diff options
author | Guido van Rossum <guido@python.org> | 1994-03-15 16:10:24 (GMT) |
---|---|---|
committer | Guido van Rossum <guido@python.org> | 1994-03-15 16:10:24 (GMT) |
commit | cc32ac9704128c799170e1cd7bdbfb3a90da43c1 (patch) | |
tree | fd47366ff7ce7c157d43170141fdbf6cd387d443 /Lib/random.py | |
parent | 95bfcda3e0be2ace895e021296328a383eafb273 (diff) | |
download | cpython-cc32ac9704128c799170e1cd7bdbfb3a90da43c1.zip cpython-cc32ac9704128c799170e1cd7bdbfb3a90da43c1.tar.gz cpython-cc32ac9704128c799170e1cd7bdbfb3a90da43c1.tar.bz2 |
Use float constants directly; cosmetic changes; initialize largest
correctly; allow test(N) to set number of calls in the tests.
Diffstat (limited to 'Lib/random.py')
-rw-r--r-- | Lib/random.py | 55 |
1 files changed, 33 insertions, 22 deletions
diff --git a/Lib/random.py b/Lib/random.py index 1fa1377..0d2f06b 100644 --- a/Lib/random.py +++ b/Lib/random.py @@ -30,7 +30,7 @@ def verify(name, expected): # -------------------- normal distribution -------------------- -NV_MAGICCONST = 4*exp(-0.5)/sqrt(2) +NV_MAGICCONST = 4*exp(-0.5)/sqrt(2.0) verify('NV_MAGICCONST', 1.71552776992141) def normalvariate(mu, sigma): # mu = mean, sigma = standard deviation @@ -44,7 +44,7 @@ def normalvariate(mu, sigma): u1 = random() u2 = random() z = NV_MAGICCONST*(u1-0.5)/u2 - zz = z*z/4 + zz = z*z/4.0 if zz <= -log(u2): break return mu+z*sigma @@ -75,7 +75,7 @@ def expovariate(lambd): # -------------------- von Mises distribution -------------------- -TWOPI = 2*pi +TWOPI = 2.0*pi verify('TWOPI', 6.28318530718) def vonmisesvariate(mu, kappa): @@ -86,15 +86,15 @@ def vonmisesvariate(mu, kappa): if kappa <= 1e-6: return TWOPI * random() - a = 1.0 + sqrt(1 + 4 * kappa * kappa) - b = (a - sqrt(2 * a))/(2 * kappa) - r = (1 + b * b)/(2 * b) + a = 1.0 + sqrt(1.0 + 4.0 * kappa * kappa) + b = (a - sqrt(2.0 * a))/(2.0 * kappa) + r = (1.0 + b * b)/(2.0 * b) while 1: u1 = random() z = cos(pi * u1) - f = (1 + r * z)/(r + z) + f = (1.0 + r * z)/(r + z) c = kappa * (r - f) u2 = random() @@ -112,15 +112,15 @@ def vonmisesvariate(mu, kappa): # -------------------- gamma distribution -------------------- -LOG4 = log(4) +LOG4 = log(4.0) verify('LOG4', 1.38629436111989) def gammavariate(alpha, beta): # beta times standard gamma - ainv = sqrt(2 * alpha - 1) + ainv = sqrt(2.0 * alpha - 1.0) return beta * stdgamma(alpha, ainv, alpha - LOG4, alpha + ainv) -SG_MAGICCONST = 1+log(4.5) +SG_MAGICCONST = 1.0 + log(4.5) verify('SG_MAGICCONST', 2.50407739677627) def stdgamma(alpha, ainv, bbb, ccc): @@ -140,11 +140,11 @@ def stdgamma(alpha, ainv, bbb, ccc): while 1: u1 = random() u2 = random() - v = log(u1/(1-u1))/ainv + v = log(u1/(1.0-u1))/ainv x = alpha*exp(v) z = u1*u1*u2 r = bbb+ccc*v-x - if r + SG_MAGICCONST - 4.5*z >= 0 or r >= log(z): + if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= log(z): return x elif alpha == 1.0: @@ -176,17 +176,21 @@ def stdgamma(alpha, ainv, bbb, ccc): # -------------------- Gauss (faster alternative) -------------------- -# When x and y are two variables from [0, 1), uniformly distributed, then -# -# cos(2*pi*x)*log(1-y) -# sin(2*pi*x)*log(1-y) -# -# are two *independent* variables with normal distribution (mu = 0, sigma = 1). -# (Lambert Meertens) - gauss_next = None def gauss(mu, sigma): + + # When x and y are two variables from [0, 1), uniformly + # distributed, then + # + # cos(2*pi*x)*log(1-y) + # sin(2*pi*x)*log(1-y) + # + # are two *independent* variables with normal distribution + # (mu = 0, sigma = 1). + # (Lambert Meertens) + global gauss_next + if gauss_next != None: z = gauss_next gauss_next = None @@ -195,23 +199,30 @@ def gauss(mu, sigma): log1_y = log(1.0 - random()) z = cos(x2pi) * log1_y gauss_next = sin(x2pi) * log1_y + return mu + z*sigma # -------------------- beta -------------------- def betavariate(alpha, beta): + + # Discrete Event Simulation in C, pp 87-88. + y = expovariate(alpha) z = expovariate(1.0/beta) return z/(y+z) # -------------------- test program -------------------- -def test(): +def test(*args): print 'TWOPI =', TWOPI print 'LOG4 =', LOG4 print 'NV_MAGICCONST =', NV_MAGICCONST print 'SG_MAGICCONST =', SG_MAGICCONST N = 200 + if args: + if args[1:]: print 'Excess test() arguments ignored' + N = args[0] test_generator(N, 'random()') test_generator(N, 'normalvariate(0.0, 1.0)') test_generator(N, 'lognormvariate(0.0, 1.0)') @@ -234,7 +245,7 @@ def test_generator(n, funccall): sum = 0.0 sqsum = 0.0 smallest = 1e10 - largest = 1e-10 + largest = -1e10 t0 = time.time() for i in range(n): x = eval(code) |