summaryrefslogtreecommitdiffstats
path: root/Lib/statistics.py
diff options
context:
space:
mode:
authorDong-hee Na <donghee.na92@gmail.com>2019-08-23 22:20:30 (GMT)
committerRaymond Hettinger <rhettinger@users.noreply.github.com>2019-08-23 22:20:30 (GMT)
commit0a18ee4be7ba215f414bef04598e0849504f9f1e (patch)
tree02b4a3f5f9cd481ce73e4aa934b5bf13b600504a /Lib/statistics.py
parent5be666010e4df65dc4d831435cc92340ea369f94 (diff)
downloadcpython-0a18ee4be7ba215f414bef04598e0849504f9f1e.zip
cpython-0a18ee4be7ba215f414bef04598e0849504f9f1e.tar.gz
cpython-0a18ee4be7ba215f414bef04598e0849504f9f1e.tar.bz2
bpo-37798: Add C fastpath for statistics.NormalDist.inv_cdf() (GH-15266)
Diffstat (limited to 'Lib/statistics.py')
-rw-r--r--Lib/statistics.py155
1 files changed, 82 insertions, 73 deletions
diff --git a/Lib/statistics.py b/Lib/statistics.py
index 77291dd6..c7d6568 100644
--- a/Lib/statistics.py
+++ b/Lib/statistics.py
@@ -824,6 +824,81 @@ def pstdev(data, mu=None):
## Normal Distribution #####################################################
+
+def _normal_dist_inv_cdf(p, mu, sigma):
+ # There is no closed-form solution to the inverse CDF for the normal
+ # distribution, so we use a rational approximation instead:
+ # Wichura, M.J. (1988). "Algorithm AS241: The Percentage Points of the
+ # Normal Distribution". Applied Statistics. Blackwell Publishing. 37
+ # (3): 477–484. doi:10.2307/2347330. JSTOR 2347330.
+ q = p - 0.5
+ if fabs(q) <= 0.425:
+ r = 0.180625 - q * q
+ # Hash sum: 55.88319_28806_14901_4439
+ num = (((((((2.50908_09287_30122_6727e+3 * r +
+ 3.34305_75583_58812_8105e+4) * r +
+ 6.72657_70927_00870_0853e+4) * r +
+ 4.59219_53931_54987_1457e+4) * r +
+ 1.37316_93765_50946_1125e+4) * r +
+ 1.97159_09503_06551_4427e+3) * r +
+ 1.33141_66789_17843_7745e+2) * r +
+ 3.38713_28727_96366_6080e+0) * q
+ den = (((((((5.22649_52788_52854_5610e+3 * r +
+ 2.87290_85735_72194_2674e+4) * r +
+ 3.93078_95800_09271_0610e+4) * r +
+ 2.12137_94301_58659_5867e+4) * r +
+ 5.39419_60214_24751_1077e+3) * r +
+ 6.87187_00749_20579_0830e+2) * r +
+ 4.23133_30701_60091_1252e+1) * r +
+ 1.0)
+ x = num / den
+ return mu + (x * sigma)
+ r = p if q <= 0.0 else 1.0 - p
+ r = sqrt(-log(r))
+ if r <= 5.0:
+ r = r - 1.6
+ # Hash sum: 49.33206_50330_16102_89036
+ num = (((((((7.74545_01427_83414_07640e-4 * r +
+ 2.27238_44989_26918_45833e-2) * r +
+ 2.41780_72517_74506_11770e-1) * r +
+ 1.27045_82524_52368_38258e+0) * r +
+ 3.64784_83247_63204_60504e+0) * r +
+ 5.76949_72214_60691_40550e+0) * r +
+ 4.63033_78461_56545_29590e+0) * r +
+ 1.42343_71107_49683_57734e+0)
+ den = (((((((1.05075_00716_44416_84324e-9 * r +
+ 5.47593_80849_95344_94600e-4) * r +
+ 1.51986_66563_61645_71966e-2) * r +
+ 1.48103_97642_74800_74590e-1) * r +
+ 6.89767_33498_51000_04550e-1) * r +
+ 1.67638_48301_83803_84940e+0) * r +
+ 2.05319_16266_37758_82187e+0) * r +
+ 1.0)
+ else:
+ r = r - 5.0
+ # Hash sum: 47.52583_31754_92896_71629
+ num = (((((((2.01033_43992_92288_13265e-7 * r +
+ 2.71155_55687_43487_57815e-5) * r +
+ 1.24266_09473_88078_43860e-3) * r +
+ 2.65321_89526_57612_30930e-2) * r +
+ 2.96560_57182_85048_91230e-1) * r +
+ 1.78482_65399_17291_33580e+0) * r +
+ 5.46378_49111_64114_36990e+0) * r +
+ 6.65790_46435_01103_77720e+0)
+ den = (((((((2.04426_31033_89939_78564e-15 * r +
+ 1.42151_17583_16445_88870e-7) * r +
+ 1.84631_83175_10054_68180e-5) * r +
+ 7.86869_13114_56132_59100e-4) * r +
+ 1.48753_61290_85061_48525e-2) * r +
+ 1.36929_88092_27358_05310e-1) * r +
+ 5.99832_20655_58879_37690e-1) * r +
+ 1.0)
+ x = num / den
+ if q < 0.0:
+ x = -x
+ return mu + (x * sigma)
+
+
class NormalDist:
"Normal distribution of a random variable"
# https://en.wikipedia.org/wiki/Normal_distribution
@@ -882,79 +957,7 @@ class NormalDist:
raise StatisticsError('p must be in the range 0.0 < p < 1.0')
if self._sigma <= 0.0:
raise StatisticsError('cdf() not defined when sigma at or below zero')
-
- # There is no closed-form solution to the inverse CDF for the normal
- # distribution, so we use a rational approximation instead:
- # Wichura, M.J. (1988). "Algorithm AS241: The Percentage Points of the
- # Normal Distribution". Applied Statistics. Blackwell Publishing. 37
- # (3): 477–484. doi:10.2307/2347330. JSTOR 2347330.
-
- q = p - 0.5
- if fabs(q) <= 0.425:
- r = 0.180625 - q * q
- # Hash sum: 55.88319_28806_14901_4439
- num = (((((((2.50908_09287_30122_6727e+3 * r +
- 3.34305_75583_58812_8105e+4) * r +
- 6.72657_70927_00870_0853e+4) * r +
- 4.59219_53931_54987_1457e+4) * r +
- 1.37316_93765_50946_1125e+4) * r +
- 1.97159_09503_06551_4427e+3) * r +
- 1.33141_66789_17843_7745e+2) * r +
- 3.38713_28727_96366_6080e+0) * q
- den = (((((((5.22649_52788_52854_5610e+3 * r +
- 2.87290_85735_72194_2674e+4) * r +
- 3.93078_95800_09271_0610e+4) * r +
- 2.12137_94301_58659_5867e+4) * r +
- 5.39419_60214_24751_1077e+3) * r +
- 6.87187_00749_20579_0830e+2) * r +
- 4.23133_30701_60091_1252e+1) * r +
- 1.0)
- x = num / den
- return self._mu + (x * self._sigma)
- r = p if q <= 0.0 else 1.0 - p
- r = sqrt(-log(r))
- if r <= 5.0:
- r = r - 1.6
- # Hash sum: 49.33206_50330_16102_89036
- num = (((((((7.74545_01427_83414_07640e-4 * r +
- 2.27238_44989_26918_45833e-2) * r +
- 2.41780_72517_74506_11770e-1) * r +
- 1.27045_82524_52368_38258e+0) * r +
- 3.64784_83247_63204_60504e+0) * r +
- 5.76949_72214_60691_40550e+0) * r +
- 4.63033_78461_56545_29590e+0) * r +
- 1.42343_71107_49683_57734e+0)
- den = (((((((1.05075_00716_44416_84324e-9 * r +
- 5.47593_80849_95344_94600e-4) * r +
- 1.51986_66563_61645_71966e-2) * r +
- 1.48103_97642_74800_74590e-1) * r +
- 6.89767_33498_51000_04550e-1) * r +
- 1.67638_48301_83803_84940e+0) * r +
- 2.05319_16266_37758_82187e+0) * r +
- 1.0)
- else:
- r = r - 5.0
- # Hash sum: 47.52583_31754_92896_71629
- num = (((((((2.01033_43992_92288_13265e-7 * r +
- 2.71155_55687_43487_57815e-5) * r +
- 1.24266_09473_88078_43860e-3) * r +
- 2.65321_89526_57612_30930e-2) * r +
- 2.96560_57182_85048_91230e-1) * r +
- 1.78482_65399_17291_33580e+0) * r +
- 5.46378_49111_64114_36990e+0) * r +
- 6.65790_46435_01103_77720e+0)
- den = (((((((2.04426_31033_89939_78564e-15 * r +
- 1.42151_17583_16445_88870e-7) * r +
- 1.84631_83175_10054_68180e-5) * r +
- 7.86869_13114_56132_59100e-4) * r +
- 1.48753_61290_85061_48525e-2) * r +
- 1.36929_88092_27358_05310e-1) * r +
- 5.99832_20655_58879_37690e-1) * r +
- 1.0)
- x = num / den
- if q < 0.0:
- x = -x
- return self._mu + (x * self._sigma)
+ return _normal_dist_inv_cdf(p, self._mu, self._sigma)
def overlap(self, other):
"""Compute the overlapping coefficient (OVL) between two normal distributions.
@@ -1078,6 +1081,12 @@ class NormalDist:
def __repr__(self):
return f'{type(self).__name__}(mu={self._mu!r}, sigma={self._sigma!r})'
+# If available, use C implementation
+try:
+ from _statistics import _normal_dist_inv_cdf
+except ImportError:
+ pass
+
if __name__ == '__main__':