summaryrefslogtreecommitdiffstats
path: root/Lib/lib-old/zmod.py
diff options
context:
space:
mode:
authorTim Peters <tim.peters@gmail.com>2004-07-18 06:16:08 (GMT)
committerTim Peters <tim.peters@gmail.com>2004-07-18 06:16:08 (GMT)
commit182b5aca27d376b08a2904bed42b751496f932f3 (patch)
treedf13115820dbc879c0fe2eae488c9f8c0215a7da /Lib/lib-old/zmod.py
parente6ddc8b20b493fef2e7cffb2e1351fe1d238857e (diff)
downloadcpython-182b5aca27d376b08a2904bed42b751496f932f3.zip
cpython-182b5aca27d376b08a2904bed42b751496f932f3.tar.gz
cpython-182b5aca27d376b08a2904bed42b751496f932f3.tar.bz2
Whitespace normalization, via reindent.py.
Diffstat (limited to 'Lib/lib-old/zmod.py')
-rw-r--r--Lib/lib-old/zmod.py86
1 files changed, 43 insertions, 43 deletions
diff --git a/Lib/lib-old/zmod.py b/Lib/lib-old/zmod.py
index 7259bf8..55f49df 100644
--- a/Lib/lib-old/zmod.py
+++ b/Lib/lib-old/zmod.py
@@ -1,7 +1,7 @@
# module 'zmod'
# Compute properties of mathematical "fields" formed by taking
-# Z/n (the whole numbers modulo some whole number n) and an
+# Z/n (the whole numbers modulo some whole number n) and an
# irreducible polynomial (i.e., a polynomial with only complex zeros),
# e.g., Z/5 and X**2 + 2.
#
@@ -30,65 +30,65 @@ P = poly.plus(poly.one(0, 2), poly.one(2, 1)) # 2 + x**2
# Return x modulo y. Returns >= 0 even if x < 0.
def mod(x, y):
- return divmod(x, y)[1]
+ return divmod(x, y)[1]
# Normalize a polynomial modulo n and modulo p.
def norm(a, n, p):
- a = poly.modulo(a, p)
- a = a[:]
- for i in range(len(a)): a[i] = mod(a[i], n)
- a = poly.normalize(a)
- return a
+ a = poly.modulo(a, p)
+ a = a[:]
+ for i in range(len(a)): a[i] = mod(a[i], n)
+ a = poly.normalize(a)
+ return a
# Make a list of all n^d elements of the proposed field.
def make_all(mat):
- all = []
- for row in mat:
- for a in row:
- all.append(a)
- return all
+ all = []
+ for row in mat:
+ for a in row:
+ all.append(a)
+ return all
def make_elements(n, d):
- if d == 0: return [poly.one(0, 0)]
- sub = make_elements(n, d-1)
- all = []
- for a in sub:
- for i in range(n):
- all.append(poly.plus(a, poly.one(d-1, i)))
- return all
+ if d == 0: return [poly.one(0, 0)]
+ sub = make_elements(n, d-1)
+ all = []
+ for a in sub:
+ for i in range(n):
+ all.append(poly.plus(a, poly.one(d-1, i)))
+ return all
def make_inv(all, n, p):
- x = poly.one(1, 1)
- inv = []
- for a in all:
- inv.append(norm(poly.times(a, x), n, p))
- return inv
+ x = poly.one(1, 1)
+ inv = []
+ for a in all:
+ inv.append(norm(poly.times(a, x), n, p))
+ return inv
def checkfield(n, p):
- all = make_elements(n, len(p)-1)
- inv = make_inv(all, n, p)
- all1 = all[:]
- inv1 = inv[:]
- all1.sort()
- inv1.sort()
- if all1 == inv1: print 'BINGO!'
- else:
- print 'Sorry:', n, p
- print all
- print inv
+ all = make_elements(n, len(p)-1)
+ inv = make_inv(all, n, p)
+ all1 = all[:]
+ inv1 = inv[:]
+ all1.sort()
+ inv1.sort()
+ if all1 == inv1: print 'BINGO!'
+ else:
+ print 'Sorry:', n, p
+ print all
+ print inv
def rj(s, width):
- if type(s) is not type(''): s = `s`
- n = len(s)
- if n >= width: return s
- return ' '*(width - n) + s
+ if type(s) is not type(''): s = `s`
+ n = len(s)
+ if n >= width: return s
+ return ' '*(width - n) + s
def lj(s, width):
- if type(s) is not type(''): s = `s`
- n = len(s)
- if n >= width: return s
- return s + ' '*(width - n)
+ if type(s) is not type(''): s = `s`
+ n = len(s)
+ if n >= width: return s
+ return s + ' '*(width - n)