summaryrefslogtreecommitdiffstats
path: root/Lib/statistics.py
diff options
context:
space:
mode:
authorSteven D'Aprano <steve@pearwood.info>2016-10-04 16:24:45 (GMT)
committerSteven D'Aprano <steve@pearwood.info>2016-10-04 16:24:45 (GMT)
commitfae2829c7a3bd3ac1b2e57c1bc3894ce459af0e1 (patch)
treedecbc228cd60d473ad5ea58ad24574c7e4588c4b /Lib/statistics.py
parentd3dbba41744dd223f9367882c9e2e65a0c56138e (diff)
downloadcpython-fae2829c7a3bd3ac1b2e57c1bc3894ce459af0e1.zip
cpython-fae2829c7a3bd3ac1b2e57c1bc3894ce459af0e1.tar.gz
cpython-fae2829c7a3bd3ac1b2e57c1bc3894ce459af0e1.tar.bz2
Issue #27181 remove geometric_mean and defer for 3.7.
Diffstat (limited to 'Lib/statistics.py')
-rw-r--r--Lib/statistics.py269
1 files changed, 1 insertions, 268 deletions
diff --git a/Lib/statistics.py b/Lib/statistics.py
index 7d53e0c..30fe55c 100644
--- a/Lib/statistics.py
+++ b/Lib/statistics.py
@@ -11,7 +11,6 @@ Calculating averages
Function Description
================== =============================================
mean Arithmetic mean (average) of data.
-geometric_mean Geometric mean of data.
harmonic_mean Harmonic mean of data.
median Median (middle value) of data.
median_low Low median of data.
@@ -80,7 +79,7 @@ A single exception is defined: StatisticsError is a subclass of ValueError.
__all__ = [ 'StatisticsError',
'pstdev', 'pvariance', 'stdev', 'variance',
'median', 'median_low', 'median_high', 'median_grouped',
- 'mean', 'mode', 'geometric_mean', 'harmonic_mean',
+ 'mean', 'mode', 'harmonic_mean',
]
import collections
@@ -287,229 +286,6 @@ def _fail_neg(values, errmsg='negative value'):
yield x
-class _nroot_NS:
- """Hands off! Don't touch!
-
- Everything inside this namespace (class) is an even-more-private
- implementation detail of the private _nth_root function.
- """
- # This class exists only to be used as a namespace, for convenience
- # of being able to keep the related functions together, and to
- # collapse the group in an editor. If this were C# or C++, I would
- # use a Namespace, but the closest Python has is a class.
- #
- # FIXME possibly move this out into a separate module?
- # That feels like overkill, and may encourage people to treat it as
- # a public feature.
- def __init__(self):
- raise TypeError('namespace only, do not instantiate')
-
- def nth_root(x, n):
- """Return the positive nth root of numeric x.
-
- This may be more accurate than ** or pow():
-
- >>> math.pow(1000, 1.0/3) #doctest:+SKIP
- 9.999999999999998
-
- >>> _nth_root(1000, 3)
- 10.0
- >>> _nth_root(11**5, 5)
- 11.0
- >>> _nth_root(2, 12)
- 1.0594630943592953
-
- """
- if not isinstance(n, int):
- raise TypeError('degree n must be an int')
- if n < 2:
- raise ValueError('degree n must be 2 or more')
- if isinstance(x, decimal.Decimal):
- return _nroot_NS.decimal_nroot(x, n)
- elif isinstance(x, numbers.Real):
- return _nroot_NS.float_nroot(x, n)
- else:
- raise TypeError('expected a number, got %s') % type(x).__name__
-
- def float_nroot(x, n):
- """Handle nth root of Reals, treated as a float."""
- assert isinstance(n, int) and n > 1
- if x < 0:
- raise ValueError('domain error: root of negative number')
- elif x == 0:
- return math.copysign(0.0, x)
- elif x > 0:
- try:
- isinfinity = math.isinf(x)
- except OverflowError:
- return _nroot_NS.bignum_nroot(x, n)
- else:
- if isinfinity:
- return float('inf')
- else:
- return _nroot_NS.nroot(x, n)
- else:
- assert math.isnan(x)
- return float('nan')
-
- def nroot(x, n):
- """Calculate x**(1/n), then improve the answer."""
- # This uses math.pow() to calculate an initial guess for the root,
- # then uses the iterated nroot algorithm to improve it.
- #
- # By my testing, about 8% of the time the iterated algorithm ends
- # up converging to a result which is less accurate than the initial
- # guess. [FIXME: is this still true?] In that case, we use the
- # guess instead of the "improved" value. This way, we're never
- # less accurate than math.pow().
- r1 = math.pow(x, 1.0/n)
- eps1 = abs(r1**n - x)
- if eps1 == 0.0:
- # r1 is the exact root, so we're done. By my testing, this
- # occurs about 80% of the time for x < 1 and 30% of the
- # time for x > 1.
- return r1
- else:
- try:
- r2 = _nroot_NS.iterated_nroot(x, n, r1)
- except RuntimeError:
- return r1
- else:
- eps2 = abs(r2**n - x)
- if eps1 < eps2:
- return r1
- return r2
-
- def iterated_nroot(a, n, g):
- """Return the nth root of a, starting with guess g.
-
- This is a special case of Newton's Method.
- https://en.wikipedia.org/wiki/Nth_root_algorithm
- """
- np = n - 1
- def iterate(r):
- try:
- return (np*r + a/math.pow(r, np))/n
- except OverflowError:
- # If r is large enough, r**np may overflow. If that
- # happens, r**-np will be small, but not necessarily zero.
- return (np*r + a*math.pow(r, -np))/n
- # With a good guess, such as g = a**(1/n), this will converge in
- # only a few iterations. However a poor guess can take thousands
- # of iterations to converge, if at all. We guard against poor
- # guesses by setting an upper limit to the number of iterations.
- r1 = g
- r2 = iterate(g)
- for i in range(1000):
- if r1 == r2:
- break
- # Use Floyd's cycle-finding algorithm to avoid being trapped
- # in a cycle.
- # https://en.wikipedia.org/wiki/Cycle_detection#Tortoise_and_hare
- r1 = iterate(r1)
- r2 = iterate(iterate(r2))
- else:
- # If the guess is particularly bad, the above may fail to
- # converge in any reasonable time.
- raise RuntimeError('nth-root failed to converge')
- return r2
-
- def decimal_nroot(x, n):
- """Handle nth root of Decimals."""
- assert isinstance(x, decimal.Decimal)
- assert isinstance(n, int)
- if x.is_snan():
- # Signalling NANs always raise.
- raise decimal.InvalidOperation('nth-root of snan')
- if x.is_qnan():
- # Quiet NANs only raise if the context is set to raise,
- # otherwise return a NAN.
- ctx = decimal.getcontext()
- if ctx.traps[decimal.InvalidOperation]:
- raise decimal.InvalidOperation('nth-root of nan')
- else:
- # Preserve the input NAN.
- return x
- if x < 0:
- raise ValueError('domain error: root of negative number')
- if x.is_infinite():
- return x
- # FIXME this hasn't had the extensive testing of the float
- # version _iterated_nroot so there's possibly some buggy
- # corner cases buried in here. Can it overflow? Fail to
- # converge or get trapped in a cycle? Converge to a less
- # accurate root?
- np = n - 1
- def iterate(r):
- return (np*r + x/r**np)/n
- r0 = x**(decimal.Decimal(1)/n)
- assert isinstance(r0, decimal.Decimal)
- r1 = iterate(r0)
- while True:
- if r1 == r0:
- return r1
- r0, r1 = r1, iterate(r1)
-
- def bignum_nroot(x, n):
- """Return the nth root of a positive huge number."""
- assert x > 0
- # I state without proof that ⁿ√x ≈ ⁿ√2·ⁿ√(x//2)
- # and that for sufficiently big x the error is acceptable.
- # We now halve x until it is small enough to get the root.
- m = 0
- while True:
- x //= 2
- m += 1
- try:
- y = float(x)
- except OverflowError:
- continue
- break
- a = _nroot_NS.nroot(y, n)
- # At this point, we want the nth-root of 2**m, or 2**(m/n).
- # We can write that as 2**(q + r/n) = 2**q * ⁿ√2**r where q = m//n.
- q, r = divmod(m, n)
- b = 2**q * _nroot_NS.nroot(2**r, n)
- return a * b
-
-
-# This is the (private) function for calculating nth roots:
-_nth_root = _nroot_NS.nth_root
-assert type(_nth_root) is type(lambda: None)
-
-
-def _product(values):
- """Return product of values as (exponent, mantissa)."""
- errmsg = 'mixed Decimal and float is not supported'
- prod = 1
- for x in values:
- if isinstance(x, float):
- break
- prod *= x
- else:
- return (0, prod)
- if isinstance(prod, Decimal):
- raise TypeError(errmsg)
- # Since floats can overflow easily, we calculate the product as a
- # sort of poor-man's BigFloat. Given that:
- #
- # x = 2**p * m # p == power or exponent (scale), m = mantissa
- #
- # we can calculate the product of two (or more) x values as:
- #
- # x1*x2 = 2**p1*m1 * 2**p2*m2 = 2**(p1+p2)*(m1*m2)
- #
- mant, scale = 1, 0 #math.frexp(prod) # FIXME
- for y in chain([x], values):
- if isinstance(y, Decimal):
- raise TypeError(errmsg)
- m1, e1 = math.frexp(y)
- m2, e2 = math.frexp(mant)
- scale += (e1 + e2)
- mant = m1*m2
- return (scale, mant)
-
-
# === Measures of central tendency (averages) ===
def mean(data):
@@ -538,49 +314,6 @@ def mean(data):
return _convert(total/n, T)
-def geometric_mean(data):
- """Return the geometric mean of data.
-
- The geometric mean is appropriate when averaging quantities which
- are multiplied together rather than added, for example growth rates.
- Suppose an investment grows by 10% in the first year, falls by 5% in
- the second, then grows by 12% in the third, what is the average rate
- of growth over the three years?
-
- >>> geometric_mean([1.10, 0.95, 1.12])
- 1.0538483123382172
-
- giving an average growth of 5.385%. Using the arithmetic mean will
- give approximately 5.667%, which is too high.
-
- ``StatisticsError`` will be raised if ``data`` is empty, or any
- element is less than zero.
- """
- if iter(data) is data:
- data = list(data)
- errmsg = 'geometric mean does not support negative values'
- n = len(data)
- if n < 1:
- raise StatisticsError('geometric_mean requires at least one data point')
- elif n == 1:
- x = data[0]
- if isinstance(g, (numbers.Real, Decimal)):
- if x < 0:
- raise StatisticsError(errmsg)
- return x
- else:
- raise TypeError('unsupported type')
- else:
- scale, prod = _product(_fail_neg(data, errmsg))
- r = _nth_root(prod, n)
- if scale:
- p, q = divmod(scale, n)
- s = 2**p * _nth_root(2**q, n)
- else:
- s = 1
- return s*r
-
-
def harmonic_mean(data):
"""Return the harmonic mean of data.