summaryrefslogtreecommitdiffstats
path: root/Lib/fractions.py
diff options
context:
space:
mode:
authorMark Dickinson <dickinsm@gmail.com>2008-02-12 21:31:59 (GMT)
committerMark Dickinson <dickinsm@gmail.com>2008-02-12 21:31:59 (GMT)
commite1b824793a4b10d5119459b47546b122a17c18b4 (patch)
treede1aaf1ef801c1fe278f5de4920a8a8c4ccbab78 /Lib/fractions.py
parenta37430a0cec991f341ca637410371532c8e3720c (diff)
downloadcpython-e1b824793a4b10d5119459b47546b122a17c18b4.zip
cpython-e1b824793a4b10d5119459b47546b122a17c18b4.tar.gz
cpython-e1b824793a4b10d5119459b47546b122a17c18b4.tar.bz2
Implementation of Fraction.limit_denominator.
Remove Fraction.to_continued_fraction and Fraction.from_continued_fraction
Diffstat (limited to 'Lib/fractions.py')
-rwxr-xr-xLib/fractions.py86
1 files changed, 52 insertions, 34 deletions
diff --git a/Lib/fractions.py b/Lib/fractions.py
index 123ecb6..8593e7e 100755
--- a/Lib/fractions.py
+++ b/Lib/fractions.py
@@ -140,42 +140,60 @@ class Fraction(Rational):
else:
return Fraction(digits, 10 ** -exp)
- @staticmethod
- def from_continued_fraction(seq):
- 'Build a Fraction from a continued fraction expessed as a sequence'
- n, d = 1, 0
- for e in reversed(seq):
- n, d = d, n
- n += e * d
- return Fraction(n, d) if seq else Fraction(0)
-
- def as_continued_fraction(self):
- 'Return continued fraction expressed as a list'
- n = self.numerator
- d = self.denominator
- cf = []
- while d:
- e = int(n // d)
- cf.append(e)
- n -= e * d
- n, d = d, n
- return cf
-
- def approximate(self, max_denominator):
- 'Best rational approximation with a denominator <= max_denominator'
- # XXX First cut at algorithm
- # Still needs rounding rules as specified at
- # http://en.wikipedia.org/wiki/Continued_fraction
+ def limit_denominator(self, max_denominator=1000000):
+ """Closest Fraction to self with denominator at most max_denominator.
+
+ >>> Fraction('3.141592653589793').limit_denominator(10)
+ Fraction(22, 7)
+ >>> Fraction('3.141592653589793').limit_denominator(100)
+ Fraction(311, 99)
+ >>> Fraction(1234, 5678).limit_denominator(10000)
+ Fraction(1234, 5678)
+
+ """
+ # Algorithm notes: For any real number x, define a *best upper
+ # approximation* to x to be a rational number p/q such that:
+ #
+ # (1) p/q >= x, and
+ # (2) if p/q > r/s >= x then s > q, for any rational r/s.
+ #
+ # Define *best lower approximation* similarly. Then it can be
+ # proved that a rational number is a best upper or lower
+ # approximation to x if, and only if, it is a convergent or
+ # semiconvergent of the (unique shortest) continued fraction
+ # associated to x.
+ #
+ # To find a best rational approximation with denominator <= M,
+ # we find the best upper and lower approximations with
+ # denominator <= M and take whichever of these is closer to x.
+ # In the event of a tie, the bound with smaller denominator is
+ # chosen. If both denominators are equal (which can happen
+ # only when max_denominator == 1 and self is midway between
+ # two integers) the lower bound---i.e., the floor of self, is
+ # taken.
+
+ if max_denominator < 1:
+ raise ValueError("max_denominator should be at least 1")
if self.denominator <= max_denominator:
- return self
- cf = self.as_continued_fraction()
- result = Fraction(0)
- for i in range(1, len(cf)):
- new = self.from_continued_fraction(cf[:i])
- if new.denominator > max_denominator:
+ return Fraction(self)
+
+ p0, q0, p1, q1 = 0, 1, 1, 0
+ n, d = self.numerator, self.denominator
+ while True:
+ a = n//d
+ q2 = q0+a*q1
+ if q2 > max_denominator:
break
- result = new
- return result
+ p0, q0, p1, q1 = p1, q1, p0+a*p1, q2
+ n, d = d, n-a*d
+
+ k = (max_denominator-q0)//q1
+ bound1 = Fraction(p0+k*p1, q0+k*q1)
+ bound2 = Fraction(p1, q1)
+ if abs(bound2 - self) <= abs(bound1-self):
+ return bound2
+ else:
+ return bound1
@property
def numerator(a):