summaryrefslogtreecommitdiffstats
path: root/Lib/random.py
diff options
context:
space:
mode:
authorTim Peters <tim.peters@gmail.com>2001-01-25 03:36:26 (GMT)
committerTim Peters <tim.peters@gmail.com>2001-01-25 03:36:26 (GMT)
commitd7b5e88e8e40b77813ceb25dc28b87d672538403 (patch)
treeea8855e8c3d37f837eb3eeb505a6503083d19db1 /Lib/random.py
parent83125775e0a5c5088da0cb62b43e7cfd8a04fdc6 (diff)
downloadcpython-d7b5e88e8e40b77813ceb25dc28b87d672538403.zip
cpython-d7b5e88e8e40b77813ceb25dc28b87d672538403.tar.gz
cpython-d7b5e88e8e40b77813ceb25dc28b87d672538403.tar.bz2
Reworked random.py so that it no longer depends on, and offers all the
functionality of, whrandom.py. Also closes all the "XXX" todos in random.py. New frequently-requested functions/methods getstate() and setstate(). All exported functions are now bound methods of a hidden instance. Killed all unintended exports. Updated the docs. FRED: The more I fiddle the docs, the less I understand the exact intended use of the \var, \code, \method tags. Please review critically. GUIDO: See email. I updated NEWS as if whrandom were deprecated; I think it should be.
Diffstat (limited to 'Lib/random.py')
-rw-r--r--Lib/random.py670
1 files changed, 413 insertions, 257 deletions
diff --git a/Lib/random.py b/Lib/random.py
index d10ce78..a818f73 100644
--- a/Lib/random.py
+++ b/Lib/random.py
@@ -1,7 +1,17 @@
"""Random variable generators.
+ integers
+ --------
+ uniform within range
+
+ sequences
+ ---------
+ pick random element
+ generate random permutation
+
distributions on the real line:
------------------------------
+ uniform
normal (Gaussian)
lognormal
negative exponential
@@ -17,328 +27,429 @@ Translated from anonymously contributed C/C++ source.
Multi-threading note: the random number generator used here is not
thread-safe; it is possible that two calls return the same random
-value. See whrandom.py for more info.
+value.
"""
+# XXX The docstring sucks.
-import whrandom
-from whrandom import random, uniform, randint, choice, randrange # For export!
-from math import log, exp, pi, e, sqrt, acos, cos, sin
+from math import log as _log, exp as _exp, pi as _pi, e as _e
+from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
+
+def _verify(name, expected):
+ computed = eval(name)
+ if abs(computed - expected) > 1e-7:
+ raise ValueError(
+ "computed value for %s deviates too much "
+ "(computed %g, expected %g)" % (name, computed, expected))
-# Interfaces to replace remaining needs for importing whrandom
-# XXX TO DO: make the distribution functions below into methods.
+NV_MAGICCONST = 4 * _exp(-0.5)/_sqrt(2.0)
+_verify('NV_MAGICCONST', 1.71552776992141)
-def makeseed(a=None):
- """Turn a hashable value into three seed values for whrandom.seed().
+TWOPI = 2.0*_pi
+_verify('TWOPI', 6.28318530718)
- None or no argument returns (0, 0, 0), to seed from current time.
+LOG4 = _log(4.0)
+_verify('LOG4', 1.38629436111989)
- """
- if a is None:
- return (0, 0, 0)
- a = hash(a)
- a, x = divmod(a, 256)
- a, y = divmod(a, 256)
- a, z = divmod(a, 256)
- x = (x + a) % 256 or 1
- y = (y + a) % 256 or 1
- z = (z + a) % 256 or 1
- return (x, y, z)
+SG_MAGICCONST = 1.0 + _log(4.5)
+_verify('SG_MAGICCONST', 2.50407739677627)
-def seed(a=None):
- """Seed the default generator from any hashable value.
+del _verify
- None or no argument seeds from current time.
+# Translated by Guido van Rossum from C source provided by
+# Adrian Baddeley.
- """
- x, y, z = makeseed(a)
- whrandom.seed(x, y, z)
+class Random:
-class generator(whrandom.whrandom):
- """Random generator class."""
+ VERSION = 1 # used by getstate/setstate
- def __init__(self, a=None):
- """Constructor. Seed from current time or hashable value."""
- self.seed(a)
+ def __init__(self, x=None):
+ """Initialize an instance.
- def seed(self, a=None):
- """Seed the generator from current time or hashable value."""
- x, y, z = makeseed(a)
- whrandom.whrandom.seed(self, x, y, z)
+ Optional argument x controls seeding, as for Random.seed().
+ """
-def new_generator(a=None):
- """Return a new random generator instance."""
- return generator(a)
+ self.seed(x)
+ self.gauss_next = None
-# Housekeeping function to verify that magic constants have been
-# computed correctly
+ # Specific to Wichmann-Hill generator. Subclasses wishing to use a
+ # different core generator should override seed(), random(), getstate()
+ # and setstate().
-def verify(name, expected):
- computed = eval(name)
- if abs(computed - expected) > 1e-7:
- raise ValueError, \
-'computed value for %s deviates too much (computed %g, expected %g)' % \
-(name, computed, expected)
+ def __whseed(self, x=0, y=0, z=0):
+ """Set the Wichmann-Hill seed from (x, y, z).
+
+ These must be integers in the range [0, 256).
+ """
+
+ if not type(x) == type(y) == type(z) == type(0):
+ raise TypeError('seeds must be integers')
+ if not (0 <= x < 256 and 0 <= y < 256 and 0 <= z < 256):
+ raise ValueError('seeds must be in range(0, 256)')
+ if 0 == x == y == z:
+ # Initialize from current time
+ import time
+ t = long(time.time()) * 256
+ t = int((t&0xffffff) ^ (t>>24))
+ t, x = divmod(t, 256)
+ t, y = divmod(t, 256)
+ t, z = divmod(t, 256)
+ # Zero is a poor seed, so substitute 1
+ self._seed = (x or 1, y or 1, z or 1)
+
+ def seed(self, a=None):
+ """Seed from hashable value
+
+ None or no argument seeds from current time.
+ """
+
+ if a is None:
+ self.__whseed()
+ a = hash(a)
+ a, x = divmod(a, 256)
+ a, y = divmod(a, 256)
+ a, z = divmod(a, 256)
+ x = (x + a) % 256 or 1
+ y = (y + a) % 256 or 1
+ z = (z + a) % 256 or 1
+ self.__whseed(x, y, z)
+
+ def getstate(self):
+ """Return internal state; can be passed to setstate() later."""
+
+ return self.VERSION, self._seed, self.gauss_next
+
+ def __getstate__(self): # for pickle
+ self.getstate()
+
+ def setstate(self, state):
+ """Restore internal state from object returned by getstate()."""
+ version = state[0]
+ if version == 1:
+ version, self._seed, self.gauss_next = state
+ else:
+ raise ValueError("state with version %s passed to "
+ "Random.setstate() of version %s" %
+ (version, self.VERSION))
+
+ def __setstate__(self, state): # for pickle
+ self.setstate(state)
+
+ def random(self):
+ """Get the next random number in the range [0.0, 1.0)."""
+
+ # Wichman-Hill random number generator.
+ #
+ # Wichmann, B. A. & Hill, I. D. (1982)
+ # Algorithm AS 183:
+ # An efficient and portable pseudo-random number generator
+ # Applied Statistics 31 (1982) 188-190
+ #
+ # see also:
+ # Correction to Algorithm AS 183
+ # Applied Statistics 33 (1984) 123
+ #
+ # McLeod, A. I. (1985)
+ # A remark on Algorithm AS 183
+ # Applied Statistics 34 (1985),198-200
+
+ # This part is thread-unsafe:
+ # BEGIN CRITICAL SECTION
+ x, y, z = self._seed
+ x = (171 * x) % 30269
+ y = (172 * y) % 30307
+ z = (170 * z) % 30323
+ self._seed = x, y, z
+ # END CRITICAL SECTION
+
+ # Note: on a platform using IEEE-754 double arithmetic, this can
+ # never return 0.0 (asserted by Tim; proof too long for a comment).
+ return (x/30269.0 + y/30307.0 + z/30323.0) % 1.0
+
+ def randrange(self, start, stop=None, step=1, int=int, default=None):
+ """Choose a random item from range(start, stop[, step]).
+
+ This fixes the problem with randint() which includes the
+ endpoint; in Python this is usually not what you want.
+ Do not supply the 'int' and 'default' arguments.
+ """
+
+ # This code is a bit messy to make it fast for the
+ # common case while still doing adequate error checking
+ istart = int(start)
+ if istart != start:
+ raise ValueError, "non-integer arg 1 for randrange()"
+ if stop is default:
+ if istart > 0:
+ return int(self.random() * istart)
+ raise ValueError, "empty range for randrange()"
+ istop = int(stop)
+ if istop != stop:
+ raise ValueError, "non-integer stop for randrange()"
+ if step == 1:
+ if istart < istop:
+ return istart + int(self.random() *
+ (istop - istart))
+ raise ValueError, "empty range for randrange()"
+ istep = int(step)
+ if istep != step:
+ raise ValueError, "non-integer step for randrange()"
+ if istep > 0:
+ n = (istop - istart + istep - 1) / istep
+ elif istep < 0:
+ n = (istop - istart + istep + 1) / istep
+ else:
+ raise ValueError, "zero step for randrange()"
+
+ if n <= 0:
+ raise ValueError, "empty range for randrange()"
+ return istart + istep*int(self.random() * n)
+
+ def randint(self, a, b):
+ """Get a random integer in the range [a, b] including
+ both end points.
+
+ (Deprecated; use randrange below.)
+ """
+
+ return self.randrange(a, b+1)
+
+ def choice(self, seq):
+ """Choose a random element from a non-empty sequence."""
+ return seq[int(self.random() * len(seq))]
+
+ def shuffle(self, x, random=None, int=int):
+ """x, random=random.random -> shuffle list x in place; return None.
+
+ Optional arg random is a 0-argument function returning a random
+ float in [0.0, 1.0); by default, the standard random.random.
+
+ Note that for even rather small len(x), the total number of
+ permutations of x is larger than the period of most random number
+ generators; this implies that "most" permutations of a long
+ sequence can never be generated.
+ """
+
+ if random is None:
+ random = self.random
+ for i in xrange(len(x)-1, 0, -1):
+ # pick an element in x[:i+1] with which to exchange x[i]
+ j = int(random() * (i+1))
+ x[i], x[j] = x[j], x[i]
+
+# -------------------- uniform distribution -------------------
+
+ def uniform(self, a, b):
+ """Get a random number in the range [a, b)."""
+ return a + (b-a) * self.random()
# -------------------- normal distribution --------------------
-NV_MAGICCONST = 4*exp(-0.5)/sqrt(2.0)
-verify('NV_MAGICCONST', 1.71552776992141)
-def normalvariate(mu, sigma):
- # mu = mean, sigma = standard deviation
-
- # Uses Kinderman and Monahan method. Reference: Kinderman,
- # A.J. and Monahan, J.F., "Computer generation of random
- # variables using the ratio of uniform deviates", ACM Trans
- # Math Software, 3, (1977), pp257-260.
-
- while 1:
- u1 = random()
- u2 = random()
- z = NV_MAGICCONST*(u1-0.5)/u2
- zz = z*z/4.0
- if zz <= -log(u2):
- break
- return mu+z*sigma
+ def normalvariate(self, mu, sigma):
+ # mu = mean, sigma = standard deviation
+
+ # Uses Kinderman and Monahan method. Reference: Kinderman,
+ # A.J. and Monahan, J.F., "Computer generation of random
+ # variables using the ratio of uniform deviates", ACM Trans
+ # Math Software, 3, (1977), pp257-260.
+
+ random = self.random
+ while 1:
+ u1 = random()
+ u2 = random()
+ z = NV_MAGICCONST*(u1-0.5)/u2
+ zz = z*z/4.0
+ if zz <= -_log(u2):
+ break
+ return mu + z*sigma
# -------------------- lognormal distribution --------------------
-def lognormvariate(mu, sigma):
- return exp(normalvariate(mu, sigma))
+ def lognormvariate(self, mu, sigma):
+ return _exp(self.normalvariate(mu, sigma))
# -------------------- circular uniform --------------------
-def cunifvariate(mean, arc):
- # mean: mean angle (in radians between 0 and pi)
- # arc: range of distribution (in radians between 0 and pi)
+ def cunifvariate(self, mean, arc):
+ # mean: mean angle (in radians between 0 and pi)
+ # arc: range of distribution (in radians between 0 and pi)
- return (mean + arc * (random() - 0.5)) % pi
+ return (mean + arc * (self.random() - 0.5)) % _pi
# -------------------- exponential distribution --------------------
-def expovariate(lambd):
- # lambd: rate lambd = 1/mean
- # ('lambda' is a Python reserved word)
+ def expovariate(self, lambd):
+ # lambd: rate lambd = 1/mean
+ # ('lambda' is a Python reserved word)
- u = random()
- while u <= 1e-7:
+ random = self.random
u = random()
- return -log(u)/lambd
+ while u <= 1e-7:
+ u = random()
+ return -_log(u)/lambd
# -------------------- von Mises distribution --------------------
-TWOPI = 2.0*pi
-verify('TWOPI', 6.28318530718)
-
-def vonmisesvariate(mu, kappa):
- # mu: mean angle (in radians between 0 and 2*pi)
- # kappa: concentration parameter kappa (>= 0)
- # if kappa = 0 generate uniform random angle
+ def vonmisesvariate(self, mu, kappa):
+ # mu: mean angle (in radians between 0 and 2*pi)
+ # kappa: concentration parameter kappa (>= 0)
+ # if kappa = 0 generate uniform random angle
- # Based upon an algorithm published in: Fisher, N.I.,
- # "Statistical Analysis of Circular Data", Cambridge
- # University Press, 1993.
+ # Based upon an algorithm published in: Fisher, N.I.,
+ # "Statistical Analysis of Circular Data", Cambridge
+ # University Press, 1993.
- # Thanks to Magnus Kessler for a correction to the
- # implementation of step 4.
+ # Thanks to Magnus Kessler for a correction to the
+ # implementation of step 4.
- if kappa <= 1e-6:
- return TWOPI * random()
+ random = self.random
+ if kappa <= 1e-6:
+ return TWOPI * random()
- a = 1.0 + sqrt(1.0 + 4.0 * kappa * kappa)
- b = (a - sqrt(2.0 * a))/(2.0 * kappa)
- r = (1.0 + b * b)/(2.0 * b)
+ a = 1.0 + _sqrt(1.0 + 4.0 * kappa * kappa)
+ b = (a - _sqrt(2.0 * a))/(2.0 * kappa)
+ r = (1.0 + b * b)/(2.0 * b)
- while 1:
- u1 = random()
+ while 1:
+ u1 = random()
- z = cos(pi * u1)
- f = (1.0 + r * z)/(r + z)
- c = kappa * (r - f)
+ z = _cos(_pi * u1)
+ f = (1.0 + r * z)/(r + z)
+ c = kappa * (r - f)
- u2 = random()
+ u2 = random()
- if not (u2 >= c * (2.0 - c) and u2 > c * exp(1.0 - c)):
- break
+ if not (u2 >= c * (2.0 - c) and u2 > c * _exp(1.0 - c)):
+ break
- u3 = random()
- if u3 > 0.5:
- theta = (mu % TWOPI) + acos(f)
- else:
- theta = (mu % TWOPI) - acos(f)
+ u3 = random()
+ if u3 > 0.5:
+ theta = (mu % TWOPI) + _acos(f)
+ else:
+ theta = (mu % TWOPI) - _acos(f)
- return theta
+ return theta
# -------------------- gamma distribution --------------------
-LOG4 = log(4.0)
-verify('LOG4', 1.38629436111989)
-
-def gammavariate(alpha, beta):
- # beta times standard gamma
- ainv = sqrt(2.0 * alpha - 1.0)
- return beta * stdgamma(alpha, ainv, alpha - LOG4, alpha + ainv)
-
-SG_MAGICCONST = 1.0 + log(4.5)
-verify('SG_MAGICCONST', 2.50407739677627)
-
-def stdgamma(alpha, ainv, bbb, ccc):
- # ainv = sqrt(2 * alpha - 1)
- # bbb = alpha - log(4)
- # ccc = alpha + ainv
-
- if alpha <= 0.0:
- raise ValueError, 'stdgamma: alpha must be > 0.0'
-
- if alpha > 1.0:
-
- # Uses R.C.H. Cheng, "The generation of Gamma
- # variables with non-integral shape parameters",
- # Applied Statistics, (1977), 26, No. 1, p71-74
-
- while 1:
- u1 = random()
- u2 = random()
- v = log(u1/(1.0-u1))/ainv
- x = alpha*exp(v)
- z = u1*u1*u2
- r = bbb+ccc*v-x
- if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= log(z):
- return x
-
- elif alpha == 1.0:
- # expovariate(1)
- u = random()
- while u <= 1e-7:
+ def gammavariate(self, alpha, beta):
+ # beta times standard gamma
+ ainv = _sqrt(2.0 * alpha - 1.0)
+ return beta * self.stdgamma(alpha, ainv, alpha - LOG4, alpha + ainv)
+
+ def stdgamma(self, alpha, ainv, bbb, ccc):
+ # ainv = sqrt(2 * alpha - 1)
+ # bbb = alpha - log(4)
+ # ccc = alpha + ainv
+
+ random = self.random
+ if alpha <= 0.0:
+ raise ValueError, 'stdgamma: alpha must be > 0.0'
+
+ if alpha > 1.0:
+
+ # Uses R.C.H. Cheng, "The generation of Gamma
+ # variables with non-integral shape parameters",
+ # Applied Statistics, (1977), 26, No. 1, p71-74
+
+ while 1:
+ u1 = random()
+ u2 = random()
+ v = _log(u1/(1.0-u1))/ainv
+ x = alpha*_exp(v)
+ z = u1*u1*u2
+ r = bbb+ccc*v-x
+ if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= _log(z):
+ return x
+
+ elif alpha == 1.0:
+ # expovariate(1)
u = random()
- return -log(u)
-
- else: # alpha is between 0 and 1 (exclusive)
-
- # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
-
- while 1:
- u = random()
- b = (e + alpha)/e
- p = b*u
- if p <= 1.0:
- x = pow(p, 1.0/alpha)
- else:
- # p > 1
- x = -log((b-p)/alpha)
- u1 = random()
- if not (((p <= 1.0) and (u1 > exp(-x))) or
- ((p > 1) and (u1 > pow(x, alpha - 1.0)))):
- break
- return x
+ while u <= 1e-7:
+ u = random()
+ return -_log(u)
+
+ else: # alpha is between 0 and 1 (exclusive)
+
+ # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
+
+ while 1:
+ u = random()
+ b = (_e + alpha)/_e
+ p = b*u
+ if p <= 1.0:
+ x = pow(p, 1.0/alpha)
+ else:
+ # p > 1
+ x = -_log((b-p)/alpha)
+ u1 = random()
+ if not (((p <= 1.0) and (u1 > _exp(-x))) or
+ ((p > 1) and (u1 > pow(x, alpha - 1.0)))):
+ break
+ return x
# -------------------- Gauss (faster alternative) --------------------
-gauss_next = None
-def gauss(mu, sigma):
-
- # When x and y are two variables from [0, 1), uniformly
- # distributed, then
- #
- # cos(2*pi*x)*sqrt(-2*log(1-y))
- # sin(2*pi*x)*sqrt(-2*log(1-y))
- #
- # are two *independent* variables with normal distribution
- # (mu = 0, sigma = 1).
- # (Lambert Meertens)
- # (corrected version; bug discovered by Mike Miller, fixed by LM)
-
- # Multithreading note: When two threads call this function
- # simultaneously, it is possible that they will receive the
- # same return value. The window is very small though. To
- # avoid this, you have to use a lock around all calls. (I
- # didn't want to slow this down in the serial case by using a
- # lock here.)
-
- global gauss_next
-
- z = gauss_next
- gauss_next = None
- if z is None:
- x2pi = random() * TWOPI
- g2rad = sqrt(-2.0 * log(1.0 - random()))
- z = cos(x2pi) * g2rad
- gauss_next = sin(x2pi) * g2rad
-
- return mu + z*sigma
+ def gauss(self, mu, sigma):
+
+ # When x and y are two variables from [0, 1), uniformly
+ # distributed, then
+ #
+ # cos(2*pi*x)*sqrt(-2*log(1-y))
+ # sin(2*pi*x)*sqrt(-2*log(1-y))
+ #
+ # are two *independent* variables with normal distribution
+ # (mu = 0, sigma = 1).
+ # (Lambert Meertens)
+ # (corrected version; bug discovered by Mike Miller, fixed by LM)
+
+ # Multithreading note: When two threads call this function
+ # simultaneously, it is possible that they will receive the
+ # same return value. The window is very small though. To
+ # avoid this, you have to use a lock around all calls. (I
+ # didn't want to slow this down in the serial case by using a
+ # lock here.)
+
+ random = self.random
+ z = self.gauss_next
+ self.gauss_next = None
+ if z is None:
+ x2pi = random() * TWOPI
+ g2rad = _sqrt(-2.0 * _log(1.0 - random()))
+ z = _cos(x2pi) * g2rad
+ self.gauss_next = _sin(x2pi) * g2rad
+
+ return mu + z*sigma
# -------------------- beta --------------------
-def betavariate(alpha, beta):
+ def betavariate(self, alpha, beta):
- # Discrete Event Simulation in C, pp 87-88.
+ # Discrete Event Simulation in C, pp 87-88.
- y = expovariate(alpha)
- z = expovariate(1.0/beta)
- return z/(y+z)
+ y = self.expovariate(alpha)
+ z = self.expovariate(1.0/beta)
+ return z/(y+z)
# -------------------- Pareto --------------------
-def paretovariate(alpha):
- # Jain, pg. 495
+ def paretovariate(self, alpha):
+ # Jain, pg. 495
- u = random()
- return 1.0 / pow(u, 1.0/alpha)
+ u = self.random()
+ return 1.0 / pow(u, 1.0/alpha)
# -------------------- Weibull --------------------
-def weibullvariate(alpha, beta):
- # Jain, pg. 499; bug fix courtesy Bill Arms
+ def weibullvariate(self, alpha, beta):
+ # Jain, pg. 499; bug fix courtesy Bill Arms
- u = random()
- return alpha * pow(-log(u), 1.0/beta)
-
-# -------------------- shuffle --------------------
-# Not quite a random distribution, but a standard algorithm.
-# This implementation due to Tim Peters.
-
-def shuffle(x, random=random, int=int):
- """x, random=random.random -> shuffle list x in place; return None.
-
- Optional arg random is a 0-argument function returning a random
- float in [0.0, 1.0); by default, the standard random.random.
-
- Note that for even rather small len(x), the total number of
- permutations of x is larger than the period of most random number
- generators; this implies that "most" permutations of a long
- sequence can never be generated.
- """
-
- for i in xrange(len(x)-1, 0, -1):
- # pick an element in x[:i+1] with which to exchange x[i]
- j = int(random() * (i+1))
- x[i], x[j] = x[j], x[i]
+ u = self.random()
+ return alpha * pow(-_log(u), 1.0/beta)
# -------------------- test program --------------------
-def test(N = 200):
- print 'TWOPI =', TWOPI
- print 'LOG4 =', LOG4
- print 'NV_MAGICCONST =', NV_MAGICCONST
- print 'SG_MAGICCONST =', SG_MAGICCONST
- test_generator(N, 'random()')
- test_generator(N, 'normalvariate(0.0, 1.0)')
- test_generator(N, 'lognormvariate(0.0, 1.0)')
- test_generator(N, 'cunifvariate(0.0, 1.0)')
- test_generator(N, 'expovariate(1.0)')
- test_generator(N, 'vonmisesvariate(0.0, 1.0)')
- test_generator(N, 'gammavariate(0.5, 1.0)')
- test_generator(N, 'gammavariate(0.9, 1.0)')
- test_generator(N, 'gammavariate(1.0, 1.0)')
- test_generator(N, 'gammavariate(2.0, 1.0)')
- test_generator(N, 'gammavariate(20.0, 1.0)')
- test_generator(N, 'gammavariate(200.0, 1.0)')
- test_generator(N, 'gauss(0.0, 1.0)')
- test_generator(N, 'betavariate(3.0, 3.0)')
- test_generator(N, 'paretovariate(1.0)')
- test_generator(N, 'weibullvariate(1.0, 1.0)')
-
-def test_generator(n, funccall):
+def _test_generator(n, funccall):
import time
print n, 'times', funccall
code = compile(funccall, funccall, 'eval')
@@ -356,9 +467,54 @@ def test_generator(n, funccall):
t1 = time.time()
print round(t1-t0, 3), 'sec,',
avg = sum/n
- stddev = sqrt(sqsum/n - avg*avg)
+ stddev = _sqrt(sqsum/n - avg*avg)
print 'avg %g, stddev %g, min %g, max %g' % \
(avg, stddev, smallest, largest)
+def _test(N=200):
+ print 'TWOPI =', TWOPI
+ print 'LOG4 =', LOG4
+ print 'NV_MAGICCONST =', NV_MAGICCONST
+ print 'SG_MAGICCONST =', SG_MAGICCONST
+ _test_generator(N, 'random()')
+ _test_generator(N, 'normalvariate(0.0, 1.0)')
+ _test_generator(N, 'lognormvariate(0.0, 1.0)')
+ _test_generator(N, 'cunifvariate(0.0, 1.0)')
+ _test_generator(N, 'expovariate(1.0)')
+ _test_generator(N, 'vonmisesvariate(0.0, 1.0)')
+ _test_generator(N, 'gammavariate(0.5, 1.0)')
+ _test_generator(N, 'gammavariate(0.9, 1.0)')
+ _test_generator(N, 'gammavariate(1.0, 1.0)')
+ _test_generator(N, 'gammavariate(2.0, 1.0)')
+ _test_generator(N, 'gammavariate(20.0, 1.0)')
+ _test_generator(N, 'gammavariate(200.0, 1.0)')
+ _test_generator(N, 'gauss(0.0, 1.0)')
+ _test_generator(N, 'betavariate(3.0, 3.0)')
+ _test_generator(N, 'paretovariate(1.0)')
+ _test_generator(N, 'weibullvariate(1.0, 1.0)')
+
+# Initialize from current time.
+_inst = Random()
+seed = _inst.seed
+random = _inst.random
+uniform = _inst.uniform
+randint = _inst.randint
+choice = _inst.choice
+randrange = _inst.randrange
+shuffle = _inst.shuffle
+normalvariate = _inst.normalvariate
+lognormvariate = _inst.lognormvariate
+cunifvariate = _inst.cunifvariate
+expovariate = _inst.expovariate
+vonmisesvariate = _inst.vonmisesvariate
+gammavariate = _inst.gammavariate
+stdgamma = _inst.stdgamma
+gauss = _inst.gauss
+betavariate = _inst.betavariate
+paretovariate = _inst.paretovariate
+weibullvariate = _inst.weibullvariate
+getstate = _inst.getstate
+setstate = _inst.setstate
+
if __name__ == '__main__':
- test()
+ _test()