = first
- root.next = first.prev = link
-
- def __reduce__(self):
- 'Return state information for pickling'
- items = [[k, self[k]] for k in self]
- tmp = self.__map, self.__root, self.__hardroot
- del self.__map, self.__root, self.__hardroot
- inst_dict = vars(self).copy()
- self.__map, self.__root, self.__hardroot = tmp
- if inst_dict:
- return (self.__class__, (items,), inst_dict)
- return self.__class__, (items,)
-
- def __sizeof__(self):
- sizeof = _sys.getsizeof
- n = len(self) + 1 # number of links including root
- size = sizeof(self.__dict__) # instance dictionary
- size += sizeof(self.__map) * 2 # internal dict and inherited dict
- size += sizeof(self.__hardroot) * n # link objects
- size += sizeof(self.__root) * n # proxy objects
- return size
-
- update = __update = MutableMapping.update
- keys = MutableMapping.keys
- values = MutableMapping.values
- items = MutableMapping.items
- __ne__ = MutableMapping.__ne__
-
- __marker = object()
-
- def pop(self, key, default=__marker):
- if key in self:
- result = self[key]
- del self[key]
- return result
- if default is self.__marker:
- raise KeyError(key)
- return default
-
- def setdefault(self, key, default=None):
- 'OD.setdefault(k[,d]) -> OD.get(k,d), also set OD[k]=d if k not in OD'
- if key in self:
- return self[key]
- self[key] = default
- return default
-
- @_recursive_repr()
- def __repr__(self):
- 'od.__repr__() <==> repr(od)'
- if not self:
- return '%s()' % (self.__class__.__name__,)
- return '%s(%r)' % (self.__class__.__name__, list(self.items()))
-
- def copy(self):
- 'od.copy() -> a shallow copy of od'
- return self.__class__(self)
-
- @classmethod
- def fromkeys(cls, iterable, value=None):
- '''OD.fromkeys(S[, v]) -> New ordered dictionary with keys from S
- and values equal to v (which defaults to None).
-
- '''
- d = cls()
- for key in iterable:
- d[key] = value
- return d
-
- def __eq__(self, other):
- '''od.__eq__(y) <==> od==y. Comparison to another OD is order-sensitive
- while comparison to a regular mapping is order-insensitive.
-
- '''
- if isinstance(other, OrderedDict):
- return len(self)==len(other) and \
- all(p==q for p, q in zip(self.items(), other.items()))
- return dict.__eq__(self, other)
-
-
-################################################################################
-### namedtuple
-################################################################################
-
-def namedtuple(typename, field_names, verbose=False, rename=False):
- """Returns a new subclass of tuple with named fields.
-
- >>> Point = namedtuple('Point', 'x y')
- >>> Point.__doc__ # docstring for the new class
- 'Point(x, y)'
- >>> p = Point(11, y=22) # instantiate with positional args or keywords
- >>> p[0] + p[1] # indexable like a plain tuple
- 33
- >>> x, y = p # unpack like a regular tuple
- >>> x, y
- (11, 22)
- >>> p.x + p.y # fields also accessable by name
- 33
- >>> d = p._asdict() # convert to a dictionary
- >>> d['x']
- 11
- >>> Point(**d) # convert from a dictionary
- Point(x=11, y=22)
- >>> p._replace(x=100) # _replace() is like str.replace() but targets named fields
- Point(x=100, y=22)
-
- """
-
- # Parse and validate the field names. Validation serves two purposes,
- # generating informative error messages and preventing template injection attacks.
- if isinstance(field_names, str):
- field_names = field_names.replace(',', ' ').split() # names separated by whitespace and/or commas
- field_names = tuple(map(str, field_names))
- if rename:
- names = list(field_names)
- seen = set()
- for i, name in enumerate(names):
- if (not all(c.isalnum() or c=='_' for c in name) or _iskeyword(name)
- or not name or name[0].isdigit() or name.startswith('_')
- or name in seen):
- names[i] = '_%d' % i
- seen.add(name)
- field_names = tuple(names)
- for name in (typename,) + field_names:
- if not all(c.isalnum() or c=='_' for c in name):
- raise ValueError('Type names and field names can only contain alphanumeric characters and underscores: %r' % name)
- if _iskeyword(name):
- raise ValueError('Type names and field names cannot be a keyword: %r' % name)
- if name[0].isdigit():
- raise ValueError('Type names and field names cannot start with a number: %r' % name)
- seen_names = set()
- for name in field_names:
- if name.startswith('_') and not rename:
- raise ValueError('Field names cannot start with an underscore: %r' % name)
- if name in seen_names:
- raise ValueError('Encountered duplicate field name: %r' % name)
- seen_names.add(name)
-
- # Create and fill-in the class template
- numfields = len(field_names)
- argtxt = repr(field_names).replace("'", "")[1:-1] # tuple repr without parens or quotes
- reprtxt = ', '.join('%s=%%r' % name for name in field_names)
- template = '''class %(typename)s(tuple):
- '%(typename)s(%(argtxt)s)' \n
- __slots__ = () \n
- _fields = %(field_names)r \n
- def __new__(_cls, %(argtxt)s):
- 'Create new instance of %(typename)s(%(argtxt)s)'
- return _tuple.__new__(_cls, (%(argtxt)s)) \n
- @classmethod
- def _make(cls, iterable, new=tuple.__new__, len=len):
- 'Make a new %(typename)s object from a sequence or iterable'
- result = new(cls, iterable)
- if len(result) != %(numfields)d:
- raise TypeError('Expected %(numfields)d arguments, got %%d' %% len(result))
- return result \n
- def __repr__(self):
- 'Return a nicely formatted representation string'
- return self.__class__.__name__ + '(%(reprtxt)s)' %% self \n
- def _asdict(self):
- 'Return a new OrderedDict which maps field names to their values'
- return OrderedDict(zip(self._fields, self)) \n
- def _replace(_self, **kwds):
- 'Return a new %(typename)s object replacing specified fields with new values'
- result = _self._make(map(kwds.pop, %(field_names)r, _self))
- if kwds:
- raise ValueError('Got unexpected field names: %%r' %% kwds.keys())
- return result \n
- def __getnewargs__(self):
- 'Return self as a plain tuple. Used by copy and pickle.'
- return tuple(self) \n\n''' % locals()
- for i, name in enumerate(field_names):
- template += " %s = _property(_itemgetter(%d), doc='Alias for field number %d')\n" % (name, i, i)
- if verbose:
- print(template)
-
- # Execute the template string in a temporary namespace and
- # support tracing utilities by setting a value for frame.f_globals['__name__']
- namespace = dict(_itemgetter=_itemgetter, __name__='namedtuple_%s' % typename,
- OrderedDict=OrderedDict, _property=property, _tuple=tuple)
- try:
- exec(template, namespace)
- except SyntaxError as e:
- raise SyntaxError(e.msg + ':\n\n' + template)
- result = namespace[typename]
-
- # For pickling to work, the __module__ variable needs to be set to the frame
- # where the named tuple is created. Bypass this step in enviroments where
- # sys._getframe is not defined (Jython for example) or sys._getframe is not
- # defined for arguments greater than 0 (IronPython).
- try:
- result.__module__ = _sys._getframe(1).f_globals.get('__name__', '__main__')
- except (AttributeError, ValueError):
- pass
-
- return result
-
-
-########################################################################
-### Counter
-########################################################################
-
-def _count_elements(mapping, iterable):
- 'Tally elements from the iterable.'
- mapping_get = mapping.get
- for elem in iterable:
- mapping[elem] = mapping_get(elem, 0) + 1
-
-try: # Load C helper function if available
- from _collections import _count_elements
-except ImportError:
- pass
-
-class Counter(dict):
- '''Dict subclass for counting hashable items. Sometimes called a bag
- or multiset. Elements are stored as dictionary keys and their counts
- are stored as dictionary values.
-
- >>> c = Counter('abcdeabcdabcaba') # count elements from a string
-
- >>> c.most_common(3) # three most common elements
- [('a', 5), ('b', 4), ('c', 3)]
- >>> sorted(c) # list all unique elements
- ['a', 'b', 'c', 'd', 'e']
- >>> ''.join(sorted(c.elements())) # list elements with repetitions
- 'aaaaabbbbcccdde'
- >>> sum(c.values()) # total of all counts
- 15
-
- >>> c['a'] # count of letter 'a'
- 5
- >>> for elem in 'shazam': # update counts from an iterable
- ... c[elem] += 1 # by adding 1 to each element's count
- >>> c['a'] # now there are seven 'a'
- 7
- >>> del c['b'] # remove all 'b'
- >>> c['b'] # now there are zero 'b'
- 0
-
- >>> d = Counter('simsalabim') # make another counter
- >>> c.update(d) # add in the second counter
- >>> c['a'] # now there are nine 'a'
- 9
-
- >>> c.clear() # empty the counter
- >>> c
- Counter()
-
- Note: If a count is set to zero or reduced to zero, it will remain
- in the counter until the entry is deleted or the counter is cleared:
-
- >>> c = Counter('aaabbc')
- >>> c['b'] -= 2 # reduce the count of 'b' by two
- >>> c.most_common() # 'b' is still in, but its count is zero
- [('a', 3), ('c', 1), ('b', 0)]
-
- '''
- # References:
- # http://en.wikipedia.org/wiki/Multiset
- # http://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html
- # http://www.demo2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm
- # http://code.activestate.com/recipes/259174/
- # Knuth, TAOCP Vol. II section 4.6.3
-
- def __init__(self, iterable=None, **kwds):
- '''Create a new, empty Counter object. And if given, count elements
- from an input iterable. Or, initialize the count from another mapping
- of elements to their counts.
-
- >>> c = Counter() # a new, empty counter
- >>> c = Counter('gallahad') # a new counter from an iterable
- >>> c = Counter({'a': 4, 'b': 2}) # a new counter from a mapping
- >>> c = Counter(a=4, b=2) # a new counter from keyword args
-
- '''
- super().__init__()
- self.update(iterable, **kwds)
-
- def __missing__(self, key):
- 'The count of elements not in the Counter is zero.'
- # Needed so that self[missing_item] does not raise KeyError
- return 0
-
- def most_common(self, n=None):
- '''List the n most common elements and their counts from the most
- common to the least. If n is None, then list all element counts.
-
- >>> Counter('abcdeabcdabcaba').most_common(3)
- [('a', 5), ('b', 4), ('c', 3)]
-
- '''
- # Emulate Bag.sortedByCount from Smalltalk
- if n is None:
- return sorted(self.items(), key=_itemgetter(1), reverse=True)
- return _heapq.nlargest(n, self.items(), key=_itemgetter(1))
-
- def elements(self):
- '''Iterator over elements repeating each as many times as its count.
-
- >>> c = Counter('ABCABC')
- >>> sorted(c.elements())
- ['A', 'A', 'B', 'B', 'C', 'C']
-
- # Knuth's example for prime factors of 1836: 2**2 * 3**3 * 17**1
- >>> prime_factors = Counter({2: 2, 3: 3, 17: 1})
- >>> product = 1
- >>> for factor in prime_factors.elements(): # loop over factors
- ... product *= factor # and multiply them
- >>> product
- 1836
-
- Note, if an element's count has been set to zero or is a negative
- number, elements() will ignore it.
-
- '''
- # Emulate Bag.do from Smalltalk and Multiset.begin from C++.
- return _chain.from_iterable(_starmap(_repeat, self.items()))
-
- # Override dict methods where necessary
-
- @classmethod
- def fromkeys(cls, iterable, v=None):
- # There is no equivalent method for counters because setting v=1
- # means that no element can have a count greater than one.
- raise NotImplementedError(
- 'Counter.fromkeys() is undefined. Use Counter(iterable) instead.')
-
- def update(self, iterable=None, **kwds):
- '''Like dict.update() but add counts instead of replacing them.
-
- Source can be an iterable, a dictionary, or another Counter instance.
-
- >>> c = Counter('which')
- >>> c.update('witch') # add elements from another iterable
- >>> d = Counter('watch')
- >>> c.update(d) # add elements from another counter
- >>> c['h'] # four 'h' in which, witch, and watch
- 4
-
- '''
- # The regular dict.update() operation makes no sense here because the
- # replace behavior results in the some of original untouched counts
- # being mixed-in with all of the other counts for a mismash that
- # doesn't have a straight-forward interpretation in most counting
- # contexts. Instead, we implement straight-addition. Both the inputs
- # and outputs are allowed to contain zero and negative counts.
-
- if iterable is not None:
- if isinstance(iterable, Mapping):
- if self:
- self_get = self.get
- for elem, count in iterable.items():
- self[elem] = count + self_get(elem, 0)
- else:
- super().update(iterable) # fast path when counter is empty
- else:
- _count_elements(self, iterable)
- if kwds:
- self.update(kwds)
-
- def subtract(self, iterable=None, **kwds):
- '''Like dict.update() but subtracts counts instead of replacing them.
- Counts can be reduced below zero. Both the inputs and outputs are
- allowed to contain zero and negative counts.
-
- Source can be an iterable, a dictionary, or another Counter instance.
-
- >>> c = Counter('which')
- >>> c.subtract('witch') # subtract elements from another iterable
- >>> c.subtract(Counter('watch')) # subtract elements from another counter
- >>> c['h'] # 2 in which, minus 1 in witch, minus 1 in watch
- 0
- >>> c['w'] # 1 in which, minus 1 in witch, minus 1 in watch
- -1
-
- '''
- if iterable is not None:
- self_get = self.get
- if isinstance(iterable, Mapping):
- for elem, count in iterable.items():
- self[elem] = self_get(elem, 0) - count
- else:
- for elem in iterable:
- self[elem] = self_get(elem, 0) - 1
- if kwds:
- self.subtract(kwds)
-
- def copy(self):
- 'Like dict.copy() but returns a Counter instance instead of a dict.'
- return Counter(self)
-
- def __reduce__(self):
- return self.__class__, (dict(self),)
-
- def __delitem__(self, elem):
- 'Like dict.__delitem__() but does not raise KeyError for missing values.'
- if elem in self:
- super().__delitem__(elem)
-
- def __repr__(self):
- if not self:
- return '%s()' % self.__class__.__name__
- items = ', '.join(map('%r: %r'.__mod__, self.most_common()))
- return '%s({%s})' % (self.__class__.__name__, items)
-
- # Multiset-style mathematical operations discussed in:
- # Knuth TAOCP Volume II section 4.6.3 exercise 19
- # and at http://en.wikipedia.org/wiki/Multiset
- #
- # Outputs guaranteed to only include positive counts.
- #
- # To strip negative and zero counts, add-in an empty counter:
- # c += Counter()
-
- def __add__(self, other):
- '''Add counts from two counters.
-
- >>> Counter('abbb') + Counter('bcc')
- Counter({'b': 4, 'c': 2, 'a': 1})
-
- '''
- if not isinstance(other, Counter):
- return NotImplemented
- result = Counter()
- for elem in set(self) | set(other):
- newcount = self[elem] + other[elem]
- if newcount > 0:
- result[elem] = newcount
- return result
-
- def __sub__(self, other):
- ''' Subtract count, but keep only results with positive counts.
-
- >>> Counter('abbbc') - Counter('bccd')
- Counter({'b': 2, 'a': 1})
-
- '''
- if not isinstance(other, Counter):
- return NotImplemented
- result = Counter()
- for elem in set(self) | set(other):
- newcount = self[elem] - other[elem]
- if newcount > 0:
- result[elem] = newcount
- return result
-
- def __or__(self, other):
- '''Union is the maximum of value in either of the input counters.
-
- >>> Counter('abbb') | Counter('bcc')
- Counter({'b': 3, 'c': 2, 'a': 1})
-
- '''
- if not isinstance(other, Counter):
- return NotImplemented
- result = Counter()
- for elem in set(self) | set(other):
- p, q = self[elem], other[elem]
- newcount = q if p < q else p
- if newcount > 0:
- result[elem] = newcount
- return result
-
- def __and__(self, other):
- ''' Intersection is the minimum of corresponding counts.
-
- >>> Counter('abbb') & Counter('bcc')
- Counter({'b': 1})
-
- '''
- if not isinstance(other, Counter):
- return NotImplemented
- result = Counter()
- if len(self) < len(other):
- self, other = other, self
- for elem in filter(self.__contains__, other):
- p, q = self[elem], other[elem]
- newcount = p if p < q else q
- if newcount > 0:
- result[elem] = newcount
- return result
-
-
-########################################################################
-### ChainMap (helper for configparser)
-########################################################################
-
-class _ChainMap(MutableMapping):
- ''' A ChainMap groups multiple dicts (or other mappings) together
- to create a single, updateable view.
-
- The underlying mappings are stored in a list. That list is public and can
- accessed or updated using the *maps* attribute. There is no other state.
-
- Lookups search the underlying mappings successively until a key is found.
- In contrast, writes, updates, and deletions only operate on the first
- mapping.
-
- '''
-
- def __init__(self, *maps):
- '''Initialize a ChainMap by setting *maps* to the given mappings.
- If no mappings are provided, a single empty dictionary is used.
-
- '''
- self.maps = list(maps) or [{}] # always at least one map
-
- def __missing__(self, key):
- raise KeyError(key)
-
- def __getitem__(self, key):
- for mapping in self.maps:
- try:
- return mapping[key] # can't use 'key in mapping' with defaultdict
- except KeyError:
- pass
- return self.__missing__(key) # support subclasses that define __missing__
-
- def get(self, key, default=None):
- return self[key] if key in self else default
-
- def __len__(self):
- return len(set().union(*self.maps)) # reuses stored hash values if possible
-
- def __iter__(self):
- return iter(set().union(*self.maps))
-
- def __contains__(self, key):
- return any(key in m for m in self.maps)
-
- @_recursive_repr()
- def __repr__(self):
- return '{0.__class__.__name__}({1})'.format(
- self, ', '.join(map(repr, self.maps)))
-
- @classmethod
- def fromkeys(cls, iterable, *args):
- 'Create a ChainMap with a single dict created from the iterable.'
- return cls(dict.fromkeys(iterable, *args))
-
- def copy(self):
- 'New ChainMap or subclass with a new copy of maps[0] and refs to maps[1:]'
- return self.__class__(self.maps[0].copy(), *self.maps[1:])
-
- __copy__ = copy
-
- def __setitem__(self, key, value):
- self.maps[0][key] = value
-
- def __delitem__(self, key):
- try:
- del self.maps[0][key]
- except KeyError:
- raise KeyError('Key not found in the first mapping: {!r}'.format(key))
-
- def popitem(self):
- 'Remove and return an item pair from maps[0]. Raise KeyError is maps[0] is empty.'
- try:
- return self.maps[0].popitem()
- except KeyError:
- raise KeyError('No keys found in the first mapping.')
-
- def pop(self, key, *args):
- 'Remove *key* from maps[0] and return its value. Raise KeyError if *key* not in maps[0].'
- try:
- return self.maps[0].pop(key, *args)
- except KeyError:
- raise KeyError('Key not found in the first mapping: {!r}'.format(key))
-
- def clear(self):
- 'Clear maps[0], leaving maps[1:] intact.'
- self.maps[0].clear()
-
-
-################################################################################
-### UserDict
-################################################################################
-
-class UserDict(MutableMapping):
-
- # Start by filling-out the abstract methods
- def __init__(self, dict=None, **kwargs):
- self.data = {}
- if dict is not None:
- self.update(dict)
- if len(kwargs):
- self.update(kwargs)
- def __len__(self): return len(self.data)
- def __getitem__(self, key):
- if key in self.data:
- return self.data[key]
- if hasattr(self.__class__, "__missing__"):
- return self.__class__.__missing__(self, key)
- raise KeyError(key)
- def __setitem__(self, key, item): self.data[key] = item
- def __delitem__(self, key): del self.data[key]
- def __iter__(self):
- return iter(self.data)
-
- # Modify __contains__ to work correctly when __missing__ is present
- def __contains__(self, key):
- return key in self.data
-
- # Now, add the methods in dicts but not in MutableMapping
- def __repr__(self): return repr(self.data)
- def copy(self):
- if self.__class__ is UserDict:
- return UserDict(self.data.copy())
- import copy
- data = self.data
- try:
- self.data = {}
- c = copy.copy(self)
- finally:
- self.data = data
- c.update(self)
- return c
- @classmethod
- def fromkeys(cls, iterable, value=None):
- d = cls()
- for key in iterable:
- d[key] = value
- return d
-
-
-
-################################################################################
-### UserList
-################################################################################
-
-class UserList(MutableSequence):
- """A more or less complete user-defined wrapper around list objects."""
- def __init__(self, initlist=None):
- self.data = []
- if initlist is not None:
- # XXX should this accept an arbitrary sequence?
- if type(initlist) == type(self.data):
- self.data[:] = initlist
- elif isinstance(initlist, UserList):
- self.data[:] = initlist.data[:]
- else:
- self.data = list(initlist)
- def __repr__(self): return repr(self.data)
- def __lt__(self, other): return self.data < self.__cast(other)
- def __le__(self, other): return self.data <= self.__cast(other)
- def __eq__(self, other): return self.data == self.__cast(other)
- def __ne__(self, other): return self.data != self.__cast(other)
- def __gt__(self, other): return self.data > self.__cast(other)
- def __ge__(self, other): return self.data >= self.__cast(other)
- def __cast(self, other):
- return other.data if isinstance(other, UserList) else other
- def __contains__(self, item): return item in self.data
- def __len__(self): return len(self.data)
- def __getitem__(self, i): return self.data[i]
- def __setitem__(self, i, item): self.data[i] = item
- def __delitem__(self, i): del self.data[i]
- def __add__(self, other):
- if isinstance(other, UserList):
- return self.__class__(self.data + other.data)
- elif isinstance(other, type(self.data)):
- return self.__class__(self.data + other)
- return self.__class__(self.data + list(other))
- def __radd__(self, other):
- if isinstance(other, UserList):
- return self.__class__(other.data + self.data)
- elif isinstance(other, type(self.data)):
- return self.__class__(other + self.data)
- return self.__class__(list(other) + self.data)
- def __iadd__(self, other):
- if isinstance(other, UserList):
- self.data += other.data
- elif isinstance(other, type(self.data)):
- self.data += other
- else:
- self.data += list(other)
- return self
- def __mul__(self, n):
- return self.__class__(self.data*n)
- __rmul__ = __mul__
- def __imul__(self, n):
- self.data *= n
- return self
- def append(self, item): self.data.append(item)
- def insert(self, i, item): self.data.insert(i, item)
- def pop(self, i=-1): return self.data.pop(i)
- def remove(self, item): self.data.remove(item)
- def count(self, item): return self.data.count(item)
- def index(self, item, *args): return self.data.index(item, *args)
- def reverse(self): self.data.reverse()
- def sort(self, *args, **kwds): self.data.sort(*args, **kwds)
- def extend(self, other):
- if isinstance(other, UserList):
- self.data.extend(other.data)
- else:
- self.data.extend(other)
-
-
-
-################################################################################
-### UserString
-################################################################################
-
-class UserString(Sequence):
- def __init__(self, seq):
- if isinstance(seq, str):
- self.data = seq
- elif isinstance(seq, UserString):
- self.data = seq.data[:]
- else:
- self.data = str(seq)
- def __str__(self): return str(self.data)
- def __repr__(self): return repr(self.data)
- def __int__(self): return int(self.data)
- def __float__(self): return float(self.data)
- def __complex__(self): return complex(self.data)
- def __hash__(self): return hash(self.data)
-
- def __eq__(self, string):
- if isinstance(string, UserString):
- return self.data == string.data
- return self.data == string
- def __ne__(self, string):
- if isinstance(string, UserString):
- return self.data != string.data
- return self.data != string
- def __lt__(self, string):
- if isinstance(string, UserString):
- return self.data < string.data
- return self.data < string
- def __le__(self, string):
- if isinstance(string, UserString):
- return self.data <= string.data
- return self.data <= string
- def __gt__(self, string):
- if isinstance(string, UserString):
- return self.data > string.data
- return self.data > string
- def __ge__(self, string):
- if isinstance(string, UserString):
- return self.data >= string.data
- return self.data >= string
-
- def __contains__(self, char):
- if isinstance(char, UserString):
- char = char.data
- return char in self.data
-
- def __len__(self): return len(self.data)
- def __getitem__(self, index): return self.__class__(self.data[index])
- def __add__(self, other):
- if isinstance(other, UserString):
- return self.__class__(self.data + other.data)
- elif isinstance(other, str):
- return self.__class__(self.data + other)
- return self.__class__(self.data + str(other))
- def __radd__(self, other):
- if isinstance(other, str):
- return self.__class__(other + self.data)
- return self.__class__(str(other) + self.data)
- def __mul__(self, n):
- return self.__class__(self.data*n)
- __rmul__ = __mul__
- def __mod__(self, args):
- return self.__class__(self.data % args)
-
- # the following methods are defined in alphabetical order:
- def capitalize(self): return self.__class__(self.data.capitalize())
- def center(self, width, *args):
- return self.__class__(self.data.center(width, *args))
- def count(self, sub, start=0, end=_sys.maxsize):
- if isinstance(sub, UserString):
- sub = sub.data
- return self.data.count(sub, start, end)
- def encode(self, encoding=None, errors=None): # XXX improve this?
- if encoding:
- if errors:
- return self.__class__(self.data.encode(encoding, errors))
- return self.__class__(self.data.encode(encoding))
- return self.__class__(self.data.encode())
- def endswith(self, suffix, start=0, end=_sys.maxsize):
- return self.data.endswith(suffix, start, end)
- def expandtabs(self, tabsize=8):
- return self.__class__(self.data.expandtabs(tabsize))
- def find(self, sub, start=0, end=_sys.maxsize):
- if isinstance(sub, UserString):
- sub = sub.data
- return self.data.find(sub, start, end)
- def format(self, *args, **kwds):
- return self.data.format(*args, **kwds)
- def index(self, sub, start=0, end=_sys.maxsize):
- return self.data.index(sub, start, end)
- def isalpha(self): return self.data.isalpha()
- def isalnum(self): return self.data.isalnum()
- def isdecimal(self): return self.data.isdecimal()
- def isdigit(self): return self.data.isdigit()
- def isidentifier(self): return self.data.isidentifier()
- def islower(self): return self.data.islower()
- def isnumeric(self): return self.data.isnumeric()
- def isspace(self): return self.data.isspace()
- def istitle(self): return self.data.istitle()
- def isupper(self): return self.data.isupper()
- def join(self, seq): return self.data.join(seq)
- def ljust(self, width, *args):
- return self.__class__(self.data.ljust(width, *args))
- def lower(self): return self.__class__(self.data.lower())
- def lstrip(self, chars=None): return self.__class__(self.data.lstrip(chars))
- def partition(self, sep):
- return self.data.partition(sep)
- def replace(self, old, new, maxsplit=-1):
- if isinstance(old, UserString):
- old = old.data
- if isinstance(new, UserString):
- new = new.data
- return self.__class__(self.data.replace(old, new, maxsplit))
- def rfind(self, sub, start=0, end=_sys.maxsize):
- if isinstance(sub, UserString):
- sub = sub.data
- return self.data.rfind(sub, start, end)
- def rindex(self, sub, start=0, end=_sys.maxsize):
- return self.data.rindex(sub, start, end)
- def rjust(self, width, *args):
- return self.__class__(self.data.rjust(width, *args))
- def rpartition(self, sep):
- return self.data.rpartition(sep)
- def rstrip(self, chars=None):
- return self.__class__(self.data.rstrip(chars))
- def split(self, sep=None, maxsplit=-1):
- return self.data.split(sep, maxsplit)
- def rsplit(self, sep=None, maxsplit=-1):
- return self.data.rsplit(sep, maxsplit)
- def splitlines(self, keepends=0): return self.data.splitlines(keepends)
- def startswith(self, prefix, start=0, end=_sys.maxsize):
- return self.data.startswith(prefix, start, end)
- def strip(self, chars=None): return self.__class__(self.data.strip(chars))
- def swapcase(self): return self.__class__(self.data.swapcase())
- def title(self): return self.__class__(self.data.title())
- def translate(self, *args):
- return self.__class__(self.data.translate(*args))
- def upper(self): return self.__class__(self.data.upper())
- def zfill(self, width): return self.__class__(self.data.zfill(width))
-
-
-
-################################################################################
-### Simple tests
-################################################################################
-
-if __name__ == '__main__':
- # verify that instances can be pickled
- from pickle import loads, dumps
- Point = namedtuple('Point', 'x, y', True)
- p = Point(x=10, y=20)
- assert p == loads(dumps(p))
-
- # test and demonstrate ability to override methods
- class Point(namedtuple('Point', 'x y')):
- __slots__ = ()
- @property
- def hypot(self):
- return (self.x ** 2 + self.y ** 2) ** 0.5
- def __str__(self):
- return 'Point: x=%6.3f y=%6.3f hypot=%6.3f' % (self.x, self.y, self.hypot)
-
- for p in Point(3, 4), Point(14, 5/7.):
- print (p)
-
- class Point(namedtuple('Point', 'x y')):
- 'Point class with optimized _make() and _replace() without error-checking'
- __slots__ = ()
- _make = classmethod(tuple.__new__)
- def _replace(self, _map=map, **kwds):
- return self._make(_map(kwds.get, ('x', 'y'), self))
-
- print(Point(11, 22)._replace(x=100))
-
- Point3D = namedtuple('Point3D', Point._fields + ('z',))
- print(Point3D.__doc__)
-
- import doctest
- TestResults = namedtuple('TestResults', 'failed attempted')
- print(TestResults(*doctest.testmod()))