diff options
author | Steven D'Aprano <steve@pearwood.info> | 2016-10-04 16:24:45 (GMT) |
---|---|---|
committer | Steven D'Aprano <steve@pearwood.info> | 2016-10-04 16:24:45 (GMT) |
commit | fae2829c7a3bd3ac1b2e57c1bc3894ce459af0e1 (patch) | |
tree | decbc228cd60d473ad5ea58ad24574c7e4588c4b /Lib/statistics.py | |
parent | d3dbba41744dd223f9367882c9e2e65a0c56138e (diff) | |
download | cpython-fae2829c7a3bd3ac1b2e57c1bc3894ce459af0e1.zip cpython-fae2829c7a3bd3ac1b2e57c1bc3894ce459af0e1.tar.gz cpython-fae2829c7a3bd3ac1b2e57c1bc3894ce459af0e1.tar.bz2 |
Issue #27181 remove geometric_mean and defer for 3.7.
Diffstat (limited to 'Lib/statistics.py')
-rw-r--r-- | Lib/statistics.py | 269 |
1 files changed, 1 insertions, 268 deletions
diff --git a/Lib/statistics.py b/Lib/statistics.py index 7d53e0c..30fe55c 100644 --- a/Lib/statistics.py +++ b/Lib/statistics.py @@ -11,7 +11,6 @@ Calculating averages Function Description ================== ============================================= mean Arithmetic mean (average) of data. -geometric_mean Geometric mean of data. harmonic_mean Harmonic mean of data. median Median (middle value) of data. median_low Low median of data. @@ -80,7 +79,7 @@ A single exception is defined: StatisticsError is a subclass of ValueError. __all__ = [ 'StatisticsError', 'pstdev', 'pvariance', 'stdev', 'variance', 'median', 'median_low', 'median_high', 'median_grouped', - 'mean', 'mode', 'geometric_mean', 'harmonic_mean', + 'mean', 'mode', 'harmonic_mean', ] import collections @@ -287,229 +286,6 @@ def _fail_neg(values, errmsg='negative value'): yield x -class _nroot_NS: - """Hands off! Don't touch! - - Everything inside this namespace (class) is an even-more-private - implementation detail of the private _nth_root function. - """ - # This class exists only to be used as a namespace, for convenience - # of being able to keep the related functions together, and to - # collapse the group in an editor. If this were C# or C++, I would - # use a Namespace, but the closest Python has is a class. - # - # FIXME possibly move this out into a separate module? - # That feels like overkill, and may encourage people to treat it as - # a public feature. - def __init__(self): - raise TypeError('namespace only, do not instantiate') - - def nth_root(x, n): - """Return the positive nth root of numeric x. - - This may be more accurate than ** or pow(): - - >>> math.pow(1000, 1.0/3) #doctest:+SKIP - 9.999999999999998 - - >>> _nth_root(1000, 3) - 10.0 - >>> _nth_root(11**5, 5) - 11.0 - >>> _nth_root(2, 12) - 1.0594630943592953 - - """ - if not isinstance(n, int): - raise TypeError('degree n must be an int') - if n < 2: - raise ValueError('degree n must be 2 or more') - if isinstance(x, decimal.Decimal): - return _nroot_NS.decimal_nroot(x, n) - elif isinstance(x, numbers.Real): - return _nroot_NS.float_nroot(x, n) - else: - raise TypeError('expected a number, got %s') % type(x).__name__ - - def float_nroot(x, n): - """Handle nth root of Reals, treated as a float.""" - assert isinstance(n, int) and n > 1 - if x < 0: - raise ValueError('domain error: root of negative number') - elif x == 0: - return math.copysign(0.0, x) - elif x > 0: - try: - isinfinity = math.isinf(x) - except OverflowError: - return _nroot_NS.bignum_nroot(x, n) - else: - if isinfinity: - return float('inf') - else: - return _nroot_NS.nroot(x, n) - else: - assert math.isnan(x) - return float('nan') - - def nroot(x, n): - """Calculate x**(1/n), then improve the answer.""" - # This uses math.pow() to calculate an initial guess for the root, - # then uses the iterated nroot algorithm to improve it. - # - # By my testing, about 8% of the time the iterated algorithm ends - # up converging to a result which is less accurate than the initial - # guess. [FIXME: is this still true?] In that case, we use the - # guess instead of the "improved" value. This way, we're never - # less accurate than math.pow(). - r1 = math.pow(x, 1.0/n) - eps1 = abs(r1**n - x) - if eps1 == 0.0: - # r1 is the exact root, so we're done. By my testing, this - # occurs about 80% of the time for x < 1 and 30% of the - # time for x > 1. - return r1 - else: - try: - r2 = _nroot_NS.iterated_nroot(x, n, r1) - except RuntimeError: - return r1 - else: - eps2 = abs(r2**n - x) - if eps1 < eps2: - return r1 - return r2 - - def iterated_nroot(a, n, g): - """Return the nth root of a, starting with guess g. - - This is a special case of Newton's Method. - https://en.wikipedia.org/wiki/Nth_root_algorithm - """ - np = n - 1 - def iterate(r): - try: - return (np*r + a/math.pow(r, np))/n - except OverflowError: - # If r is large enough, r**np may overflow. If that - # happens, r**-np will be small, but not necessarily zero. - return (np*r + a*math.pow(r, -np))/n - # With a good guess, such as g = a**(1/n), this will converge in - # only a few iterations. However a poor guess can take thousands - # of iterations to converge, if at all. We guard against poor - # guesses by setting an upper limit to the number of iterations. - r1 = g - r2 = iterate(g) - for i in range(1000): - if r1 == r2: - break - # Use Floyd's cycle-finding algorithm to avoid being trapped - # in a cycle. - # https://en.wikipedia.org/wiki/Cycle_detection#Tortoise_and_hare - r1 = iterate(r1) - r2 = iterate(iterate(r2)) - else: - # If the guess is particularly bad, the above may fail to - # converge in any reasonable time. - raise RuntimeError('nth-root failed to converge') - return r2 - - def decimal_nroot(x, n): - """Handle nth root of Decimals.""" - assert isinstance(x, decimal.Decimal) - assert isinstance(n, int) - if x.is_snan(): - # Signalling NANs always raise. - raise decimal.InvalidOperation('nth-root of snan') - if x.is_qnan(): - # Quiet NANs only raise if the context is set to raise, - # otherwise return a NAN. - ctx = decimal.getcontext() - if ctx.traps[decimal.InvalidOperation]: - raise decimal.InvalidOperation('nth-root of nan') - else: - # Preserve the input NAN. - return x - if x < 0: - raise ValueError('domain error: root of negative number') - if x.is_infinite(): - return x - # FIXME this hasn't had the extensive testing of the float - # version _iterated_nroot so there's possibly some buggy - # corner cases buried in here. Can it overflow? Fail to - # converge or get trapped in a cycle? Converge to a less - # accurate root? - np = n - 1 - def iterate(r): - return (np*r + x/r**np)/n - r0 = x**(decimal.Decimal(1)/n) - assert isinstance(r0, decimal.Decimal) - r1 = iterate(r0) - while True: - if r1 == r0: - return r1 - r0, r1 = r1, iterate(r1) - - def bignum_nroot(x, n): - """Return the nth root of a positive huge number.""" - assert x > 0 - # I state without proof that ⁿ√x ≈ ⁿ√2·ⁿ√(x//2) - # and that for sufficiently big x the error is acceptable. - # We now halve x until it is small enough to get the root. - m = 0 - while True: - x //= 2 - m += 1 - try: - y = float(x) - except OverflowError: - continue - break - a = _nroot_NS.nroot(y, n) - # At this point, we want the nth-root of 2**m, or 2**(m/n). - # We can write that as 2**(q + r/n) = 2**q * ⁿ√2**r where q = m//n. - q, r = divmod(m, n) - b = 2**q * _nroot_NS.nroot(2**r, n) - return a * b - - -# This is the (private) function for calculating nth roots: -_nth_root = _nroot_NS.nth_root -assert type(_nth_root) is type(lambda: None) - - -def _product(values): - """Return product of values as (exponent, mantissa).""" - errmsg = 'mixed Decimal and float is not supported' - prod = 1 - for x in values: - if isinstance(x, float): - break - prod *= x - else: - return (0, prod) - if isinstance(prod, Decimal): - raise TypeError(errmsg) - # Since floats can overflow easily, we calculate the product as a - # sort of poor-man's BigFloat. Given that: - # - # x = 2**p * m # p == power or exponent (scale), m = mantissa - # - # we can calculate the product of two (or more) x values as: - # - # x1*x2 = 2**p1*m1 * 2**p2*m2 = 2**(p1+p2)*(m1*m2) - # - mant, scale = 1, 0 #math.frexp(prod) # FIXME - for y in chain([x], values): - if isinstance(y, Decimal): - raise TypeError(errmsg) - m1, e1 = math.frexp(y) - m2, e2 = math.frexp(mant) - scale += (e1 + e2) - mant = m1*m2 - return (scale, mant) - - # === Measures of central tendency (averages) === def mean(data): @@ -538,49 +314,6 @@ def mean(data): return _convert(total/n, T) -def geometric_mean(data): - """Return the geometric mean of data. - - The geometric mean is appropriate when averaging quantities which - are multiplied together rather than added, for example growth rates. - Suppose an investment grows by 10% in the first year, falls by 5% in - the second, then grows by 12% in the third, what is the average rate - of growth over the three years? - - >>> geometric_mean([1.10, 0.95, 1.12]) - 1.0538483123382172 - - giving an average growth of 5.385%. Using the arithmetic mean will - give approximately 5.667%, which is too high. - - ``StatisticsError`` will be raised if ``data`` is empty, or any - element is less than zero. - """ - if iter(data) is data: - data = list(data) - errmsg = 'geometric mean does not support negative values' - n = len(data) - if n < 1: - raise StatisticsError('geometric_mean requires at least one data point') - elif n == 1: - x = data[0] - if isinstance(g, (numbers.Real, Decimal)): - if x < 0: - raise StatisticsError(errmsg) - return x - else: - raise TypeError('unsupported type') - else: - scale, prod = _product(_fail_neg(data, errmsg)) - r = _nth_root(prod, n) - if scale: - p, q = divmod(scale, n) - s = 2**p * _nth_root(2**q, n) - else: - s = 1 - return s*r - - def harmonic_mean(data): """Return the harmonic mean of data. |