diff options
author | Raymond Hettinger <rhettinger@users.noreply.github.com> | 2022-08-18 18:48:27 (GMT) |
---|---|---|
committer | GitHub <noreply@github.com> | 2022-08-18 18:48:27 (GMT) |
commit | 29c8f80760869018aa0d7b1d42ab737dc325cfa2 (patch) | |
tree | 400b4ceaa8e083a67ed2772c920174e2e304456f /Lib/statistics.py | |
parent | 91afe66707237558d808aeca4683d0822aa0511e (diff) | |
download | cpython-29c8f80760869018aa0d7b1d42ab737dc325cfa2.zip cpython-29c8f80760869018aa0d7b1d42ab737dc325cfa2.tar.gz cpython-29c8f80760869018aa0d7b1d42ab737dc325cfa2.tar.bz2 |
GH-95861: Add support for Spearman's rank correlation coefficient (GH-95863)
Diffstat (limited to 'Lib/statistics.py')
-rw-r--r-- | Lib/statistics.py | 69 |
1 files changed, 62 insertions, 7 deletions
diff --git a/Lib/statistics.py b/Lib/statistics.py index c78d645..a3f915c 100644 --- a/Lib/statistics.py +++ b/Lib/statistics.py @@ -134,11 +134,11 @@ import sys from fractions import Fraction from decimal import Decimal -from itertools import groupby, repeat +from itertools import count, groupby, repeat from bisect import bisect_left, bisect_right from math import hypot, sqrt, fabs, exp, erf, tau, log, fsum from functools import reduce -from operator import mul +from operator import mul, itemgetter from collections import Counter, namedtuple, defaultdict _SQRT2 = sqrt(2.0) @@ -355,6 +355,50 @@ def _fail_neg(values, errmsg='negative value'): raise StatisticsError(errmsg) yield x +def _rank(data, /, *, key=None, reverse=False, ties='average') -> list[float]: + """Rank order a dataset. The lowest value has rank 1. + + Ties are averaged so that equal values receive the same rank: + + >>> data = [31, 56, 31, 25, 75, 18] + >>> _rank(data) + [3.5, 5.0, 3.5, 2.0, 6.0, 1.0] + + The operation is idempotent: + + >>> _rank([3.5, 5.0, 3.5, 2.0, 6.0, 1.0]) + [3.5, 5.0, 3.5, 2.0, 6.0, 1.0] + + It is possible to rank the data in reverse order so that + the highest value has rank 1. Also, a key-function can + extract the field to be ranked: + + >>> goals = [('eagles', 45), ('bears', 48), ('lions', 44)] + >>> _rank(goals, key=itemgetter(1), reverse=True) + [2.0, 1.0, 3.0] + + """ + # If this function becomes public at some point, more thought + # needs to be given to the signature. A list of ints is + # plausible when ties is "min" or "max". When ties is "average", + # either list[float] or list[Fraction] is plausible. + + # Default handling of ties matches scipy.stats.mstats.spearmanr. + if ties != 'average': + raise ValueError(f'Unknown tie resolution method: {ties!r}') + if key is not None: + data = map(key, data) + val_pos = sorted(zip(data, count()), reverse=reverse) + i = 0 # To rank starting at 0 instead of 1, set i = -1. + result = [0] * len(val_pos) + for _, g in groupby(val_pos, key=itemgetter(0)): + group = list(g) + size = len(group) + rank = i + (size + 1) / 2 + for value, orig_pos in group: + result[orig_pos] = rank + i += size + return result def _integer_sqrt_of_frac_rto(n: int, m: int) -> int: """Square root of n/m, rounded to the nearest integer using round-to-odd.""" @@ -988,14 +1032,12 @@ def covariance(x, y, /): return sxy / (n - 1) -def correlation(x, y, /): +def correlation(x, y, /, *, method='linear'): """Pearson's correlation coefficient Return the Pearson's correlation coefficient for two inputs. Pearson's - correlation coefficient *r* takes values between -1 and +1. It measures the - strength and direction of the linear relationship, where +1 means very - strong, positive linear relationship, -1 very strong, negative linear - relationship, and 0 no linear relationship. + correlation coefficient *r* takes values between -1 and +1. It measures + the strength and direction of a linear relationship. >>> x = [1, 2, 3, 4, 5, 6, 7, 8, 9] >>> y = [9, 8, 7, 6, 5, 4, 3, 2, 1] @@ -1004,12 +1046,25 @@ def correlation(x, y, /): >>> correlation(x, y) -1.0 + If *method* is "ranked", computes Spearman's rank correlation coefficient + for two inputs. The data is replaced by ranks. Ties are averaged + so that equal values receive the same rank. The resulting coefficient + measures the strength of a monotonic relationship. + + Spearman's rank correlation coefficient is appropriate for ordinal + data or for continuous data that doesn't meet the linear proportion + requirement for Pearson's correlation coefficient. """ n = len(x) if len(y) != n: raise StatisticsError('correlation requires that both inputs have same number of data points') if n < 2: raise StatisticsError('correlation requires at least two data points') + if method not in {'linear', 'ranked'}: + raise ValueError(f'Unknown method: {method!r}') + if method == 'ranked': + x = _rank(x) + y = _rank(y) xbar = fsum(x) / n ybar = fsum(y) / n sxy = fsum((xi - xbar) * (yi - ybar) for xi, yi in zip(x, y)) |