diff options
author | Steven D'Aprano <steve@pearwood.info> | 2016-08-09 02:49:01 (GMT) |
---|---|---|
committer | Steven D'Aprano <steve@pearwood.info> | 2016-08-09 02:49:01 (GMT) |
commit | a474afdddc9282fedd63035b5973c88270c99ee8 (patch) | |
tree | c8f1f2dade8094ec3dfc3165dafcd0b247e7aaf9 /Lib/statistics.py | |
parent | 95e0df8389c8a44c0f6c6b6be8363e602e8e8914 (diff) | |
download | cpython-a474afdddc9282fedd63035b5973c88270c99ee8.zip cpython-a474afdddc9282fedd63035b5973c88270c99ee8.tar.gz cpython-a474afdddc9282fedd63035b5973c88270c99ee8.tar.bz2 |
Add harmonic mean and tests.
Diffstat (limited to 'Lib/statistics.py')
-rw-r--r-- | Lib/statistics.py | 66 |
1 files changed, 62 insertions, 4 deletions
diff --git a/Lib/statistics.py b/Lib/statistics.py index b081b5a..8c41dd3 100644 --- a/Lib/statistics.py +++ b/Lib/statistics.py @@ -28,6 +28,7 @@ Calculating averages Function Description ================== ============================================= mean Arithmetic mean (average) of data. +harmonic_mean Harmonic mean of data. median Median (middle value) of data. median_low Low median of data. median_high High median of data. @@ -95,16 +96,17 @@ A single exception is defined: StatisticsError is a subclass of ValueError. __all__ = [ 'StatisticsError', 'pstdev', 'pvariance', 'stdev', 'variance', 'median', 'median_low', 'median_high', 'median_grouped', - 'mean', 'mode', + 'mean', 'mode', 'harmonic_mean', ] - import collections +import decimal import math +import numbers from fractions import Fraction from decimal import Decimal -from itertools import groupby +from itertools import groupby, chain from bisect import bisect_left, bisect_right @@ -135,7 +137,8 @@ def _sum(data, start=0): Some sources of round-off error will be avoided: - >>> _sum([1e50, 1, -1e50] * 1000) # Built-in sum returns zero. + # Built-in sum returns zero. + >>> _sum([1e50, 1, -1e50] * 1000) (<class 'float'>, Fraction(1000, 1), 3000) Fractions and Decimals are also supported: @@ -291,6 +294,15 @@ def _find_rteq(a, l, x): return i-1 raise ValueError + +def _fail_neg(values, errmsg='negative value'): + """Iterate over values, failing if any are less than zero.""" + for x in values: + if x < 0: + raise StatisticsError(errmsg) + yield x + + # === Measures of central tendency (averages) === def mean(data): @@ -319,6 +331,52 @@ def mean(data): return _convert(total/n, T) +def harmonic_mean(data): + """Return the harmonic mean of data. + + The harmonic mean, sometimes called the subcontrary mean, is the + reciprocal of the arithmetic mean of the reciprocals of the data, + and is often appropriate when averaging quantities which are rates + or ratios, for example speeds. Example: + + Suppose an investor purchases an equal value of shares in each of + three companies, with P/E (price/earning) ratios of 2.5, 3 and 10. + What is the average P/E ratio for the investor's portfolio? + + >>> harmonic_mean([2.5, 3, 10]) # For an equal investment portfolio. + 3.6 + + Using the arithmetic mean would give an average of about 5.167, which + is too high. + + If ``data`` is empty, or any element is less than zero, + ``harmonic_mean`` will raise ``StatisticsError``. + """ + # For a justification for using harmonic mean for P/E ratios, see + # http://fixthepitch.pellucid.com/comps-analysis-the-missing-harmony-of-summary-statistics/ + # http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2621087 + if iter(data) is data: + data = list(data) + errmsg = 'harmonic mean does not support negative values' + n = len(data) + if n < 1: + raise StatisticsError('harmonic_mean requires at least one data point') + elif n == 1: + x = data[0] + if isinstance(x, (numbers.Real, Decimal)): + if x < 0: + raise StatisticsError(errmsg) + return x + else: + raise TypeError('unsupported type') + try: + T, total, count = _sum(1/x for x in _fail_neg(data, errmsg)) + except ZeroDivisionError: + return 0 + assert count == n + return _convert(n/total, T) + + # FIXME: investigate ways to calculate medians without sorting? Quickselect? def median(data): """Return the median (middle value) of numeric data. |