diff options
author | Tim Peters <tim.peters@gmail.com> | 2001-01-15 01:18:21 (GMT) |
---|---|---|
committer | Tim Peters <tim.peters@gmail.com> | 2001-01-15 01:18:21 (GMT) |
commit | 0c9886d589ddebf32de0ca3f027a173222ed383a (patch) | |
tree | 8d18864b0026ee37a1e917bbb0ff93a1bebda309 /Lib/random.py | |
parent | 2344fae6d003f5a5dde8016e1d2310e161288708 (diff) | |
download | cpython-0c9886d589ddebf32de0ca3f027a173222ed383a.zip cpython-0c9886d589ddebf32de0ca3f027a173222ed383a.tar.gz cpython-0c9886d589ddebf32de0ca3f027a173222ed383a.tar.bz2 |
Whitespace normalization.
Diffstat (limited to 'Lib/random.py')
-rw-r--r-- | Lib/random.py | 438 |
1 files changed, 219 insertions, 219 deletions
diff --git a/Lib/random.py b/Lib/random.py index ef755a5..d10ce78 100644 --- a/Lib/random.py +++ b/Lib/random.py @@ -28,101 +28,101 @@ from math import log, exp, pi, e, sqrt, acos, cos, sin # XXX TO DO: make the distribution functions below into methods. def makeseed(a=None): - """Turn a hashable value into three seed values for whrandom.seed(). - - None or no argument returns (0, 0, 0), to seed from current time. - - """ - if a is None: - return (0, 0, 0) - a = hash(a) - a, x = divmod(a, 256) - a, y = divmod(a, 256) - a, z = divmod(a, 256) - x = (x + a) % 256 or 1 - y = (y + a) % 256 or 1 - z = (z + a) % 256 or 1 - return (x, y, z) + """Turn a hashable value into three seed values for whrandom.seed(). + + None or no argument returns (0, 0, 0), to seed from current time. + + """ + if a is None: + return (0, 0, 0) + a = hash(a) + a, x = divmod(a, 256) + a, y = divmod(a, 256) + a, z = divmod(a, 256) + x = (x + a) % 256 or 1 + y = (y + a) % 256 or 1 + z = (z + a) % 256 or 1 + return (x, y, z) def seed(a=None): - """Seed the default generator from any hashable value. + """Seed the default generator from any hashable value. - None or no argument seeds from current time. + None or no argument seeds from current time. - """ - x, y, z = makeseed(a) - whrandom.seed(x, y, z) + """ + x, y, z = makeseed(a) + whrandom.seed(x, y, z) class generator(whrandom.whrandom): - """Random generator class.""" + """Random generator class.""" - def __init__(self, a=None): - """Constructor. Seed from current time or hashable value.""" - self.seed(a) + def __init__(self, a=None): + """Constructor. Seed from current time or hashable value.""" + self.seed(a) - def seed(self, a=None): - """Seed the generator from current time or hashable value.""" - x, y, z = makeseed(a) - whrandom.whrandom.seed(self, x, y, z) + def seed(self, a=None): + """Seed the generator from current time or hashable value.""" + x, y, z = makeseed(a) + whrandom.whrandom.seed(self, x, y, z) def new_generator(a=None): - """Return a new random generator instance.""" - return generator(a) + """Return a new random generator instance.""" + return generator(a) # Housekeeping function to verify that magic constants have been # computed correctly def verify(name, expected): - computed = eval(name) - if abs(computed - expected) > 1e-7: - raise ValueError, \ - 'computed value for %s deviates too much (computed %g, expected %g)' % \ - (name, computed, expected) + computed = eval(name) + if abs(computed - expected) > 1e-7: + raise ValueError, \ +'computed value for %s deviates too much (computed %g, expected %g)' % \ +(name, computed, expected) # -------------------- normal distribution -------------------- NV_MAGICCONST = 4*exp(-0.5)/sqrt(2.0) verify('NV_MAGICCONST', 1.71552776992141) def normalvariate(mu, sigma): - # mu = mean, sigma = standard deviation - - # Uses Kinderman and Monahan method. Reference: Kinderman, - # A.J. and Monahan, J.F., "Computer generation of random - # variables using the ratio of uniform deviates", ACM Trans - # Math Software, 3, (1977), pp257-260. - - while 1: - u1 = random() - u2 = random() - z = NV_MAGICCONST*(u1-0.5)/u2 - zz = z*z/4.0 - if zz <= -log(u2): - break - return mu+z*sigma + # mu = mean, sigma = standard deviation + + # Uses Kinderman and Monahan method. Reference: Kinderman, + # A.J. and Monahan, J.F., "Computer generation of random + # variables using the ratio of uniform deviates", ACM Trans + # Math Software, 3, (1977), pp257-260. + + while 1: + u1 = random() + u2 = random() + z = NV_MAGICCONST*(u1-0.5)/u2 + zz = z*z/4.0 + if zz <= -log(u2): + break + return mu+z*sigma # -------------------- lognormal distribution -------------------- def lognormvariate(mu, sigma): - return exp(normalvariate(mu, sigma)) + return exp(normalvariate(mu, sigma)) # -------------------- circular uniform -------------------- def cunifvariate(mean, arc): - # mean: mean angle (in radians between 0 and pi) - # arc: range of distribution (in radians between 0 and pi) + # mean: mean angle (in radians between 0 and pi) + # arc: range of distribution (in radians between 0 and pi) - return (mean + arc * (random() - 0.5)) % pi + return (mean + arc * (random() - 0.5)) % pi # -------------------- exponential distribution -------------------- def expovariate(lambd): - # lambd: rate lambd = 1/mean - # ('lambda' is a Python reserved word) + # lambd: rate lambd = 1/mean + # ('lambda' is a Python reserved word) - u = random() - while u <= 1e-7: - u = random() - return -log(u)/lambd + u = random() + while u <= 1e-7: + u = random() + return -log(u)/lambd # -------------------- von Mises distribution -------------------- @@ -130,43 +130,43 @@ TWOPI = 2.0*pi verify('TWOPI', 6.28318530718) def vonmisesvariate(mu, kappa): - # mu: mean angle (in radians between 0 and 2*pi) - # kappa: concentration parameter kappa (>= 0) - # if kappa = 0 generate uniform random angle + # mu: mean angle (in radians between 0 and 2*pi) + # kappa: concentration parameter kappa (>= 0) + # if kappa = 0 generate uniform random angle - # Based upon an algorithm published in: Fisher, N.I., - # "Statistical Analysis of Circular Data", Cambridge - # University Press, 1993. + # Based upon an algorithm published in: Fisher, N.I., + # "Statistical Analysis of Circular Data", Cambridge + # University Press, 1993. - # Thanks to Magnus Kessler for a correction to the - # implementation of step 4. + # Thanks to Magnus Kessler for a correction to the + # implementation of step 4. - if kappa <= 1e-6: - return TWOPI * random() + if kappa <= 1e-6: + return TWOPI * random() - a = 1.0 + sqrt(1.0 + 4.0 * kappa * kappa) - b = (a - sqrt(2.0 * a))/(2.0 * kappa) - r = (1.0 + b * b)/(2.0 * b) + a = 1.0 + sqrt(1.0 + 4.0 * kappa * kappa) + b = (a - sqrt(2.0 * a))/(2.0 * kappa) + r = (1.0 + b * b)/(2.0 * b) - while 1: - u1 = random() + while 1: + u1 = random() - z = cos(pi * u1) - f = (1.0 + r * z)/(r + z) - c = kappa * (r - f) + z = cos(pi * u1) + f = (1.0 + r * z)/(r + z) + c = kappa * (r - f) - u2 = random() + u2 = random() - if not (u2 >= c * (2.0 - c) and u2 > c * exp(1.0 - c)): - break + if not (u2 >= c * (2.0 - c) and u2 > c * exp(1.0 - c)): + break - u3 = random() - if u3 > 0.5: - theta = (mu % TWOPI) + acos(f) - else: - theta = (mu % TWOPI) - acos(f) + u3 = random() + if u3 > 0.5: + theta = (mu % TWOPI) + acos(f) + else: + theta = (mu % TWOPI) - acos(f) - return theta + return theta # -------------------- gamma distribution -------------------- @@ -174,62 +174,62 @@ LOG4 = log(4.0) verify('LOG4', 1.38629436111989) def gammavariate(alpha, beta): - # beta times standard gamma - ainv = sqrt(2.0 * alpha - 1.0) - return beta * stdgamma(alpha, ainv, alpha - LOG4, alpha + ainv) + # beta times standard gamma + ainv = sqrt(2.0 * alpha - 1.0) + return beta * stdgamma(alpha, ainv, alpha - LOG4, alpha + ainv) SG_MAGICCONST = 1.0 + log(4.5) verify('SG_MAGICCONST', 2.50407739677627) def stdgamma(alpha, ainv, bbb, ccc): - # ainv = sqrt(2 * alpha - 1) - # bbb = alpha - log(4) - # ccc = alpha + ainv - - if alpha <= 0.0: - raise ValueError, 'stdgamma: alpha must be > 0.0' - - if alpha > 1.0: - - # Uses R.C.H. Cheng, "The generation of Gamma - # variables with non-integral shape parameters", - # Applied Statistics, (1977), 26, No. 1, p71-74 - - while 1: - u1 = random() - u2 = random() - v = log(u1/(1.0-u1))/ainv - x = alpha*exp(v) - z = u1*u1*u2 - r = bbb+ccc*v-x - if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= log(z): - return x - - elif alpha == 1.0: - # expovariate(1) - u = random() - while u <= 1e-7: - u = random() - return -log(u) - - else: # alpha is between 0 and 1 (exclusive) - - # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle - - while 1: - u = random() - b = (e + alpha)/e - p = b*u - if p <= 1.0: - x = pow(p, 1.0/alpha) - else: - # p > 1 - x = -log((b-p)/alpha) - u1 = random() - if not (((p <= 1.0) and (u1 > exp(-x))) or - ((p > 1) and (u1 > pow(x, alpha - 1.0)))): - break - return x + # ainv = sqrt(2 * alpha - 1) + # bbb = alpha - log(4) + # ccc = alpha + ainv + + if alpha <= 0.0: + raise ValueError, 'stdgamma: alpha must be > 0.0' + + if alpha > 1.0: + + # Uses R.C.H. Cheng, "The generation of Gamma + # variables with non-integral shape parameters", + # Applied Statistics, (1977), 26, No. 1, p71-74 + + while 1: + u1 = random() + u2 = random() + v = log(u1/(1.0-u1))/ainv + x = alpha*exp(v) + z = u1*u1*u2 + r = bbb+ccc*v-x + if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= log(z): + return x + + elif alpha == 1.0: + # expovariate(1) + u = random() + while u <= 1e-7: + u = random() + return -log(u) + + else: # alpha is between 0 and 1 (exclusive) + + # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle + + while 1: + u = random() + b = (e + alpha)/e + p = b*u + if p <= 1.0: + x = pow(p, 1.0/alpha) + else: + # p > 1 + x = -log((b-p)/alpha) + u1 = random() + if not (((p <= 1.0) and (u1 > exp(-x))) or + ((p > 1) and (u1 > pow(x, alpha - 1.0)))): + break + return x # -------------------- Gauss (faster alternative) -------------------- @@ -237,61 +237,61 @@ def stdgamma(alpha, ainv, bbb, ccc): gauss_next = None def gauss(mu, sigma): - # When x and y are two variables from [0, 1), uniformly - # distributed, then - # - # cos(2*pi*x)*sqrt(-2*log(1-y)) - # sin(2*pi*x)*sqrt(-2*log(1-y)) - # - # are two *independent* variables with normal distribution - # (mu = 0, sigma = 1). - # (Lambert Meertens) - # (corrected version; bug discovered by Mike Miller, fixed by LM) - - # Multithreading note: When two threads call this function - # simultaneously, it is possible that they will receive the - # same return value. The window is very small though. To - # avoid this, you have to use a lock around all calls. (I - # didn't want to slow this down in the serial case by using a - # lock here.) - - global gauss_next - - z = gauss_next - gauss_next = None - if z is None: - x2pi = random() * TWOPI - g2rad = sqrt(-2.0 * log(1.0 - random())) - z = cos(x2pi) * g2rad - gauss_next = sin(x2pi) * g2rad - - return mu + z*sigma + # When x and y are two variables from [0, 1), uniformly + # distributed, then + # + # cos(2*pi*x)*sqrt(-2*log(1-y)) + # sin(2*pi*x)*sqrt(-2*log(1-y)) + # + # are two *independent* variables with normal distribution + # (mu = 0, sigma = 1). + # (Lambert Meertens) + # (corrected version; bug discovered by Mike Miller, fixed by LM) + + # Multithreading note: When two threads call this function + # simultaneously, it is possible that they will receive the + # same return value. The window is very small though. To + # avoid this, you have to use a lock around all calls. (I + # didn't want to slow this down in the serial case by using a + # lock here.) + + global gauss_next + + z = gauss_next + gauss_next = None + if z is None: + x2pi = random() * TWOPI + g2rad = sqrt(-2.0 * log(1.0 - random())) + z = cos(x2pi) * g2rad + gauss_next = sin(x2pi) * g2rad + + return mu + z*sigma # -------------------- beta -------------------- def betavariate(alpha, beta): - # Discrete Event Simulation in C, pp 87-88. + # Discrete Event Simulation in C, pp 87-88. - y = expovariate(alpha) - z = expovariate(1.0/beta) - return z/(y+z) + y = expovariate(alpha) + z = expovariate(1.0/beta) + return z/(y+z) # -------------------- Pareto -------------------- def paretovariate(alpha): - # Jain, pg. 495 + # Jain, pg. 495 - u = random() - return 1.0 / pow(u, 1.0/alpha) + u = random() + return 1.0 / pow(u, 1.0/alpha) # -------------------- Weibull -------------------- def weibullvariate(alpha, beta): - # Jain, pg. 499; bug fix courtesy Bill Arms + # Jain, pg. 499; bug fix courtesy Bill Arms - u = random() - return alpha * pow(-log(u), 1.0/beta) + u = random() + return alpha * pow(-log(u), 1.0/beta) # -------------------- shuffle -------------------- # Not quite a random distribution, but a standard algorithm. @@ -310,55 +310,55 @@ def shuffle(x, random=random, int=int): """ for i in xrange(len(x)-1, 0, -1): - # pick an element in x[:i+1] with which to exchange x[i] + # pick an element in x[:i+1] with which to exchange x[i] j = int(random() * (i+1)) x[i], x[j] = x[j], x[i] # -------------------- test program -------------------- def test(N = 200): - print 'TWOPI =', TWOPI - print 'LOG4 =', LOG4 - print 'NV_MAGICCONST =', NV_MAGICCONST - print 'SG_MAGICCONST =', SG_MAGICCONST - test_generator(N, 'random()') - test_generator(N, 'normalvariate(0.0, 1.0)') - test_generator(N, 'lognormvariate(0.0, 1.0)') - test_generator(N, 'cunifvariate(0.0, 1.0)') - test_generator(N, 'expovariate(1.0)') - test_generator(N, 'vonmisesvariate(0.0, 1.0)') - test_generator(N, 'gammavariate(0.5, 1.0)') - test_generator(N, 'gammavariate(0.9, 1.0)') - test_generator(N, 'gammavariate(1.0, 1.0)') - test_generator(N, 'gammavariate(2.0, 1.0)') - test_generator(N, 'gammavariate(20.0, 1.0)') - test_generator(N, 'gammavariate(200.0, 1.0)') - test_generator(N, 'gauss(0.0, 1.0)') - test_generator(N, 'betavariate(3.0, 3.0)') - test_generator(N, 'paretovariate(1.0)') - test_generator(N, 'weibullvariate(1.0, 1.0)') + print 'TWOPI =', TWOPI + print 'LOG4 =', LOG4 + print 'NV_MAGICCONST =', NV_MAGICCONST + print 'SG_MAGICCONST =', SG_MAGICCONST + test_generator(N, 'random()') + test_generator(N, 'normalvariate(0.0, 1.0)') + test_generator(N, 'lognormvariate(0.0, 1.0)') + test_generator(N, 'cunifvariate(0.0, 1.0)') + test_generator(N, 'expovariate(1.0)') + test_generator(N, 'vonmisesvariate(0.0, 1.0)') + test_generator(N, 'gammavariate(0.5, 1.0)') + test_generator(N, 'gammavariate(0.9, 1.0)') + test_generator(N, 'gammavariate(1.0, 1.0)') + test_generator(N, 'gammavariate(2.0, 1.0)') + test_generator(N, 'gammavariate(20.0, 1.0)') + test_generator(N, 'gammavariate(200.0, 1.0)') + test_generator(N, 'gauss(0.0, 1.0)') + test_generator(N, 'betavariate(3.0, 3.0)') + test_generator(N, 'paretovariate(1.0)') + test_generator(N, 'weibullvariate(1.0, 1.0)') def test_generator(n, funccall): - import time - print n, 'times', funccall - code = compile(funccall, funccall, 'eval') - sum = 0.0 - sqsum = 0.0 - smallest = 1e10 - largest = -1e10 - t0 = time.time() - for i in range(n): - x = eval(code) - sum = sum + x - sqsum = sqsum + x*x - smallest = min(x, smallest) - largest = max(x, largest) - t1 = time.time() - print round(t1-t0, 3), 'sec,', - avg = sum/n - stddev = sqrt(sqsum/n - avg*avg) - print 'avg %g, stddev %g, min %g, max %g' % \ - (avg, stddev, smallest, largest) + import time + print n, 'times', funccall + code = compile(funccall, funccall, 'eval') + sum = 0.0 + sqsum = 0.0 + smallest = 1e10 + largest = -1e10 + t0 = time.time() + for i in range(n): + x = eval(code) + sum = sum + x + sqsum = sqsum + x*x + smallest = min(x, smallest) + largest = max(x, largest) + t1 = time.time() + print round(t1-t0, 3), 'sec,', + avg = sum/n + stddev = sqrt(sqsum/n - avg*avg) + print 'avg %g, stddev %g, min %g, max %g' % \ + (avg, stddev, smallest, largest) if __name__ == '__main__': - test() + test() |