summaryrefslogtreecommitdiffstats
path: root/Lib/test/test_buffer.py
diff options
context:
space:
mode:
authorStefan Krah <skrah@bytereef.org>2012-02-25 11:24:21 (GMT)
committerStefan Krah <skrah@bytereef.org>2012-02-25 11:24:21 (GMT)
commit9a2d99e28a5c2989b2db4023acae4f550885f2ef (patch)
tree29bb99fc008de30ecc1e765d6d14ee35cd5bdfe5 /Lib/test/test_buffer.py
parent5a3d04623b0dc8219326989bc3619d5f56737a94 (diff)
downloadcpython-9a2d99e28a5c2989b2db4023acae4f550885f2ef.zip
cpython-9a2d99e28a5c2989b2db4023acae4f550885f2ef.tar.gz
cpython-9a2d99e28a5c2989b2db4023acae4f550885f2ef.tar.bz2
- Issue #10181: New memoryview implementation fixes multiple ownership
and lifetime issues of dynamically allocated Py_buffer members (#9990) as well as crashes (#8305, #7433). Many new features have been added (See whatsnew/3.3), and the documentation has been updated extensively. The ndarray test object from _testbuffer.c implements all aspects of PEP-3118, so further development towards the complete implementation of the PEP can proceed in a test-driven manner. Thanks to Nick Coghlan, Antoine Pitrou and Pauli Virtanen for review and many ideas. - Issue #12834: Fix incorrect results of memoryview.tobytes() for non-contiguous arrays. - Issue #5231: Introduce memoryview.cast() method that allows changing format and shape without making a copy of the underlying memory.
Diffstat (limited to 'Lib/test/test_buffer.py')
-rw-r--r--Lib/test/test_buffer.py3437
1 files changed, 3437 insertions, 0 deletions
diff --git a/Lib/test/test_buffer.py b/Lib/test/test_buffer.py
new file mode 100644
index 0000000..25324ef
--- /dev/null
+++ b/Lib/test/test_buffer.py
@@ -0,0 +1,3437 @@
+#
+# The ndarray object from _testbuffer.c is a complete implementation of
+# a PEP-3118 buffer provider. It is independent from NumPy's ndarray
+# and the tests don't require NumPy.
+#
+# If NumPy is present, some tests check both ndarray implementations
+# against each other.
+#
+# Most ndarray tests also check that memoryview(ndarray) behaves in
+# the same way as the original. Thus, a substantial part of the
+# memoryview tests is now in this module.
+#
+
+import unittest
+from test import support
+from itertools import permutations, product
+from random import randrange, sample, choice
+from sysconfig import get_config_var
+from platform import architecture
+import warnings
+import sys, array, io
+from decimal import Decimal
+from fractions import Fraction
+
+try:
+ from _testbuffer import *
+except ImportError:
+ ndarray = None
+
+try:
+ import struct
+except ImportError:
+ struct = None
+
+try:
+ with warnings.catch_warnings():
+ from numpy import ndarray as numpy_array
+except ImportError:
+ numpy_array = None
+
+
+SHORT_TEST = True
+
+
+# ======================================================================
+# Random lists by format specifier
+# ======================================================================
+
+# Native format chars and their ranges.
+NATIVE = {
+ '?':0, 'c':0, 'b':0, 'B':0,
+ 'h':0, 'H':0, 'i':0, 'I':0,
+ 'l':0, 'L':0, 'n':0, 'N':0,
+ 'f':0, 'd':0, 'P':0
+}
+
+if struct:
+ try:
+ # Add "qQ" if present in native mode.
+ struct.pack('Q', 2**64-1)
+ NATIVE['q'] = 0
+ NATIVE['Q'] = 0
+ except struct.error:
+ pass
+
+# Standard format chars and their ranges.
+STANDARD = {
+ '?':(0, 2), 'c':(0, 1<<8),
+ 'b':(-(1<<7), 1<<7), 'B':(0, 1<<8),
+ 'h':(-(1<<15), 1<<15), 'H':(0, 1<<16),
+ 'i':(-(1<<31), 1<<31), 'I':(0, 1<<32),
+ 'l':(-(1<<31), 1<<31), 'L':(0, 1<<32),
+ 'q':(-(1<<63), 1<<63), 'Q':(0, 1<<64),
+ 'f':(-(1<<63), 1<<63), 'd':(-(1<<1023), 1<<1023)
+}
+
+def native_type_range(fmt):
+ """Return range of a native type."""
+ if fmt == 'c':
+ lh = (0, 256)
+ elif fmt == '?':
+ lh = (0, 2)
+ elif fmt == 'f':
+ lh = (-(1<<63), 1<<63)
+ elif fmt == 'd':
+ lh = (-(1<<1023), 1<<1023)
+ else:
+ for exp in (128, 127, 64, 63, 32, 31, 16, 15, 8, 7):
+ try:
+ struct.pack(fmt, (1<<exp)-1)
+ break
+ except struct.error:
+ pass
+ lh = (-(1<<exp), 1<<exp) if exp & 1 else (0, 1<<exp)
+ return lh
+
+fmtdict = {
+ '':NATIVE,
+ '@':NATIVE,
+ '<':STANDARD,
+ '>':STANDARD,
+ '=':STANDARD,
+ '!':STANDARD
+}
+
+if struct:
+ for fmt in fmtdict['@']:
+ fmtdict['@'][fmt] = native_type_range(fmt)
+
+MEMORYVIEW = NATIVE.copy()
+ARRAY = NATIVE.copy()
+for k in NATIVE:
+ if not k in "bBhHiIlLfd":
+ del ARRAY[k]
+
+BYTEFMT = NATIVE.copy()
+for k in NATIVE:
+ if not k in "Bbc":
+ del BYTEFMT[k]
+
+fmtdict['m'] = MEMORYVIEW
+fmtdict['@m'] = MEMORYVIEW
+fmtdict['a'] = ARRAY
+fmtdict['b'] = BYTEFMT
+fmtdict['@b'] = BYTEFMT
+
+# Capabilities of the test objects:
+MODE = 0
+MULT = 1
+cap = { # format chars # multiplier
+ 'ndarray': (['', '@', '<', '>', '=', '!'], ['', '1', '2', '3']),
+ 'array': (['a'], ['']),
+ 'numpy': ([''], ['']),
+ 'memoryview': (['@m', 'm'], ['']),
+ 'bytefmt': (['@b', 'b'], ['']),
+}
+
+def randrange_fmt(mode, char, obj):
+ """Return random item for a type specified by a mode and a single
+ format character."""
+ x = randrange(*fmtdict[mode][char])
+ if char == 'c':
+ x = bytes(chr(x), 'latin1')
+ if char == '?':
+ x = bool(x)
+ if char == 'f' or char == 'd':
+ x = struct.pack(char, x)
+ x = struct.unpack(char, x)[0]
+ if obj == 'numpy' and x == b'\x00':
+ # http://projects.scipy.org/numpy/ticket/1925
+ x = b'\x01'
+ return x
+
+def gen_item(fmt, obj):
+ """Return single random item."""
+ mode, chars = fmt.split('#')
+ x = []
+ for c in chars:
+ x.append(randrange_fmt(mode, c, obj))
+ return x[0] if len(x) == 1 else tuple(x)
+
+def gen_items(n, fmt, obj):
+ """Return a list of random items (or a scalar)."""
+ if n == 0:
+ return gen_item(fmt, obj)
+ lst = [0] * n
+ for i in range(n):
+ lst[i] = gen_item(fmt, obj)
+ return lst
+
+def struct_items(n, obj):
+ mode = choice(cap[obj][MODE])
+ xfmt = mode + '#'
+ fmt = mode.strip('amb')
+ nmemb = randrange(2, 10) # number of struct members
+ for _ in range(nmemb):
+ char = choice(tuple(fmtdict[mode]))
+ multiplier = choice(cap[obj][MULT])
+ xfmt += (char * int(multiplier if multiplier else 1))
+ fmt += (multiplier + char)
+ items = gen_items(n, xfmt, obj)
+ item = gen_item(xfmt, obj)
+ return fmt, items, item
+
+def randitems(n, obj='ndarray', mode=None, char=None):
+ """Return random format, items, item."""
+ if mode is None:
+ mode = choice(cap[obj][MODE])
+ if char is None:
+ char = choice(tuple(fmtdict[mode]))
+ multiplier = choice(cap[obj][MULT])
+ fmt = mode + '#' + char * int(multiplier if multiplier else 1)
+ items = gen_items(n, fmt, obj)
+ item = gen_item(fmt, obj)
+ fmt = mode.strip('amb') + multiplier + char
+ return fmt, items, item
+
+def iter_mode(n, obj='ndarray'):
+ """Iterate through supported mode/char combinations."""
+ for mode in cap[obj][MODE]:
+ for char in fmtdict[mode]:
+ yield randitems(n, obj, mode, char)
+
+def iter_format(nitems, testobj='ndarray'):
+ """Yield (format, items, item) for all possible modes and format
+ characters plus one random compound format string."""
+ for t in iter_mode(nitems, testobj):
+ yield t
+ if testobj != 'ndarray':
+ raise StopIteration
+ yield struct_items(nitems, testobj)
+
+
+def is_byte_format(fmt):
+ return 'c' in fmt or 'b' in fmt or 'B' in fmt
+
+def is_memoryview_format(fmt):
+ """format suitable for memoryview"""
+ x = len(fmt)
+ return ((x == 1 or (x == 2 and fmt[0] == '@')) and
+ fmt[x-1] in MEMORYVIEW)
+
+NON_BYTE_FORMAT = [c for c in fmtdict['@'] if not is_byte_format(c)]
+
+
+# ======================================================================
+# Multi-dimensional tolist(), slicing and slice assignments
+# ======================================================================
+
+def atomp(lst):
+ """Tuple items (representing structs) are regarded as atoms."""
+ return not isinstance(lst, list)
+
+def listp(lst):
+ return isinstance(lst, list)
+
+def prod(lst):
+ """Product of list elements."""
+ if len(lst) == 0:
+ return 0
+ x = lst[0]
+ for v in lst[1:]:
+ x *= v
+ return x
+
+def strides_from_shape(ndim, shape, itemsize, layout):
+ """Calculate strides of a contiguous array. Layout is 'C' or
+ 'F' (Fortran)."""
+ if ndim == 0:
+ return ()
+ if layout == 'C':
+ strides = list(shape[1:]) + [itemsize]
+ for i in range(ndim-2, -1, -1):
+ strides[i] *= strides[i+1]
+ else:
+ strides = [itemsize] + list(shape[:-1])
+ for i in range(1, ndim):
+ strides[i] *= strides[i-1]
+ return strides
+
+def _ca(items, s):
+ """Convert flat item list to the nested list representation of a
+ multidimensional C array with shape 's'."""
+ if atomp(items):
+ return items
+ if len(s) == 0:
+ return items[0]
+ lst = [0] * s[0]
+ stride = len(items) // s[0] if s[0] else 0
+ for i in range(s[0]):
+ start = i*stride
+ lst[i] = _ca(items[start:start+stride], s[1:])
+ return lst
+
+def _fa(items, s):
+ """Convert flat item list to the nested list representation of a
+ multidimensional Fortran array with shape 's'."""
+ if atomp(items):
+ return items
+ if len(s) == 0:
+ return items[0]
+ lst = [0] * s[0]
+ stride = s[0]
+ for i in range(s[0]):
+ lst[i] = _fa(items[i::stride], s[1:])
+ return lst
+
+def carray(items, shape):
+ if listp(items) and not 0 in shape and prod(shape) != len(items):
+ raise ValueError("prod(shape) != len(items)")
+ return _ca(items, shape)
+
+def farray(items, shape):
+ if listp(items) and not 0 in shape and prod(shape) != len(items):
+ raise ValueError("prod(shape) != len(items)")
+ return _fa(items, shape)
+
+def indices(shape):
+ """Generate all possible tuples of indices."""
+ iterables = [range(v) for v in shape]
+ return product(*iterables)
+
+def getindex(ndim, ind, strides):
+ """Convert multi-dimensional index to the position in the flat list."""
+ ret = 0
+ for i in range(ndim):
+ ret += strides[i] * ind[i]
+ return ret
+
+def transpose(src, shape):
+ """Transpose flat item list that is regarded as a multi-dimensional
+ matrix defined by shape: dest...[k][j][i] = src[i][j][k]... """
+ if not shape:
+ return src
+ ndim = len(shape)
+ sstrides = strides_from_shape(ndim, shape, 1, 'C')
+ dstrides = strides_from_shape(ndim, shape[::-1], 1, 'C')
+ dest = [0] * len(src)
+ for ind in indices(shape):
+ fr = getindex(ndim, ind, sstrides)
+ to = getindex(ndim, ind[::-1], dstrides)
+ dest[to] = src[fr]
+ return dest
+
+def _flatten(lst):
+ """flatten list"""
+ if lst == []:
+ return lst
+ if atomp(lst):
+ return [lst]
+ return _flatten(lst[0]) + _flatten(lst[1:])
+
+def flatten(lst):
+ """flatten list or return scalar"""
+ if atomp(lst): # scalar
+ return lst
+ return _flatten(lst)
+
+def slice_shape(lst, slices):
+ """Get the shape of lst after slicing: slices is a list of slice
+ objects."""
+ if atomp(lst):
+ return []
+ return [len(lst[slices[0]])] + slice_shape(lst[0], slices[1:])
+
+def multislice(lst, slices):
+ """Multi-dimensional slicing: slices is a list of slice objects."""
+ if atomp(lst):
+ return lst
+ return [multislice(sublst, slices[1:]) for sublst in lst[slices[0]]]
+
+def m_assign(llst, rlst, lslices, rslices):
+ """Multi-dimensional slice assignment: llst and rlst are the operands,
+ lslices and rslices are lists of slice objects. llst and rlst must
+ have the same structure.
+
+ For a two-dimensional example, this is not implemented in Python:
+
+ llst[0:3:2, 0:3:2] = rlst[1:3:1, 1:3:1]
+
+ Instead we write:
+
+ lslices = [slice(0,3,2), slice(0,3,2)]
+ rslices = [slice(1,3,1), slice(1,3,1)]
+ multislice_assign(llst, rlst, lslices, rslices)
+ """
+ if atomp(rlst):
+ return rlst
+ rlst = [m_assign(l, r, lslices[1:], rslices[1:])
+ for l, r in zip(llst[lslices[0]], rlst[rslices[0]])]
+ llst[lslices[0]] = rlst
+ return llst
+
+def cmp_structure(llst, rlst, lslices, rslices):
+ """Compare the structure of llst[lslices] and rlst[rslices]."""
+ lshape = slice_shape(llst, lslices)
+ rshape = slice_shape(rlst, rslices)
+ if (len(lshape) != len(rshape)):
+ return -1
+ for i in range(len(lshape)):
+ if lshape[i] != rshape[i]:
+ return -1
+ if lshape[i] == 0:
+ return 0
+ return 0
+
+def multislice_assign(llst, rlst, lslices, rslices):
+ """Return llst after assigning: llst[lslices] = rlst[rslices]"""
+ if cmp_structure(llst, rlst, lslices, rslices) < 0:
+ raise ValueError("lvalue and rvalue have different structures")
+ return m_assign(llst, rlst, lslices, rslices)
+
+
+# ======================================================================
+# Random structures
+# ======================================================================
+
+#
+# PEP-3118 is very permissive with respect to the contents of a
+# Py_buffer. In particular:
+#
+# - shape can be zero
+# - strides can be any integer, including zero
+# - offset can point to any location in the underlying
+# memory block, provided that it is a multiple of
+# itemsize.
+#
+# The functions in this section test and verify random structures
+# in full generality. A structure is valid iff it fits in the
+# underlying memory block.
+#
+# The structure 't' (short for 'tuple') is fully defined by:
+#
+# t = (memlen, itemsize, ndim, shape, strides, offset)
+#
+
+def verify_structure(memlen, itemsize, ndim, shape, strides, offset):
+ """Verify that the parameters represent a valid array within
+ the bounds of the allocated memory:
+ char *mem: start of the physical memory block
+ memlen: length of the physical memory block
+ offset: (char *)buf - mem
+ """
+ if offset % itemsize:
+ return False
+ if offset < 0 or offset+itemsize > memlen:
+ return False
+ if any(v % itemsize for v in strides):
+ return False
+
+ if ndim <= 0:
+ return ndim == 0 and not shape and not strides
+ if 0 in shape:
+ return True
+
+ imin = sum(strides[j]*(shape[j]-1) for j in range(ndim)
+ if strides[j] <= 0)
+ imax = sum(strides[j]*(shape[j]-1) for j in range(ndim)
+ if strides[j] > 0)
+
+ return 0 <= offset+imin and offset+imax+itemsize <= memlen
+
+def get_item(lst, indices):
+ for i in indices:
+ lst = lst[i]
+ return lst
+
+def memory_index(indices, t):
+ """Location of an item in the underlying memory."""
+ memlen, itemsize, ndim, shape, strides, offset = t
+ p = offset
+ for i in range(ndim):
+ p += strides[i]*indices[i]
+ return p
+
+def is_overlapping(t):
+ """The structure 't' is overlapping if at least one memory location
+ is visited twice while iterating through all possible tuples of
+ indices."""
+ memlen, itemsize, ndim, shape, strides, offset = t
+ visited = 1<<memlen
+ for ind in indices(shape):
+ i = memory_index(ind, t)
+ bit = 1<<i
+ if visited & bit:
+ return True
+ visited |= bit
+ return False
+
+def rand_structure(itemsize, valid, maxdim=5, maxshape=16, shape=()):
+ """Return random structure:
+ (memlen, itemsize, ndim, shape, strides, offset)
+ If 'valid' is true, the returned structure is valid, otherwise invalid.
+ If 'shape' is given, use that instead of creating a random shape.
+ """
+ if not shape:
+ ndim = randrange(maxdim+1)
+ if (ndim == 0):
+ if valid:
+ return itemsize, itemsize, ndim, (), (), 0
+ else:
+ nitems = randrange(1, 16+1)
+ memlen = nitems * itemsize
+ offset = -itemsize if randrange(2) == 0 else memlen
+ return memlen, itemsize, ndim, (), (), offset
+
+ minshape = 2
+ n = randrange(100)
+ if n >= 95 and valid:
+ minshape = 0
+ elif n >= 90:
+ minshape = 1
+ shape = [0] * ndim
+
+ for i in range(ndim):
+ shape[i] = randrange(minshape, maxshape+1)
+ else:
+ ndim = len(shape)
+
+ maxstride = 5
+ n = randrange(100)
+ zero_stride = True if n >= 95 and n & 1 else False
+
+ strides = [0] * ndim
+ strides[ndim-1] = itemsize * randrange(-maxstride, maxstride+1)
+ if not zero_stride and strides[ndim-1] == 0:
+ strides[ndim-1] = itemsize
+
+ for i in range(ndim-2, -1, -1):
+ maxstride *= shape[i+1] if shape[i+1] else 1
+ if zero_stride:
+ strides[i] = itemsize * randrange(-maxstride, maxstride+1)
+ else:
+ strides[i] = ((1,-1)[randrange(2)] *
+ itemsize * randrange(1, maxstride+1))
+
+ imin = imax = 0
+ if not 0 in shape:
+ imin = sum(strides[j]*(shape[j]-1) for j in range(ndim)
+ if strides[j] <= 0)
+ imax = sum(strides[j]*(shape[j]-1) for j in range(ndim)
+ if strides[j] > 0)
+
+ nitems = imax - imin
+ if valid:
+ offset = -imin * itemsize
+ memlen = offset + (imax+1) * itemsize
+ else:
+ memlen = (-imin + imax) * itemsize
+ offset = -imin-itemsize if randrange(2) == 0 else memlen
+ return memlen, itemsize, ndim, shape, strides, offset
+
+def randslice_from_slicelen(slicelen, listlen):
+ """Create a random slice of len slicelen that fits into listlen."""
+ maxstart = listlen - slicelen
+ start = randrange(maxstart+1)
+ maxstep = (listlen - start) // slicelen if slicelen else 1
+ step = randrange(1, maxstep+1)
+ stop = start + slicelen * step
+ s = slice(start, stop, step)
+ _, _, _, control = slice_indices(s, listlen)
+ if control != slicelen:
+ raise RuntimeError
+ return s
+
+def randslice_from_shape(ndim, shape):
+ """Create two sets of slices for an array x with shape 'shape'
+ such that shapeof(x[lslices]) == shapeof(x[rslices])."""
+ lslices = [0] * ndim
+ rslices = [0] * ndim
+ for n in range(ndim):
+ l = shape[n]
+ slicelen = randrange(1, l+1) if l > 0 else 0
+ lslices[n] = randslice_from_slicelen(slicelen, l)
+ rslices[n] = randslice_from_slicelen(slicelen, l)
+ return tuple(lslices), tuple(rslices)
+
+def rand_aligned_slices(maxdim=5, maxshape=16):
+ """Create (lshape, rshape, tuple(lslices), tuple(rslices)) such that
+ shapeof(x[lslices]) == shapeof(y[rslices]), where x is an array
+ with shape 'lshape' and y is an array with shape 'rshape'."""
+ ndim = randrange(1, maxdim+1)
+ minshape = 2
+ n = randrange(100)
+ if n >= 95:
+ minshape = 0
+ elif n >= 90:
+ minshape = 1
+ all_random = True if randrange(100) >= 80 else False
+ lshape = [0]*ndim; rshape = [0]*ndim
+ lslices = [0]*ndim; rslices = [0]*ndim
+
+ for n in range(ndim):
+ small = randrange(minshape, maxshape+1)
+ big = randrange(minshape, maxshape+1)
+ if big < small:
+ big, small = small, big
+
+ # Create a slice that fits the smaller value.
+ if all_random:
+ start = randrange(-small, small+1)
+ stop = randrange(-small, small+1)
+ step = (1,-1)[randrange(2)] * randrange(1, small+2)
+ s_small = slice(start, stop, step)
+ _, _, _, slicelen = slice_indices(s_small, small)
+ else:
+ slicelen = randrange(1, small+1) if small > 0 else 0
+ s_small = randslice_from_slicelen(slicelen, small)
+
+ # Create a slice of the same length for the bigger value.
+ s_big = randslice_from_slicelen(slicelen, big)
+ if randrange(2) == 0:
+ rshape[n], lshape[n] = big, small
+ rslices[n], lslices[n] = s_big, s_small
+ else:
+ rshape[n], lshape[n] = small, big
+ rslices[n], lslices[n] = s_small, s_big
+
+ return lshape, rshape, tuple(lslices), tuple(rslices)
+
+def randitems_from_structure(fmt, t):
+ """Return a list of random items for structure 't' with format
+ 'fmtchar'."""
+ memlen, itemsize, _, _, _, _ = t
+ return gen_items(memlen//itemsize, '#'+fmt, 'numpy')
+
+def ndarray_from_structure(items, fmt, t, flags=0):
+ """Return ndarray from the tuple returned by rand_structure()"""
+ memlen, itemsize, ndim, shape, strides, offset = t
+ return ndarray(items, shape=shape, strides=strides, format=fmt,
+ offset=offset, flags=ND_WRITABLE|flags)
+
+def numpy_array_from_structure(items, fmt, t):
+ """Return numpy_array from the tuple returned by rand_structure()"""
+ memlen, itemsize, ndim, shape, strides, offset = t
+ buf = bytearray(memlen)
+ for j, v in enumerate(items):
+ struct.pack_into(fmt, buf, j*itemsize, v)
+ return numpy_array(buffer=buf, shape=shape, strides=strides,
+ dtype=fmt, offset=offset)
+
+
+# ======================================================================
+# memoryview casts
+# ======================================================================
+
+def cast_items(exporter, fmt, itemsize, shape=None):
+ """Interpret the raw memory of 'exporter' as a list of items with
+ size 'itemsize'. If shape=None, the new structure is assumed to
+ be 1-D with n * itemsize = bytelen. If shape is given, the usual
+ constraint for contiguous arrays prod(shape) * itemsize = bytelen
+ applies. On success, return (items, shape). If the constraints
+ cannot be met, return (None, None). If a chunk of bytes is interpreted
+ as NaN as a result of float conversion, return ('nan', None)."""
+ bytelen = exporter.nbytes
+ if shape:
+ if prod(shape) * itemsize != bytelen:
+ return None, shape
+ elif shape == []:
+ if exporter.ndim == 0 or itemsize != bytelen:
+ return None, shape
+ else:
+ n, r = divmod(bytelen, itemsize)
+ shape = [n]
+ if r != 0:
+ return None, shape
+
+ mem = exporter.tobytes()
+ byteitems = [mem[i:i+itemsize] for i in range(0, len(mem), itemsize)]
+
+ items = []
+ for v in byteitems:
+ item = struct.unpack(fmt, v)[0]
+ if item != item:
+ return 'nan', shape
+ items.append(item)
+
+ return (items, shape) if shape != [] else (items[0], shape)
+
+def gencastshapes():
+ """Generate shapes to test casting."""
+ for n in range(32):
+ yield [n]
+ ndim = randrange(4, 6)
+ minshape = 1 if randrange(100) > 80 else 2
+ yield [randrange(minshape, 5) for _ in range(ndim)]
+ ndim = randrange(2, 4)
+ minshape = 1 if randrange(100) > 80 else 2
+ yield [randrange(minshape, 5) for _ in range(ndim)]
+
+
+# ======================================================================
+# Actual tests
+# ======================================================================
+
+def genslices(n):
+ """Generate all possible slices for a single dimension."""
+ return product(range(-n, n+1), range(-n, n+1), range(-n, n+1))
+
+def genslices_ndim(ndim, shape):
+ """Generate all possible slice tuples for 'shape'."""
+ iterables = [genslices(shape[n]) for n in range(ndim)]
+ return product(*iterables)
+
+def rslice(n, allow_empty=False):
+ """Generate random slice for a single dimension of length n.
+ If zero=True, the slices may be empty, otherwise they will
+ be non-empty."""
+ minlen = 0 if allow_empty or n == 0 else 1
+ slicelen = randrange(minlen, n+1)
+ return randslice_from_slicelen(slicelen, n)
+
+def rslices(n, allow_empty=False):
+ """Generate random slices for a single dimension."""
+ for _ in range(5):
+ yield rslice(n, allow_empty)
+
+def rslices_ndim(ndim, shape, iterations=5):
+ """Generate random slice tuples for 'shape'."""
+ # non-empty slices
+ for _ in range(iterations):
+ yield tuple(rslice(shape[n]) for n in range(ndim))
+ # possibly empty slices
+ for _ in range(iterations):
+ yield tuple(rslice(shape[n], allow_empty=True) for n in range(ndim))
+ # invalid slices
+ yield tuple(slice(0,1,0) for _ in range(ndim))
+
+def rpermutation(iterable, r=None):
+ pool = tuple(iterable)
+ r = len(pool) if r is None else r
+ yield tuple(sample(pool, r))
+
+def ndarray_print(nd):
+ """Print ndarray for debugging."""
+ try:
+ x = nd.tolist()
+ except (TypeError, NotImplementedError):
+ x = nd.tobytes()
+ if isinstance(nd, ndarray):
+ offset = nd.offset
+ flags = nd.flags
+ else:
+ offset = 'unknown'
+ flags = 'unknown'
+ print("ndarray(%s, shape=%s, strides=%s, suboffsets=%s, offset=%s, "
+ "format='%s', itemsize=%s, flags=%s)" %
+ (x, nd.shape, nd.strides, nd.suboffsets, offset,
+ nd.format, nd.itemsize, flags))
+ sys.stdout.flush()
+
+
+ITERATIONS = 100
+MAXDIM = 5
+MAXSHAPE = 10
+
+if SHORT_TEST:
+ ITERATIONS = 10
+ MAXDIM = 3
+ MAXSHAPE = 4
+ genslices = rslices
+ genslices_ndim = rslices_ndim
+ permutations = rpermutation
+
+
+@unittest.skipUnless(struct, 'struct module required for this test.')
+@unittest.skipUnless(ndarray, 'ndarray object required for this test')
+class TestBufferProtocol(unittest.TestCase):
+
+ def setUp(self):
+ self.sizeof_void_p = get_config_var('SIZEOF_VOID_P')
+ if not self.sizeof_void_p:
+ self.sizeof_void_p = 8 if architecture()[0] == '64bit' else 4
+
+ def verify(self, result, obj=-1,
+ itemsize={1}, fmt=-1, readonly={1},
+ ndim={1}, shape=-1, strides=-1,
+ lst=-1, sliced=False, cast=False):
+ # Verify buffer contents against expected values. Default values
+ # are deliberately initialized to invalid types.
+ if shape:
+ expected_len = prod(shape)*itemsize
+ else:
+ if not fmt: # array has been implicitly cast to unsigned bytes
+ expected_len = len(lst)
+ else: # ndim = 0
+ expected_len = itemsize
+
+ # Reconstruct suboffsets from strides. Support for slicing
+ # could be added, but is currently only needed for test_getbuf().
+ suboffsets = ()
+ if result.suboffsets:
+ self.assertGreater(ndim, 0)
+
+ suboffset0 = 0
+ for n in range(1, ndim):
+ if shape[n] == 0:
+ break
+ if strides[n] <= 0:
+ suboffset0 += -strides[n] * (shape[n]-1)
+
+ suboffsets = [suboffset0] + [-1 for v in range(ndim-1)]
+
+ # Not correct if slicing has occurred in the first dimension.
+ stride0 = self.sizeof_void_p
+ if strides[0] < 0:
+ stride0 = -stride0
+ strides = [stride0] + list(strides[1:])
+
+ self.assertIs(result.obj, obj)
+ self.assertEqual(result.nbytes, expected_len)
+ self.assertEqual(result.itemsize, itemsize)
+ self.assertEqual(result.format, fmt)
+ self.assertEqual(result.readonly, readonly)
+ self.assertEqual(result.ndim, ndim)
+ self.assertEqual(result.shape, tuple(shape))
+ if not (sliced and suboffsets):
+ self.assertEqual(result.strides, tuple(strides))
+ self.assertEqual(result.suboffsets, tuple(suboffsets))
+
+ if isinstance(result, ndarray) or is_memoryview_format(fmt):
+ rep = result.tolist() if fmt else result.tobytes()
+ self.assertEqual(rep, lst)
+
+ if not fmt: # array has been cast to unsigned bytes,
+ return # the remaining tests won't work.
+
+ # PyBuffer_GetPointer() is the definition how to access an item.
+ # If PyBuffer_GetPointer(indices) is correct for all possible
+ # combinations of indices, the buffer is correct.
+ #
+ # Also test tobytes() against the flattened 'lst', with all items
+ # packed to bytes.
+ if not cast: # casts chop up 'lst' in different ways
+ b = bytearray()
+ buf_err = None
+ for ind in indices(shape):
+ try:
+ item1 = get_pointer(result, ind)
+ item2 = get_item(lst, ind)
+ if isinstance(item2, tuple):
+ x = struct.pack(fmt, *item2)
+ else:
+ x = struct.pack(fmt, item2)
+ b.extend(x)
+ except BufferError:
+ buf_err = True # re-exporter does not provide full buffer
+ break
+ self.assertEqual(item1, item2)
+
+ if not buf_err:
+ # test tobytes()
+ self.assertEqual(result.tobytes(), b)
+
+ if not buf_err and is_memoryview_format(fmt):
+
+ # lst := expected multi-dimensional logical representation
+ # flatten(lst) := elements in C-order
+ ff = fmt if fmt else 'B'
+ flattened = flatten(lst)
+
+ # Rules for 'A': if the array is already contiguous, return
+ # the array unaltered. Otherwise, return a contiguous 'C'
+ # representation.
+ for order in ['C', 'F', 'A']:
+ expected = result
+ if order == 'F':
+ if not is_contiguous(result, 'A') or \
+ is_contiguous(result, 'C'):
+ # For constructing the ndarray, convert the
+ # flattened logical representation to Fortran order.
+ trans = transpose(flattened, shape)
+ expected = ndarray(trans, shape=shape, format=ff,
+ flags=ND_FORTRAN)
+ else: # 'C', 'A'
+ if not is_contiguous(result, 'A') or \
+ is_contiguous(result, 'F') and order == 'C':
+ # The flattened list is already in C-order.
+ expected = ndarray(flattened, shape=shape, format=ff)
+ contig = get_contiguous(result, PyBUF_READ, order)
+ contig = get_contiguous(result, PyBUF_READ, order)
+ self.assertEqual(contig.tobytes(), b)
+ self.assertTrue(cmp_contig(contig, expected))
+
+ if is_memoryview_format(fmt):
+ try:
+ m = memoryview(result)
+ except BufferError: # re-exporter does not provide full information
+ return
+ ex = result.obj if isinstance(result, memoryview) else result
+ self.assertIs(m.obj, ex)
+ self.assertEqual(m.nbytes, expected_len)
+ self.assertEqual(m.itemsize, itemsize)
+ self.assertEqual(m.format, fmt)
+ self.assertEqual(m.readonly, readonly)
+ self.assertEqual(m.ndim, ndim)
+ self.assertEqual(m.shape, tuple(shape))
+ if not (sliced and suboffsets):
+ self.assertEqual(m.strides, tuple(strides))
+ self.assertEqual(m.suboffsets, tuple(suboffsets))
+
+ n = 1 if ndim == 0 else len(lst)
+ self.assertEqual(len(m), n)
+
+ rep = result.tolist() if fmt else result.tobytes()
+ self.assertEqual(rep, lst)
+ self.assertEqual(m, result)
+
+ def verify_getbuf(self, orig_ex, ex, req, sliced=False):
+ def simple_fmt(ex):
+ return ex.format == '' or ex.format == 'B'
+ def match(req, flag):
+ return ((req&flag) == flag)
+
+ if (# writable request to read-only exporter
+ (ex.readonly and match(req, PyBUF_WRITABLE)) or
+ # cannot match explicit contiguity request
+ (match(req, PyBUF_C_CONTIGUOUS) and not ex.c_contiguous) or
+ (match(req, PyBUF_F_CONTIGUOUS) and not ex.f_contiguous) or
+ (match(req, PyBUF_ANY_CONTIGUOUS) and not ex.contiguous) or
+ # buffer needs suboffsets
+ (not match(req, PyBUF_INDIRECT) and ex.suboffsets) or
+ # buffer without strides must be C-contiguous
+ (not match(req, PyBUF_STRIDES) and not ex.c_contiguous) or
+ # PyBUF_SIMPLE|PyBUF_FORMAT and PyBUF_WRITABLE|PyBUF_FORMAT
+ (not match(req, PyBUF_ND) and match(req, PyBUF_FORMAT))):
+
+ self.assertRaises(BufferError, ndarray, ex, getbuf=req)
+ return
+
+ if isinstance(ex, ndarray) or is_memoryview_format(ex.format):
+ lst = ex.tolist()
+ else:
+ nd = ndarray(ex, getbuf=PyBUF_FULL_RO)
+ lst = nd.tolist()
+
+ # The consumer may have requested default values or a NULL format.
+ ro = 0 if match(req, PyBUF_WRITABLE) else ex.readonly
+ fmt = ex.format
+ itemsize = ex.itemsize
+ ndim = ex.ndim
+ if not match(req, PyBUF_FORMAT):
+ # itemsize refers to the original itemsize before the cast.
+ # The equality product(shape) * itemsize = len still holds.
+ # The equality calcsize(format) = itemsize does _not_ hold.
+ fmt = ''
+ lst = orig_ex.tobytes() # Issue 12834
+ if not match(req, PyBUF_ND):
+ ndim = 1
+ shape = orig_ex.shape if match(req, PyBUF_ND) else ()
+ strides = orig_ex.strides if match(req, PyBUF_STRIDES) else ()
+
+ nd = ndarray(ex, getbuf=req)
+ self.verify(nd, obj=ex,
+ itemsize=itemsize, fmt=fmt, readonly=ro,
+ ndim=ndim, shape=shape, strides=strides,
+ lst=lst, sliced=sliced)
+
+ def test_ndarray_getbuf(self):
+ requests = (
+ # distinct flags
+ PyBUF_INDIRECT, PyBUF_STRIDES, PyBUF_ND, PyBUF_SIMPLE,
+ PyBUF_C_CONTIGUOUS, PyBUF_F_CONTIGUOUS, PyBUF_ANY_CONTIGUOUS,
+ # compound requests
+ PyBUF_FULL, PyBUF_FULL_RO,
+ PyBUF_RECORDS, PyBUF_RECORDS_RO,
+ PyBUF_STRIDED, PyBUF_STRIDED_RO,
+ PyBUF_CONTIG, PyBUF_CONTIG_RO,
+ )
+ # items and format
+ items_fmt = (
+ ([True if x % 2 else False for x in range(12)], '?'),
+ ([1,2,3,4,5,6,7,8,9,10,11,12], 'b'),
+ ([1,2,3,4,5,6,7,8,9,10,11,12], 'B'),
+ ([(2**31-x) if x % 2 else (-2**31+x) for x in range(12)], 'l')
+ )
+ # shape, strides, offset
+ structure = (
+ ([], [], 0),
+ ([12], [], 0),
+ ([12], [-1], 11),
+ ([6], [2], 0),
+ ([6], [-2], 11),
+ ([3, 4], [], 0),
+ ([3, 4], [-4, -1], 11),
+ ([2, 2], [4, 1], 4),
+ ([2, 2], [-4, -1], 8)
+ )
+ # ndarray creation flags
+ ndflags = (
+ 0, ND_WRITABLE, ND_FORTRAN, ND_FORTRAN|ND_WRITABLE,
+ ND_PIL, ND_PIL|ND_WRITABLE
+ )
+ # flags that can actually be used as flags
+ real_flags = (0, PyBUF_WRITABLE, PyBUF_FORMAT,
+ PyBUF_WRITABLE|PyBUF_FORMAT)
+
+ for items, fmt in items_fmt:
+ itemsize = struct.calcsize(fmt)
+ for shape, strides, offset in structure:
+ strides = [v * itemsize for v in strides]
+ offset *= itemsize
+ for flags in ndflags:
+
+ if strides and (flags&ND_FORTRAN):
+ continue
+ if not shape and (flags&ND_PIL):
+ continue
+
+ _items = items if shape else items[0]
+ ex1 = ndarray(_items, format=fmt, flags=flags,
+ shape=shape, strides=strides, offset=offset)
+ ex2 = ex1[::-2] if shape else None
+
+ m1 = memoryview(ex1)
+ if ex2:
+ m2 = memoryview(ex2)
+ if ex1.ndim == 0 or (ex1.ndim == 1 and shape and strides):
+ self.assertEqual(m1, ex1)
+ if ex2 and ex2.ndim == 1 and shape and strides:
+ self.assertEqual(m2, ex2)
+
+ for req in requests:
+ for bits in real_flags:
+ self.verify_getbuf(ex1, ex1, req|bits)
+ self.verify_getbuf(ex1, m1, req|bits)
+ if ex2:
+ self.verify_getbuf(ex2, ex2, req|bits,
+ sliced=True)
+ self.verify_getbuf(ex2, m2, req|bits,
+ sliced=True)
+
+ items = [1,2,3,4,5,6,7,8,9,10,11,12]
+
+ # ND_GETBUF_FAIL
+ ex = ndarray(items, shape=[12], flags=ND_GETBUF_FAIL)
+ self.assertRaises(BufferError, ndarray, ex)
+
+ # Request complex structure from a simple exporter. In this
+ # particular case the test object is not PEP-3118 compliant.
+ base = ndarray([9], [1])
+ ex = ndarray(base, getbuf=PyBUF_SIMPLE)
+ self.assertRaises(BufferError, ndarray, ex, getbuf=PyBUF_WRITABLE)
+ self.assertRaises(BufferError, ndarray, ex, getbuf=PyBUF_ND)
+ self.assertRaises(BufferError, ndarray, ex, getbuf=PyBUF_STRIDES)
+ self.assertRaises(BufferError, ndarray, ex, getbuf=PyBUF_C_CONTIGUOUS)
+ self.assertRaises(BufferError, ndarray, ex, getbuf=PyBUF_F_CONTIGUOUS)
+ self.assertRaises(BufferError, ndarray, ex, getbuf=PyBUF_ANY_CONTIGUOUS)
+ nd = ndarray(ex, getbuf=PyBUF_SIMPLE)
+
+ def test_ndarray_exceptions(self):
+ nd = ndarray([9], [1])
+ ndm = ndarray([9], [1], flags=ND_VAREXPORT)
+
+ # Initialization of a new ndarray or mutation of an existing array.
+ for c in (ndarray, nd.push, ndm.push):
+ # Invalid types.
+ self.assertRaises(TypeError, c, {1,2,3})
+ self.assertRaises(TypeError, c, [1,2,'3'])
+ self.assertRaises(TypeError, c, [1,2,(3,4)])
+ self.assertRaises(TypeError, c, [1,2,3], shape={3})
+ self.assertRaises(TypeError, c, [1,2,3], shape=[3], strides={1})
+ self.assertRaises(TypeError, c, [1,2,3], shape=[3], offset=[])
+ self.assertRaises(TypeError, c, [1], shape=[1], format={})
+ self.assertRaises(TypeError, c, [1], shape=[1], flags={})
+ self.assertRaises(TypeError, c, [1], shape=[1], getbuf={})
+
+ # ND_FORTRAN flag is only valid without strides.
+ self.assertRaises(TypeError, c, [1], shape=[1], strides=[1],
+ flags=ND_FORTRAN)
+
+ # ND_PIL flag is only valid with ndim > 0.
+ self.assertRaises(TypeError, c, [1], shape=[], flags=ND_PIL)
+
+ # Invalid items.
+ self.assertRaises(ValueError, c, [], shape=[1])
+ self.assertRaises(ValueError, c, ['XXX'], shape=[1], format="L")
+ # Invalid combination of items and format.
+ self.assertRaises(struct.error, c, [1000], shape=[1], format="B")
+ self.assertRaises(ValueError, c, [1,(2,3)], shape=[2], format="B")
+ self.assertRaises(ValueError, c, [1,2,3], shape=[3], format="QL")
+
+ # Invalid ndim.
+ n = ND_MAX_NDIM+1
+ self.assertRaises(ValueError, c, [1]*n, shape=[1]*n)
+
+ # Invalid shape.
+ self.assertRaises(ValueError, c, [1], shape=[-1])
+ self.assertRaises(ValueError, c, [1,2,3], shape=['3'])
+ self.assertRaises(OverflowError, c, [1], shape=[2**128])
+ # prod(shape) * itemsize != len(items)
+ self.assertRaises(ValueError, c, [1,2,3,4,5], shape=[2,2], offset=3)
+
+ # Invalid strides.
+ self.assertRaises(ValueError, c, [1,2,3], shape=[3], strides=['1'])
+ self.assertRaises(OverflowError, c, [1], shape=[1],
+ strides=[2**128])
+
+ # Invalid combination of strides and shape.
+ self.assertRaises(ValueError, c, [1,2], shape=[2,1], strides=[1])
+ # Invalid combination of strides and format.
+ self.assertRaises(ValueError, c, [1,2,3,4], shape=[2], strides=[3],
+ format="L")
+
+ # Invalid offset.
+ self.assertRaises(ValueError, c, [1,2,3], shape=[3], offset=4)
+ self.assertRaises(ValueError, c, [1,2,3], shape=[1], offset=3,
+ format="L")
+
+ # Invalid format.
+ self.assertRaises(ValueError, c, [1,2,3], shape=[3], format="")
+ self.assertRaises(struct.error, c, [(1,2,3)], shape=[1],
+ format="@#$")
+
+ # Striding out of the memory bounds.
+ items = [1,2,3,4,5,6,7,8,9,10]
+ self.assertRaises(ValueError, c, items, shape=[2,3],
+ strides=[-3, -2], offset=5)
+
+ # Constructing consumer: format argument invalid.
+ self.assertRaises(TypeError, c, bytearray(), format="Q")
+
+ # Constructing original base object: getbuf argument invalid.
+ self.assertRaises(TypeError, c, [1], shape=[1], getbuf=PyBUF_FULL)
+
+ # Shape argument is mandatory for original base objects.
+ self.assertRaises(TypeError, c, [1])
+
+
+ # PyBUF_WRITABLE request to read-only provider.
+ self.assertRaises(BufferError, ndarray, b'123', getbuf=PyBUF_WRITABLE)
+
+ # ND_VAREXPORT can only be specified during construction.
+ nd = ndarray([9], [1], flags=ND_VAREXPORT)
+ self.assertRaises(ValueError, nd.push, [1], [1], flags=ND_VAREXPORT)
+
+ # Invalid operation for consumers: push/pop
+ nd = ndarray(b'123')
+ self.assertRaises(BufferError, nd.push, [1], [1])
+ self.assertRaises(BufferError, nd.pop)
+
+ # ND_VAREXPORT not set: push/pop fail with exported buffers
+ nd = ndarray([9], [1])
+ nd.push([1], [1])
+ m = memoryview(nd)
+ self.assertRaises(BufferError, nd.push, [1], [1])
+ self.assertRaises(BufferError, nd.pop)
+ m.release()
+ nd.pop()
+
+ # Single remaining buffer: pop fails
+ self.assertRaises(BufferError, nd.pop)
+ del nd
+
+ # get_pointer()
+ self.assertRaises(TypeError, get_pointer, {}, [1,2,3])
+ self.assertRaises(TypeError, get_pointer, b'123', {})
+
+ nd = ndarray(list(range(100)), shape=[1]*100)
+ self.assertRaises(ValueError, get_pointer, nd, [5])
+
+ nd = ndarray(list(range(12)), shape=[3,4])
+ self.assertRaises(ValueError, get_pointer, nd, [2,3,4])
+ self.assertRaises(ValueError, get_pointer, nd, [3,3])
+ self.assertRaises(ValueError, get_pointer, nd, [-3,3])
+ self.assertRaises(OverflowError, get_pointer, nd, [1<<64,3])
+
+ # tolist() needs format
+ ex = ndarray([1,2,3], shape=[3], format='L')
+ nd = ndarray(ex, getbuf=PyBUF_SIMPLE)
+ self.assertRaises(ValueError, nd.tolist)
+
+ # memoryview_from_buffer()
+ ex1 = ndarray([1,2,3], shape=[3], format='L')
+ ex2 = ndarray(ex1)
+ nd = ndarray(ex2)
+ self.assertRaises(TypeError, nd.memoryview_from_buffer)
+
+ nd = ndarray([(1,)*200], shape=[1], format='L'*200)
+ self.assertRaises(TypeError, nd.memoryview_from_buffer)
+
+ n = ND_MAX_NDIM
+ nd = ndarray(list(range(n)), shape=[1]*n)
+ self.assertRaises(ValueError, nd.memoryview_from_buffer)
+
+ # get_contiguous()
+ nd = ndarray([1], shape=[1])
+ self.assertRaises(TypeError, get_contiguous, 1, 2, 3, 4, 5)
+ self.assertRaises(TypeError, get_contiguous, nd, "xyz", 'C')
+ self.assertRaises(OverflowError, get_contiguous, nd, 2**64, 'C')
+ self.assertRaises(TypeError, get_contiguous, nd, PyBUF_READ, 961)
+ self.assertRaises(UnicodeEncodeError, get_contiguous, nd, PyBUF_READ,
+ '\u2007')
+
+ # cmp_contig()
+ nd = ndarray([1], shape=[1])
+ self.assertRaises(TypeError, cmp_contig, 1, 2, 3, 4, 5)
+ self.assertRaises(TypeError, cmp_contig, {}, nd)
+ self.assertRaises(TypeError, cmp_contig, nd, {})
+
+ # is_contiguous()
+ nd = ndarray([1], shape=[1])
+ self.assertRaises(TypeError, is_contiguous, 1, 2, 3, 4, 5)
+ self.assertRaises(TypeError, is_contiguous, {}, 'A')
+ self.assertRaises(TypeError, is_contiguous, nd, 201)
+
+ def test_ndarray_linked_list(self):
+ for perm in permutations(range(5)):
+ m = [0]*5
+ nd = ndarray([1,2,3], shape=[3], flags=ND_VAREXPORT)
+ m[0] = memoryview(nd)
+
+ for i in range(1, 5):
+ nd.push([1,2,3], shape=[3])
+ m[i] = memoryview(nd)
+
+ for i in range(5):
+ m[perm[i]].release()
+
+ self.assertRaises(BufferError, nd.pop)
+ del nd
+
+ def test_ndarray_format_scalar(self):
+ # ndim = 0: scalar
+ for fmt, scalar, _ in iter_format(0):
+ itemsize = struct.calcsize(fmt)
+ nd = ndarray(scalar, shape=(), format=fmt)
+ self.verify(nd, obj=None,
+ itemsize=itemsize, fmt=fmt, readonly=1,
+ ndim=0, shape=(), strides=(),
+ lst=scalar)
+
+ def test_ndarray_format_shape(self):
+ # ndim = 1, shape = [n]
+ nitems = randrange(1, 10)
+ for fmt, items, _ in iter_format(nitems):
+ itemsize = struct.calcsize(fmt)
+ for flags in (0, ND_PIL):
+ nd = ndarray(items, shape=[nitems], format=fmt, flags=flags)
+ self.verify(nd, obj=None,
+ itemsize=itemsize, fmt=fmt, readonly=1,
+ ndim=1, shape=(nitems,), strides=(itemsize,),
+ lst=items)
+
+ def test_ndarray_format_strides(self):
+ # ndim = 1, strides
+ nitems = randrange(1, 30)
+ for fmt, items, _ in iter_format(nitems):
+ itemsize = struct.calcsize(fmt)
+ for step in range(-5, 5):
+ if step == 0:
+ continue
+
+ shape = [len(items[::step])]
+ strides = [step*itemsize]
+ offset = itemsize*(nitems-1) if step < 0 else 0
+
+ for flags in (0, ND_PIL):
+ nd = ndarray(items, shape=shape, strides=strides,
+ format=fmt, offset=offset, flags=flags)
+ self.verify(nd, obj=None,
+ itemsize=itemsize, fmt=fmt, readonly=1,
+ ndim=1, shape=shape, strides=strides,
+ lst=items[::step])
+
+ def test_ndarray_fortran(self):
+ items = [1,2,3,4,5,6,7,8,9,10,11,12]
+ ex = ndarray(items, shape=(3, 4), strides=(1, 3))
+ nd = ndarray(ex, getbuf=PyBUF_F_CONTIGUOUS|PyBUF_FORMAT)
+ self.assertEqual(nd.tolist(), farray(items, (3, 4)))
+
+ def test_ndarray_multidim(self):
+ for ndim in range(5):
+ shape_t = [randrange(2, 10) for _ in range(ndim)]
+ nitems = prod(shape_t)
+ for shape in permutations(shape_t):
+
+ fmt, items, _ = randitems(nitems)
+ itemsize = struct.calcsize(fmt)
+
+ for flags in (0, ND_PIL):
+ if ndim == 0 and flags == ND_PIL:
+ continue
+
+ # C array
+ nd = ndarray(items, shape=shape, format=fmt, flags=flags)
+
+ strides = strides_from_shape(ndim, shape, itemsize, 'C')
+ lst = carray(items, shape)
+ self.verify(nd, obj=None,
+ itemsize=itemsize, fmt=fmt, readonly=1,
+ ndim=ndim, shape=shape, strides=strides,
+ lst=lst)
+
+ if is_memoryview_format(fmt):
+ # memoryview: reconstruct strides
+ ex = ndarray(items, shape=shape, format=fmt)
+ nd = ndarray(ex, getbuf=PyBUF_CONTIG_RO|PyBUF_FORMAT)
+ self.assertTrue(nd.strides == ())
+ mv = nd.memoryview_from_buffer()
+ self.verify(mv, obj=None,
+ itemsize=itemsize, fmt=fmt, readonly=1,
+ ndim=ndim, shape=shape, strides=strides,
+ lst=lst)
+
+ # Fortran array
+ nd = ndarray(items, shape=shape, format=fmt,
+ flags=flags|ND_FORTRAN)
+
+ strides = strides_from_shape(ndim, shape, itemsize, 'F')
+ lst = farray(items, shape)
+ self.verify(nd, obj=None,
+ itemsize=itemsize, fmt=fmt, readonly=1,
+ ndim=ndim, shape=shape, strides=strides,
+ lst=lst)
+
+ def test_ndarray_index_invalid(self):
+ # not writable
+ nd = ndarray([1], shape=[1])
+ self.assertRaises(TypeError, nd.__setitem__, 1, 8)
+ mv = memoryview(nd)
+ self.assertEqual(mv, nd)
+ self.assertRaises(TypeError, mv.__setitem__, 1, 8)
+
+ # cannot be deleted
+ nd = ndarray([1], shape=[1], flags=ND_WRITABLE)
+ self.assertRaises(TypeError, nd.__delitem__, 1)
+ mv = memoryview(nd)
+ self.assertEqual(mv, nd)
+ self.assertRaises(TypeError, mv.__delitem__, 1)
+
+ # overflow
+ nd = ndarray([1], shape=[1], flags=ND_WRITABLE)
+ self.assertRaises(OverflowError, nd.__getitem__, 1<<64)
+ self.assertRaises(OverflowError, nd.__setitem__, 1<<64, 8)
+ mv = memoryview(nd)
+ self.assertEqual(mv, nd)
+ self.assertRaises(IndexError, mv.__getitem__, 1<<64)
+ self.assertRaises(IndexError, mv.__setitem__, 1<<64, 8)
+
+ # format
+ items = [1,2,3,4,5,6,7,8]
+ nd = ndarray(items, shape=[len(items)], format="B", flags=ND_WRITABLE)
+ self.assertRaises(struct.error, nd.__setitem__, 2, 300)
+ self.assertRaises(ValueError, nd.__setitem__, 1, (100, 200))
+ mv = memoryview(nd)
+ self.assertEqual(mv, nd)
+ self.assertRaises(ValueError, mv.__setitem__, 2, 300)
+ self.assertRaises(TypeError, mv.__setitem__, 1, (100, 200))
+
+ items = [(1,2), (3,4), (5,6)]
+ nd = ndarray(items, shape=[len(items)], format="LQ", flags=ND_WRITABLE)
+ self.assertRaises(ValueError, nd.__setitem__, 2, 300)
+ self.assertRaises(struct.error, nd.__setitem__, 1, (b'\x001', 200))
+
+ def test_ndarray_index_scalar(self):
+ # scalar
+ nd = ndarray(1, shape=(), flags=ND_WRITABLE)
+ mv = memoryview(nd)
+ self.assertEqual(mv, nd)
+
+ x = nd[()]; self.assertEqual(x, 1)
+ x = nd[...]; self.assertEqual(x.tolist(), nd.tolist())
+
+ x = mv[()]; self.assertEqual(x, 1)
+ x = mv[...]; self.assertEqual(x.tolist(), nd.tolist())
+
+ self.assertRaises(TypeError, nd.__getitem__, 0)
+ self.assertRaises(TypeError, mv.__getitem__, 0)
+ self.assertRaises(TypeError, nd.__setitem__, 0, 8)
+ self.assertRaises(TypeError, mv.__setitem__, 0, 8)
+
+ self.assertEqual(nd.tolist(), 1)
+ self.assertEqual(mv.tolist(), 1)
+
+ nd[()] = 9; self.assertEqual(nd.tolist(), 9)
+ mv[()] = 9; self.assertEqual(mv.tolist(), 9)
+
+ nd[...] = 5; self.assertEqual(nd.tolist(), 5)
+ mv[...] = 5; self.assertEqual(mv.tolist(), 5)
+
+ def test_ndarray_index_null_strides(self):
+ ex = ndarray(list(range(2*4)), shape=[2, 4], flags=ND_WRITABLE)
+ nd = ndarray(ex, getbuf=PyBUF_CONTIG)
+
+ # Sub-views are only possible for full exporters.
+ self.assertRaises(BufferError, nd.__getitem__, 1)
+ # Same for slices.
+ self.assertRaises(BufferError, nd.__getitem__, slice(3,5,1))
+
+ def test_ndarray_index_getitem_single(self):
+ # getitem
+ for fmt, items, _ in iter_format(5):
+ nd = ndarray(items, shape=[5], format=fmt)
+ for i in range(-5, 5):
+ self.assertEqual(nd[i], items[i])
+
+ self.assertRaises(IndexError, nd.__getitem__, -6)
+ self.assertRaises(IndexError, nd.__getitem__, 5)
+
+ if is_memoryview_format(fmt):
+ mv = memoryview(nd)
+ self.assertEqual(mv, nd)
+ for i in range(-5, 5):
+ self.assertEqual(mv[i], items[i])
+
+ self.assertRaises(IndexError, mv.__getitem__, -6)
+ self.assertRaises(IndexError, mv.__getitem__, 5)
+
+ # getitem with null strides
+ for fmt, items, _ in iter_format(5):
+ ex = ndarray(items, shape=[5], flags=ND_WRITABLE, format=fmt)
+ nd = ndarray(ex, getbuf=PyBUF_CONTIG|PyBUF_FORMAT)
+
+ for i in range(-5, 5):
+ self.assertEqual(nd[i], items[i])
+
+ if is_memoryview_format(fmt):
+ mv = nd.memoryview_from_buffer()
+ self.assertIs(mv.__eq__(nd), NotImplemented)
+ for i in range(-5, 5):
+ self.assertEqual(mv[i], items[i])
+
+ # getitem with null format
+ items = [1,2,3,4,5]
+ ex = ndarray(items, shape=[5])
+ nd = ndarray(ex, getbuf=PyBUF_CONTIG_RO)
+ for i in range(-5, 5):
+ self.assertEqual(nd[i], items[i])
+
+ # getitem with null shape/strides/format
+ items = [1,2,3,4,5]
+ ex = ndarray(items, shape=[5])
+ nd = ndarray(ex, getbuf=PyBUF_SIMPLE)
+
+ for i in range(-5, 5):
+ self.assertEqual(nd[i], items[i])
+
+ def test_ndarray_index_setitem_single(self):
+ # assign single value
+ for fmt, items, single_item in iter_format(5):
+ nd = ndarray(items, shape=[5], format=fmt, flags=ND_WRITABLE)
+ for i in range(5):
+ items[i] = single_item
+ nd[i] = single_item
+ self.assertEqual(nd.tolist(), items)
+
+ self.assertRaises(IndexError, nd.__setitem__, -6, single_item)
+ self.assertRaises(IndexError, nd.__setitem__, 5, single_item)
+
+ if not is_memoryview_format(fmt):
+ continue
+
+ nd = ndarray(items, shape=[5], format=fmt, flags=ND_WRITABLE)
+ mv = memoryview(nd)
+ self.assertEqual(mv, nd)
+ for i in range(5):
+ items[i] = single_item
+ mv[i] = single_item
+ self.assertEqual(mv.tolist(), items)
+
+ self.assertRaises(IndexError, mv.__setitem__, -6, single_item)
+ self.assertRaises(IndexError, mv.__setitem__, 5, single_item)
+
+
+ # assign single value: lobject = robject
+ for fmt, items, single_item in iter_format(5):
+ nd = ndarray(items, shape=[5], format=fmt, flags=ND_WRITABLE)
+ for i in range(-5, 4):
+ items[i] = items[i+1]
+ nd[i] = nd[i+1]
+ self.assertEqual(nd.tolist(), items)
+
+ if not is_memoryview_format(fmt):
+ continue
+
+ nd = ndarray(items, shape=[5], format=fmt, flags=ND_WRITABLE)
+ mv = memoryview(nd)
+ self.assertEqual(mv, nd)
+ for i in range(-5, 4):
+ items[i] = items[i+1]
+ mv[i] = mv[i+1]
+ self.assertEqual(mv.tolist(), items)
+
+ def test_ndarray_index_getitem_multidim(self):
+ shape_t = (2, 3, 5)
+ nitems = prod(shape_t)
+ for shape in permutations(shape_t):
+
+ fmt, items, _ = randitems(nitems)
+
+ for flags in (0, ND_PIL):
+ # C array
+ nd = ndarray(items, shape=shape, format=fmt, flags=flags)
+ lst = carray(items, shape)
+
+ for i in range(-shape[0], shape[0]):
+ self.assertEqual(lst[i], nd[i].tolist())
+ for j in range(-shape[1], shape[1]):
+ self.assertEqual(lst[i][j], nd[i][j].tolist())
+ for k in range(-shape[2], shape[2]):
+ self.assertEqual(lst[i][j][k], nd[i][j][k])
+
+ # Fortran array
+ nd = ndarray(items, shape=shape, format=fmt,
+ flags=flags|ND_FORTRAN)
+ lst = farray(items, shape)
+
+ for i in range(-shape[0], shape[0]):
+ self.assertEqual(lst[i], nd[i].tolist())
+ for j in range(-shape[1], shape[1]):
+ self.assertEqual(lst[i][j], nd[i][j].tolist())
+ for k in range(shape[2], shape[2]):
+ self.assertEqual(lst[i][j][k], nd[i][j][k])
+
+ def test_ndarray_sequence(self):
+ nd = ndarray(1, shape=())
+ self.assertRaises(TypeError, eval, "1 in nd", locals())
+ mv = memoryview(nd)
+ self.assertEqual(mv, nd)
+ self.assertRaises(TypeError, eval, "1 in mv", locals())
+
+ for fmt, items, _ in iter_format(5):
+ nd = ndarray(items, shape=[5], format=fmt)
+ for i, v in enumerate(nd):
+ self.assertEqual(v, items[i])
+ self.assertTrue(v in nd)
+
+ if is_memoryview_format(fmt):
+ mv = memoryview(nd)
+ for i, v in enumerate(mv):
+ self.assertEqual(v, items[i])
+ self.assertTrue(v in mv)
+
+ def test_ndarray_slice_invalid(self):
+ items = [1,2,3,4,5,6,7,8]
+
+ # rvalue is not an exporter
+ xl = ndarray(items, shape=[8], flags=ND_WRITABLE)
+ ml = memoryview(xl)
+ self.assertRaises(TypeError, xl.__setitem__, slice(0,8,1), items)
+ self.assertRaises(TypeError, ml.__setitem__, slice(0,8,1), items)
+
+ # rvalue is not a full exporter
+ xl = ndarray(items, shape=[8], flags=ND_WRITABLE)
+ ex = ndarray(items, shape=[8], flags=ND_WRITABLE)
+ xr = ndarray(ex, getbuf=PyBUF_ND)
+ self.assertRaises(BufferError, xl.__setitem__, slice(0,8,1), xr)
+
+ # zero step
+ nd = ndarray(items, shape=[8], format="L", flags=ND_WRITABLE)
+ mv = memoryview(nd)
+ self.assertRaises(ValueError, nd.__getitem__, slice(0,1,0))
+ self.assertRaises(ValueError, mv.__getitem__, slice(0,1,0))
+
+ nd = ndarray(items, shape=[2,4], format="L", flags=ND_WRITABLE)
+ mv = memoryview(nd)
+
+ self.assertRaises(ValueError, nd.__getitem__,
+ (slice(0,1,1), slice(0,1,0)))
+ self.assertRaises(ValueError, nd.__getitem__,
+ (slice(0,1,0), slice(0,1,1)))
+ self.assertRaises(TypeError, nd.__getitem__, "@%$")
+ self.assertRaises(TypeError, nd.__getitem__, ("@%$", slice(0,1,1)))
+ self.assertRaises(TypeError, nd.__getitem__, (slice(0,1,1), {}))
+
+ # memoryview: not implemented
+ self.assertRaises(NotImplementedError, mv.__getitem__,
+ (slice(0,1,1), slice(0,1,0)))
+ self.assertRaises(TypeError, mv.__getitem__, "@%$")
+
+ # differing format
+ xl = ndarray(items, shape=[8], format="B", flags=ND_WRITABLE)
+ xr = ndarray(items, shape=[8], format="b")
+ ml = memoryview(xl)
+ mr = memoryview(xr)
+ self.assertRaises(ValueError, xl.__setitem__, slice(0,1,1), xr[7:8])
+ self.assertEqual(xl.tolist(), items)
+ self.assertRaises(ValueError, ml.__setitem__, slice(0,1,1), mr[7:8])
+ self.assertEqual(ml.tolist(), items)
+
+ # differing itemsize
+ xl = ndarray(items, shape=[8], format="B", flags=ND_WRITABLE)
+ yr = ndarray(items, shape=[8], format="L")
+ ml = memoryview(xl)
+ mr = memoryview(xr)
+ self.assertRaises(ValueError, xl.__setitem__, slice(0,1,1), xr[7:8])
+ self.assertEqual(xl.tolist(), items)
+ self.assertRaises(ValueError, ml.__setitem__, slice(0,1,1), mr[7:8])
+ self.assertEqual(ml.tolist(), items)
+
+ # differing ndim
+ xl = ndarray(items, shape=[2, 4], format="b", flags=ND_WRITABLE)
+ xr = ndarray(items, shape=[8], format="b")
+ ml = memoryview(xl)
+ mr = memoryview(xr)
+ self.assertRaises(ValueError, xl.__setitem__, slice(0,1,1), xr[7:8])
+ self.assertEqual(xl.tolist(), [[1,2,3,4], [5,6,7,8]])
+ self.assertRaises(NotImplementedError, ml.__setitem__, slice(0,1,1),
+ mr[7:8])
+
+ # differing shape
+ xl = ndarray(items, shape=[8], format="b", flags=ND_WRITABLE)
+ xr = ndarray(items, shape=[8], format="b")
+ ml = memoryview(xl)
+ mr = memoryview(xr)
+ self.assertRaises(ValueError, xl.__setitem__, slice(0,2,1), xr[7:8])
+ self.assertEqual(xl.tolist(), items)
+ self.assertRaises(ValueError, ml.__setitem__, slice(0,2,1), mr[7:8])
+ self.assertEqual(ml.tolist(), items)
+
+ # _testbuffer.c module functions
+ self.assertRaises(TypeError, slice_indices, slice(0,1,2), {})
+ self.assertRaises(TypeError, slice_indices, "###########", 1)
+ self.assertRaises(ValueError, slice_indices, slice(0,1,0), 4)
+
+ x = ndarray(items, shape=[8], format="b", flags=ND_PIL)
+ self.assertRaises(TypeError, x.add_suboffsets)
+
+ ex = ndarray(items, shape=[8], format="B")
+ x = ndarray(ex, getbuf=PyBUF_SIMPLE)
+ self.assertRaises(TypeError, x.add_suboffsets)
+
+ def test_ndarray_slice_zero_shape(self):
+ items = [1,2,3,4,5,6,7,8,9,10,11,12]
+
+ x = ndarray(items, shape=[12], format="L", flags=ND_WRITABLE)
+ y = ndarray(items, shape=[12], format="L")
+ x[4:4] = y[9:9]
+ self.assertEqual(x.tolist(), items)
+
+ ml = memoryview(x)
+ mr = memoryview(y)
+ self.assertEqual(ml, x)
+ self.assertEqual(ml, y)
+ ml[4:4] = mr[9:9]
+ self.assertEqual(ml.tolist(), items)
+
+ x = ndarray(items, shape=[3, 4], format="L", flags=ND_WRITABLE)
+ y = ndarray(items, shape=[4, 3], format="L")
+ x[1:2, 2:2] = y[1:2, 3:3]
+ self.assertEqual(x.tolist(), carray(items, [3, 4]))
+
+ def test_ndarray_slice_multidim(self):
+ shape_t = (2, 3, 5)
+ ndim = len(shape_t)
+ nitems = prod(shape_t)
+ for shape in permutations(shape_t):
+
+ fmt, items, _ = randitems(nitems)
+ itemsize = struct.calcsize(fmt)
+
+ for flags in (0, ND_PIL):
+ nd = ndarray(items, shape=shape, format=fmt, flags=flags)
+ lst = carray(items, shape)
+
+ for slices in rslices_ndim(ndim, shape):
+
+ listerr = None
+ try:
+ sliced = multislice(lst, slices)
+ except Exception as e:
+ listerr = e.__class__
+
+ nderr = None
+ try:
+ ndsliced = nd[slices]
+ except Exception as e:
+ nderr = e.__class__
+
+ if nderr or listerr:
+ self.assertIs(nderr, listerr)
+ else:
+ self.assertEqual(ndsliced.tolist(), sliced)
+
+ def test_ndarray_slice_redundant_suboffsets(self):
+ shape_t = (2, 3, 5, 2)
+ ndim = len(shape_t)
+ nitems = prod(shape_t)
+ for shape in permutations(shape_t):
+
+ fmt, items, _ = randitems(nitems)
+ itemsize = struct.calcsize(fmt)
+
+ nd = ndarray(items, shape=shape, format=fmt)
+ nd.add_suboffsets()
+ ex = ndarray(items, shape=shape, format=fmt)
+ ex.add_suboffsets()
+ mv = memoryview(ex)
+ lst = carray(items, shape)
+
+ for slices in rslices_ndim(ndim, shape):
+
+ listerr = None
+ try:
+ sliced = multislice(lst, slices)
+ except Exception as e:
+ listerr = e.__class__
+
+ nderr = None
+ try:
+ ndsliced = nd[slices]
+ except Exception as e:
+ nderr = e.__class__
+
+ if nderr or listerr:
+ self.assertIs(nderr, listerr)
+ else:
+ self.assertEqual(ndsliced.tolist(), sliced)
+
+ def test_ndarray_slice_assign_single(self):
+ for fmt, items, _ in iter_format(5):
+ for lslice in genslices(5):
+ for rslice in genslices(5):
+ for flags in (0, ND_PIL):
+
+ f = flags|ND_WRITABLE
+ nd = ndarray(items, shape=[5], format=fmt, flags=f)
+ ex = ndarray(items, shape=[5], format=fmt, flags=f)
+ mv = memoryview(ex)
+
+ lsterr = None
+ diff_structure = None
+ lst = items[:]
+ try:
+ lval = lst[lslice]
+ rval = lst[rslice]
+ lst[lslice] = lst[rslice]
+ diff_structure = len(lval) != len(rval)
+ except Exception as e:
+ lsterr = e.__class__
+
+ nderr = None
+ try:
+ nd[lslice] = nd[rslice]
+ except Exception as e:
+ nderr = e.__class__
+
+ if diff_structure: # ndarray cannot change shape
+ self.assertIs(nderr, ValueError)
+ else:
+ self.assertEqual(nd.tolist(), lst)
+ self.assertIs(nderr, lsterr)
+
+ if not is_memoryview_format(fmt):
+ continue
+
+ mverr = None
+ try:
+ mv[lslice] = mv[rslice]
+ except Exception as e:
+ mverr = e.__class__
+
+ if diff_structure: # memoryview cannot change shape
+ self.assertIs(mverr, ValueError)
+ else:
+ self.assertEqual(mv.tolist(), lst)
+ self.assertEqual(mv, nd)
+ self.assertIs(mverr, lsterr)
+ self.verify(mv, obj=ex,
+ itemsize=nd.itemsize, fmt=fmt, readonly=0,
+ ndim=nd.ndim, shape=nd.shape, strides=nd.strides,
+ lst=nd.tolist())
+
+ def test_ndarray_slice_assign_multidim(self):
+ shape_t = (2, 3, 5)
+ ndim = len(shape_t)
+ nitems = prod(shape_t)
+ for shape in permutations(shape_t):
+
+ fmt, items, _ = randitems(nitems)
+
+ for flags in (0, ND_PIL):
+ for _ in range(ITERATIONS):
+ lslices, rslices = randslice_from_shape(ndim, shape)
+
+ nd = ndarray(items, shape=shape, format=fmt,
+ flags=flags|ND_WRITABLE)
+ lst = carray(items, shape)
+
+ listerr = None
+ try:
+ result = multislice_assign(lst, lst, lslices, rslices)
+ except Exception as e:
+ listerr = e.__class__
+
+ nderr = None
+ try:
+ nd[lslices] = nd[rslices]
+ except Exception as e:
+ nderr = e.__class__
+
+ if nderr or listerr:
+ self.assertIs(nderr, listerr)
+ else:
+ self.assertEqual(nd.tolist(), result)
+
+ def test_ndarray_random(self):
+ # construction of valid arrays
+ for _ in range(ITERATIONS):
+ for fmt in fmtdict['@']:
+ itemsize = struct.calcsize(fmt)
+
+ t = rand_structure(itemsize, True, maxdim=MAXDIM,
+ maxshape=MAXSHAPE)
+ self.assertTrue(verify_structure(*t))
+ items = randitems_from_structure(fmt, t)
+
+ x = ndarray_from_structure(items, fmt, t)
+ xlist = x.tolist()
+
+ mv = memoryview(x)
+ if is_memoryview_format(fmt):
+ mvlist = mv.tolist()
+ self.assertEqual(mvlist, xlist)
+
+ if t[2] > 0:
+ # ndim > 0: test against suboffsets representation.
+ y = ndarray_from_structure(items, fmt, t, flags=ND_PIL)
+ ylist = y.tolist()
+ self.assertEqual(xlist, ylist)
+
+ mv = memoryview(y)
+ if is_memoryview_format(fmt):
+ self.assertEqual(mv, y)
+ mvlist = mv.tolist()
+ self.assertEqual(mvlist, ylist)
+
+ if numpy_array:
+ shape = t[3]
+ if 0 in shape:
+ continue # http://projects.scipy.org/numpy/ticket/1910
+ z = numpy_array_from_structure(items, fmt, t)
+ self.verify(x, obj=None,
+ itemsize=z.itemsize, fmt=fmt, readonly=0,
+ ndim=z.ndim, shape=z.shape, strides=z.strides,
+ lst=z.tolist())
+
+ def test_ndarray_random_invalid(self):
+ # exceptions during construction of invalid arrays
+ for _ in range(ITERATIONS):
+ for fmt in fmtdict['@']:
+ itemsize = struct.calcsize(fmt)
+
+ t = rand_structure(itemsize, False, maxdim=MAXDIM,
+ maxshape=MAXSHAPE)
+ self.assertFalse(verify_structure(*t))
+ items = randitems_from_structure(fmt, t)
+
+ nderr = False
+ try:
+ x = ndarray_from_structure(items, fmt, t)
+ except Exception as e:
+ nderr = e.__class__
+ self.assertTrue(nderr)
+
+ if numpy_array:
+ numpy_err = False
+ try:
+ y = numpy_array_from_structure(items, fmt, t)
+ except Exception as e:
+ numpy_err = e.__class__
+
+ if 0: # http://projects.scipy.org/numpy/ticket/1910
+ self.assertTrue(numpy_err)
+
+ def test_ndarray_random_slice_assign(self):
+ # valid slice assignments
+ for _ in range(ITERATIONS):
+ for fmt in fmtdict['@']:
+ itemsize = struct.calcsize(fmt)
+
+ lshape, rshape, lslices, rslices = \
+ rand_aligned_slices(maxdim=MAXDIM, maxshape=MAXSHAPE)
+ tl = rand_structure(itemsize, True, shape=lshape)
+ tr = rand_structure(itemsize, True, shape=rshape)
+ self.assertTrue(verify_structure(*tl))
+ self.assertTrue(verify_structure(*tr))
+ litems = randitems_from_structure(fmt, tl)
+ ritems = randitems_from_structure(fmt, tr)
+
+ xl = ndarray_from_structure(litems, fmt, tl)
+ xr = ndarray_from_structure(ritems, fmt, tr)
+ xl[lslices] = xr[rslices]
+ xllist = xl.tolist()
+ xrlist = xr.tolist()
+
+ ml = memoryview(xl)
+ mr = memoryview(xr)
+ self.assertEqual(ml.tolist(), xllist)
+ self.assertEqual(mr.tolist(), xrlist)
+
+ if tl[2] > 0 and tr[2] > 0:
+ # ndim > 0: test against suboffsets representation.
+ yl = ndarray_from_structure(litems, fmt, tl, flags=ND_PIL)
+ yr = ndarray_from_structure(ritems, fmt, tr, flags=ND_PIL)
+ yl[lslices] = yr[rslices]
+ yllist = yl.tolist()
+ yrlist = yr.tolist()
+ self.assertEqual(xllist, yllist)
+ self.assertEqual(xrlist, yrlist)
+
+ ml = memoryview(yl)
+ mr = memoryview(yr)
+ self.assertEqual(ml.tolist(), yllist)
+ self.assertEqual(mr.tolist(), yrlist)
+
+ if numpy_array:
+ if 0 in lshape or 0 in rshape:
+ continue # http://projects.scipy.org/numpy/ticket/1910
+
+ zl = numpy_array_from_structure(litems, fmt, tl)
+ zr = numpy_array_from_structure(ritems, fmt, tr)
+ zl[lslices] = zr[rslices]
+
+ if not is_overlapping(tl) and not is_overlapping(tr):
+ # Slice assignment of overlapping structures
+ # is undefined in NumPy.
+ self.verify(xl, obj=None,
+ itemsize=zl.itemsize, fmt=fmt, readonly=0,
+ ndim=zl.ndim, shape=zl.shape,
+ strides=zl.strides, lst=zl.tolist())
+
+ self.verify(xr, obj=None,
+ itemsize=zr.itemsize, fmt=fmt, readonly=0,
+ ndim=zr.ndim, shape=zr.shape,
+ strides=zr.strides, lst=zr.tolist())
+
+ def test_ndarray_re_export(self):
+ items = [1,2,3,4,5,6,7,8,9,10,11,12]
+
+ nd = ndarray(items, shape=[3,4], flags=ND_PIL)
+ ex = ndarray(nd)
+
+ self.assertTrue(ex.flags & ND_PIL)
+ self.assertIs(ex.obj, nd)
+ self.assertEqual(ex.suboffsets, (0, -1))
+ self.assertFalse(ex.c_contiguous)
+ self.assertFalse(ex.f_contiguous)
+ self.assertFalse(ex.contiguous)
+
+ def test_ndarray_zero_shape(self):
+ # zeros in shape
+ for flags in (0, ND_PIL):
+ nd = ndarray([1,2,3], shape=[0], flags=flags)
+ mv = memoryview(nd)
+ self.assertEqual(mv, nd)
+ self.assertEqual(nd.tolist(), [])
+ self.assertEqual(mv.tolist(), [])
+
+ nd = ndarray([1,2,3], shape=[0,3,3], flags=flags)
+ self.assertEqual(nd.tolist(), [])
+
+ nd = ndarray([1,2,3], shape=[3,0,3], flags=flags)
+ self.assertEqual(nd.tolist(), [[], [], []])
+
+ nd = ndarray([1,2,3], shape=[3,3,0], flags=flags)
+ self.assertEqual(nd.tolist(),
+ [[[], [], []], [[], [], []], [[], [], []]])
+
+ def test_ndarray_zero_strides(self):
+ # zero strides
+ for flags in (0, ND_PIL):
+ nd = ndarray([1], shape=[5], strides=[0], flags=flags)
+ mv = memoryview(nd)
+ self.assertEqual(mv, nd)
+ self.assertEqual(nd.tolist(), [1, 1, 1, 1, 1])
+ self.assertEqual(mv.tolist(), [1, 1, 1, 1, 1])
+
+ def test_ndarray_offset(self):
+ nd = ndarray(list(range(20)), shape=[3], offset=7)
+ self.assertEqual(nd.offset, 7)
+ self.assertEqual(nd.tolist(), [7,8,9])
+
+ def test_ndarray_memoryview_from_buffer(self):
+ for flags in (0, ND_PIL):
+ nd = ndarray(list(range(3)), shape=[3], flags=flags)
+ m = nd.memoryview_from_buffer()
+ self.assertEqual(m, nd)
+
+ def test_ndarray_get_pointer(self):
+ for flags in (0, ND_PIL):
+ nd = ndarray(list(range(3)), shape=[3], flags=flags)
+ for i in range(3):
+ self.assertEqual(nd[i], get_pointer(nd, [i]))
+
+ def test_ndarray_tolist_null_strides(self):
+ ex = ndarray(list(range(20)), shape=[2,2,5])
+
+ nd = ndarray(ex, getbuf=PyBUF_ND|PyBUF_FORMAT)
+ self.assertEqual(nd.tolist(), ex.tolist())
+
+ m = memoryview(ex)
+ self.assertEqual(m.tolist(), ex.tolist())
+
+ def test_ndarray_cmp_contig(self):
+
+ self.assertFalse(cmp_contig(b"123", b"456"))
+
+ x = ndarray(list(range(12)), shape=[3,4])
+ y = ndarray(list(range(12)), shape=[4,3])
+ self.assertFalse(cmp_contig(x, y))
+
+ x = ndarray([1], shape=[1], format="B")
+ self.assertTrue(cmp_contig(x, b'\x01'))
+ self.assertTrue(cmp_contig(b'\x01', x))
+
+ def test_ndarray_hash(self):
+
+ a = array.array('L', [1,2,3])
+ nd = ndarray(a)
+ self.assertRaises(ValueError, hash, nd)
+
+ # one-dimensional
+ b = bytes(list(range(12)))
+
+ nd = ndarray(list(range(12)), shape=[12])
+ self.assertEqual(hash(nd), hash(b))
+
+ # C-contiguous
+ nd = ndarray(list(range(12)), shape=[3,4])
+ self.assertEqual(hash(nd), hash(b))
+
+ nd = ndarray(list(range(12)), shape=[3,2,2])
+ self.assertEqual(hash(nd), hash(b))
+
+ # Fortran contiguous
+ b = bytes(transpose(list(range(12)), shape=[4,3]))
+ nd = ndarray(list(range(12)), shape=[3,4], flags=ND_FORTRAN)
+ self.assertEqual(hash(nd), hash(b))
+
+ b = bytes(transpose(list(range(12)), shape=[2,3,2]))
+ nd = ndarray(list(range(12)), shape=[2,3,2], flags=ND_FORTRAN)
+ self.assertEqual(hash(nd), hash(b))
+
+ # suboffsets
+ b = bytes(list(range(12)))
+ nd = ndarray(list(range(12)), shape=[2,2,3], flags=ND_PIL)
+ self.assertEqual(hash(nd), hash(b))
+
+ # non-byte formats
+ nd = ndarray(list(range(12)), shape=[2,2,3], format='L')
+ self.assertEqual(hash(nd), hash(nd.tobytes()))
+
+ def test_memoryview_construction(self):
+
+ items_shape = [(9, []), ([1,2,3], [3]), (list(range(2*3*5)), [2,3,5])]
+
+ # NumPy style, C-contiguous:
+ for items, shape in items_shape:
+
+ # From PEP-3118 compliant exporter:
+ ex = ndarray(items, shape=shape)
+ m = memoryview(ex)
+ self.assertTrue(m.c_contiguous)
+ self.assertTrue(m.contiguous)
+
+ ndim = len(shape)
+ strides = strides_from_shape(ndim, shape, 1, 'C')
+ lst = carray(items, shape)
+
+ self.verify(m, obj=ex,
+ itemsize=1, fmt='B', readonly=1,
+ ndim=ndim, shape=shape, strides=strides,
+ lst=lst)
+
+ # From memoryview:
+ m2 = memoryview(m)
+ self.verify(m2, obj=ex,
+ itemsize=1, fmt='B', readonly=1,
+ ndim=ndim, shape=shape, strides=strides,
+ lst=lst)
+
+ # PyMemoryView_FromBuffer(): no strides
+ nd = ndarray(ex, getbuf=PyBUF_CONTIG_RO|PyBUF_FORMAT)
+ self.assertEqual(nd.strides, ())
+ m = nd.memoryview_from_buffer()
+ self.verify(m, obj=None,
+ itemsize=1, fmt='B', readonly=1,
+ ndim=ndim, shape=shape, strides=strides,
+ lst=lst)
+
+ # PyMemoryView_FromBuffer(): no format, shape, strides
+ nd = ndarray(ex, getbuf=PyBUF_SIMPLE)
+ self.assertEqual(nd.format, '')
+ self.assertEqual(nd.shape, ())
+ self.assertEqual(nd.strides, ())
+ m = nd.memoryview_from_buffer()
+
+ lst = [items] if ndim == 0 else items
+ self.verify(m, obj=None,
+ itemsize=1, fmt='B', readonly=1,
+ ndim=1, shape=[ex.nbytes], strides=(1,),
+ lst=lst)
+
+ # NumPy style, Fortran contiguous:
+ for items, shape in items_shape:
+
+ # From PEP-3118 compliant exporter:
+ ex = ndarray(items, shape=shape, flags=ND_FORTRAN)
+ m = memoryview(ex)
+ self.assertTrue(m.f_contiguous)
+ self.assertTrue(m.contiguous)
+
+ ndim = len(shape)
+ strides = strides_from_shape(ndim, shape, 1, 'F')
+ lst = farray(items, shape)
+
+ self.verify(m, obj=ex,
+ itemsize=1, fmt='B', readonly=1,
+ ndim=ndim, shape=shape, strides=strides,
+ lst=lst)
+
+ # From memoryview:
+ m2 = memoryview(m)
+ self.verify(m2, obj=ex,
+ itemsize=1, fmt='B', readonly=1,
+ ndim=ndim, shape=shape, strides=strides,
+ lst=lst)
+
+ # PIL style:
+ for items, shape in items_shape[1:]:
+
+ # From PEP-3118 compliant exporter:
+ ex = ndarray(items, shape=shape, flags=ND_PIL)
+ m = memoryview(ex)
+
+ ndim = len(shape)
+ lst = carray(items, shape)
+
+ self.verify(m, obj=ex,
+ itemsize=1, fmt='B', readonly=1,
+ ndim=ndim, shape=shape, strides=ex.strides,
+ lst=lst)
+
+ # From memoryview:
+ m2 = memoryview(m)
+ self.verify(m2, obj=ex,
+ itemsize=1, fmt='B', readonly=1,
+ ndim=ndim, shape=shape, strides=ex.strides,
+ lst=lst)
+
+ # Invalid number of arguments:
+ self.assertRaises(TypeError, memoryview, b'9', 'x')
+ # Not a buffer provider:
+ self.assertRaises(TypeError, memoryview, {})
+ # Non-compliant buffer provider:
+ ex = ndarray([1,2,3], shape=[3])
+ nd = ndarray(ex, getbuf=PyBUF_SIMPLE)
+ self.assertRaises(BufferError, memoryview, nd)
+ nd = ndarray(ex, getbuf=PyBUF_CONTIG_RO|PyBUF_FORMAT)
+ self.assertRaises(BufferError, memoryview, nd)
+
+ # ndim > 64
+ nd = ndarray([1]*128, shape=[1]*128, format='L')
+ self.assertRaises(ValueError, memoryview, nd)
+ self.assertRaises(ValueError, nd.memoryview_from_buffer)
+ self.assertRaises(ValueError, get_contiguous, nd, PyBUF_READ, 'C')
+ self.assertRaises(ValueError, get_contiguous, nd, PyBUF_READ, 'F')
+ self.assertRaises(ValueError, get_contiguous, nd[::-1], PyBUF_READ, 'C')
+
+ def test_memoryview_cast_zero_shape(self):
+ # Casts are undefined if shape contains zeros. These arrays are
+ # regarded as C-contiguous by Numpy and PyBuffer_GetContiguous(),
+ # so they are not caught by the test for C-contiguity in memory_cast().
+ items = [1,2,3]
+ for shape in ([0,3,3], [3,0,3], [0,3,3]):
+ ex = ndarray(items, shape=shape)
+ self.assertTrue(ex.c_contiguous)
+ msrc = memoryview(ex)
+ self.assertRaises(TypeError, msrc.cast, 'c')
+
+ def test_memoryview_struct_module(self):
+
+ class INT(object):
+ def __init__(self, val):
+ self.val = val
+ def __int__(self):
+ return self.val
+
+ class IDX(object):
+ def __init__(self, val):
+ self.val = val
+ def __index__(self):
+ return self.val
+
+ def f(): return 7
+
+ values = [INT(9), IDX(9),
+ 2.2+3j, Decimal("-21.1"), 12.2, Fraction(5, 2),
+ [1,2,3], {4,5,6}, {7:8}, (), (9,),
+ True, False, None, NotImplemented,
+ b'a', b'abc', bytearray(b'a'), bytearray(b'abc'),
+ 'a', 'abc', r'a', r'abc',
+ f, lambda x: x]
+
+ for fmt, items, item in iter_format(10, 'memoryview'):
+ ex = ndarray(items, shape=[10], format=fmt, flags=ND_WRITABLE)
+ nd = ndarray(items, shape=[10], format=fmt, flags=ND_WRITABLE)
+ m = memoryview(ex)
+
+ struct.pack_into(fmt, nd, 0, item)
+ m[0] = item
+ self.assertEqual(m[0], nd[0])
+
+ itemsize = struct.calcsize(fmt)
+ if 'P' in fmt:
+ continue
+
+ for v in values:
+ struct_err = None
+ try:
+ struct.pack_into(fmt, nd, itemsize, v)
+ except struct.error:
+ struct_err = struct.error
+
+ mv_err = None
+ try:
+ m[1] = v
+ except (TypeError, ValueError) as e:
+ mv_err = e.__class__
+
+ if struct_err or mv_err:
+ self.assertIsNot(struct_err, None)
+ self.assertIsNot(mv_err, None)
+ else:
+ self.assertEqual(m[1], nd[1])
+
+ def test_memoryview_cast_zero_strides(self):
+ # Casts are undefined if strides contains zeros. These arrays are
+ # (sometimes!) regarded as C-contiguous by Numpy, but not by
+ # PyBuffer_GetContiguous().
+ ex = ndarray([1,2,3], shape=[3], strides=[0])
+ self.assertFalse(ex.c_contiguous)
+ msrc = memoryview(ex)
+ self.assertRaises(TypeError, msrc.cast, 'c')
+
+ def test_memoryview_cast_invalid(self):
+ # invalid format
+ for sfmt in NON_BYTE_FORMAT:
+ sformat = '@' + sfmt if randrange(2) else sfmt
+ ssize = struct.calcsize(sformat)
+ for dfmt in NON_BYTE_FORMAT:
+ dformat = '@' + dfmt if randrange(2) else dfmt
+ dsize = struct.calcsize(dformat)
+ ex = ndarray(list(range(32)), shape=[32//ssize], format=sformat)
+ msrc = memoryview(ex)
+ self.assertRaises(TypeError, msrc.cast, dfmt, [32//dsize])
+
+ for sfmt, sitems, _ in iter_format(1):
+ ex = ndarray(sitems, shape=[1], format=sfmt)
+ msrc = memoryview(ex)
+ for dfmt, _, _ in iter_format(1):
+ if (not is_memoryview_format(sfmt) or
+ not is_memoryview_format(dfmt)):
+ self.assertRaises(ValueError, msrc.cast, dfmt,
+ [32//dsize])
+ else:
+ if not is_byte_format(sfmt) and not is_byte_format(dfmt):
+ self.assertRaises(TypeError, msrc.cast, dfmt,
+ [32//dsize])
+
+ # invalid shape
+ size_h = struct.calcsize('h')
+ size_d = struct.calcsize('d')
+ ex = ndarray(list(range(2*2*size_d)), shape=[2,2,size_d], format='h')
+ msrc = memoryview(ex)
+ self.assertRaises(TypeError, msrc.cast, shape=[2,2,size_h], format='d')
+
+ ex = ndarray(list(range(120)), shape=[1,2,3,4,5])
+ m = memoryview(ex)
+
+ # incorrect number of args
+ self.assertRaises(TypeError, m.cast)
+ self.assertRaises(TypeError, m.cast, 1, 2, 3)
+
+ # incorrect dest format type
+ self.assertRaises(TypeError, m.cast, {})
+
+ # incorrect dest format
+ self.assertRaises(ValueError, m.cast, "X")
+ self.assertRaises(ValueError, m.cast, "@X")
+ self.assertRaises(ValueError, m.cast, "@XY")
+
+ # dest format not implemented
+ self.assertRaises(ValueError, m.cast, "=B")
+ self.assertRaises(ValueError, m.cast, "!L")
+ self.assertRaises(ValueError, m.cast, "<P")
+ self.assertRaises(ValueError, m.cast, ">l")
+ self.assertRaises(ValueError, m.cast, "BI")
+ self.assertRaises(ValueError, m.cast, "xBI")
+
+ # src format not implemented
+ ex = ndarray([(1,2), (3,4)], shape=[2], format="II")
+ m = memoryview(ex)
+ self.assertRaises(NotImplementedError, m.__getitem__, 0)
+ self.assertRaises(NotImplementedError, m.__setitem__, 0, 8)
+ self.assertRaises(NotImplementedError, m.tolist)
+
+ # incorrect shape type
+ ex = ndarray(list(range(120)), shape=[1,2,3,4,5])
+ m = memoryview(ex)
+ self.assertRaises(TypeError, m.cast, "B", shape={})
+
+ # incorrect shape elements
+ ex = ndarray(list(range(120)), shape=[2*3*4*5])
+ m = memoryview(ex)
+ self.assertRaises(OverflowError, m.cast, "B", shape=[2**64])
+ self.assertRaises(ValueError, m.cast, "B", shape=[-1])
+ self.assertRaises(ValueError, m.cast, "B", shape=[2,3,4,5,6,7,-1])
+ self.assertRaises(ValueError, m.cast, "B", shape=[2,3,4,5,6,7,0])
+ self.assertRaises(TypeError, m.cast, "B", shape=[2,3,4,5,6,7,'x'])
+
+ # N-D -> N-D cast
+ ex = ndarray(list([9 for _ in range(3*5*7*11)]), shape=[3,5,7,11])
+ m = memoryview(ex)
+ self.assertRaises(TypeError, m.cast, "I", shape=[2,3,4,5])
+
+ # cast with ndim > 64
+ nd = ndarray(list(range(128)), shape=[128], format='I')
+ m = memoryview(nd)
+ self.assertRaises(ValueError, m.cast, 'I', [1]*128)
+
+ # view->len not a multiple of itemsize
+ ex = ndarray(list([9 for _ in range(3*5*7*11)]), shape=[3*5*7*11])
+ m = memoryview(ex)
+ self.assertRaises(TypeError, m.cast, "I", shape=[2,3,4,5])
+
+ # product(shape) * itemsize != buffer size
+ ex = ndarray(list([9 for _ in range(3*5*7*11)]), shape=[3*5*7*11])
+ m = memoryview(ex)
+ self.assertRaises(TypeError, m.cast, "B", shape=[2,3,4,5])
+
+ # product(shape) * itemsize overflow
+ nd = ndarray(list(range(128)), shape=[128], format='I')
+ m1 = memoryview(nd)
+ nd = ndarray(list(range(128)), shape=[128], format='B')
+ m2 = memoryview(nd)
+ if sys.maxsize == 2**63-1:
+ self.assertRaises(TypeError, m1.cast, 'B',
+ [7, 7, 73, 127, 337, 92737, 649657])
+ self.assertRaises(ValueError, m1.cast, 'B',
+ [2**20, 2**20, 2**10, 2**10, 2**3])
+ self.assertRaises(ValueError, m2.cast, 'I',
+ [2**20, 2**20, 2**10, 2**10, 2**1])
+ else:
+ self.assertRaises(TypeError, m1.cast, 'B',
+ [1, 2147483647])
+ self.assertRaises(ValueError, m1.cast, 'B',
+ [2**10, 2**10, 2**5, 2**5, 2**1])
+ self.assertRaises(ValueError, m2.cast, 'I',
+ [2**10, 2**10, 2**5, 2**3, 2**1])
+
+ def test_memoryview_cast(self):
+ bytespec = (
+ ('B', lambda ex: list(ex.tobytes())),
+ ('b', lambda ex: [x-256 if x > 127 else x for x in list(ex.tobytes())]),
+ ('c', lambda ex: [bytes(chr(x), 'latin-1') for x in list(ex.tobytes())]),
+ )
+
+ def iter_roundtrip(ex, m, items, fmt):
+ srcsize = struct.calcsize(fmt)
+ for bytefmt, to_bytelist in bytespec:
+
+ m2 = m.cast(bytefmt)
+ lst = to_bytelist(ex)
+ self.verify(m2, obj=ex,
+ itemsize=1, fmt=bytefmt, readonly=0,
+ ndim=1, shape=[31*srcsize], strides=(1,),
+ lst=lst, cast=True)
+
+ m3 = m2.cast(fmt)
+ self.assertEqual(m3, ex)
+ lst = ex.tolist()
+ self.verify(m3, obj=ex,
+ itemsize=srcsize, fmt=fmt, readonly=0,
+ ndim=1, shape=[31], strides=(srcsize,),
+ lst=lst, cast=True)
+
+ # cast from ndim = 0 to ndim = 1
+ srcsize = struct.calcsize('I')
+ ex = ndarray(9, shape=[], format='I')
+ destitems, destshape = cast_items(ex, 'B', 1)
+ m = memoryview(ex)
+ m2 = m.cast('B')
+ self.verify(m2, obj=ex,
+ itemsize=1, fmt='B', readonly=1,
+ ndim=1, shape=destshape, strides=(1,),
+ lst=destitems, cast=True)
+
+ # cast from ndim = 1 to ndim = 0
+ destsize = struct.calcsize('I')
+ ex = ndarray([9]*destsize, shape=[destsize], format='B')
+ destitems, destshape = cast_items(ex, 'I', destsize, shape=[])
+ m = memoryview(ex)
+ m2 = m.cast('I', shape=[])
+ self.verify(m2, obj=ex,
+ itemsize=destsize, fmt='I', readonly=1,
+ ndim=0, shape=(), strides=(),
+ lst=destitems, cast=True)
+
+ # array.array: roundtrip to/from bytes
+ for fmt, items, _ in iter_format(31, 'array'):
+ ex = array.array(fmt, items)
+ m = memoryview(ex)
+ iter_roundtrip(ex, m, items, fmt)
+
+ # ndarray: roundtrip to/from bytes
+ for fmt, items, _ in iter_format(31, 'memoryview'):
+ ex = ndarray(items, shape=[31], format=fmt, flags=ND_WRITABLE)
+ m = memoryview(ex)
+ iter_roundtrip(ex, m, items, fmt)
+
+ def test_memoryview_cast_1D_ND(self):
+ # Cast between C-contiguous buffers. At least one buffer must
+ # be 1D, at least one format must be 'c', 'b' or 'B'.
+ for _tshape in gencastshapes():
+ for char in fmtdict['@']:
+ tfmt = ('', '@')[randrange(2)] + char
+ tsize = struct.calcsize(tfmt)
+ n = prod(_tshape) * tsize
+ obj = 'memoryview' if is_byte_format(tfmt) else 'bytefmt'
+ for fmt, items, _ in iter_format(n, obj):
+ size = struct.calcsize(fmt)
+ shape = [n] if n > 0 else []
+ tshape = _tshape + [size]
+
+ ex = ndarray(items, shape=shape, format=fmt)
+ m = memoryview(ex)
+
+ titems, tshape = cast_items(ex, tfmt, tsize, shape=tshape)
+
+ if titems is None:
+ self.assertRaises(TypeError, m.cast, tfmt, tshape)
+ continue
+ if titems == 'nan':
+ continue # NaNs in lists are a recipe for trouble.
+
+ # 1D -> ND
+ nd = ndarray(titems, shape=tshape, format=tfmt)
+
+ m2 = m.cast(tfmt, shape=tshape)
+ ndim = len(tshape)
+ strides = nd.strides
+ lst = nd.tolist()
+ self.verify(m2, obj=ex,
+ itemsize=tsize, fmt=tfmt, readonly=1,
+ ndim=ndim, shape=tshape, strides=strides,
+ lst=lst, cast=True)
+
+ # ND -> 1D
+ m3 = m2.cast(fmt)
+ m4 = m2.cast(fmt, shape=shape)
+ ndim = len(shape)
+ strides = ex.strides
+ lst = ex.tolist()
+
+ self.verify(m3, obj=ex,
+ itemsize=size, fmt=fmt, readonly=1,
+ ndim=ndim, shape=shape, strides=strides,
+ lst=lst, cast=True)
+
+ self.verify(m4, obj=ex,
+ itemsize=size, fmt=fmt, readonly=1,
+ ndim=ndim, shape=shape, strides=strides,
+ lst=lst, cast=True)
+
+ def test_memoryview_tolist(self):
+
+ # Most tolist() tests are in self.verify() etc.
+
+ a = array.array('h', list(range(-6, 6)))
+ m = memoryview(a)
+ self.assertEqual(m, a)
+ self.assertEqual(m.tolist(), a.tolist())
+
+ a = a[2::3]
+ m = m[2::3]
+ self.assertEqual(m, a)
+ self.assertEqual(m.tolist(), a.tolist())
+
+ ex = ndarray(list(range(2*3*5*7*11)), shape=[11,2,7,3,5], format='L')
+ m = memoryview(ex)
+ self.assertEqual(m.tolist(), ex.tolist())
+
+ ex = ndarray([(2, 5), (7, 11)], shape=[2], format='lh')
+ m = memoryview(ex)
+ self.assertRaises(NotImplementedError, m.tolist)
+
+ ex = ndarray([b'12345'], shape=[1], format="s")
+ m = memoryview(ex)
+ self.assertRaises(NotImplementedError, m.tolist)
+
+ ex = ndarray([b"a",b"b",b"c",b"d",b"e",b"f"], shape=[2,3], format='s')
+ m = memoryview(ex)
+ self.assertRaises(NotImplementedError, m.tolist)
+
+ def test_memoryview_repr(self):
+ m = memoryview(bytearray(9))
+ r = m.__repr__()
+ self.assertTrue(r.startswith("<memory"))
+
+ m.release()
+ r = m.__repr__()
+ self.assertTrue(r.startswith("<released"))
+
+ def test_memoryview_sequence(self):
+
+ for fmt in ('d', 'f'):
+ inf = float(3e400)
+ ex = array.array(fmt, [1.0, inf, 3.0])
+ m = memoryview(ex)
+ self.assertIn(1.0, m)
+ self.assertIn(5e700, m)
+ self.assertIn(3.0, m)
+
+ ex = ndarray(9.0, [], format='f')
+ m = memoryview(ex)
+ self.assertRaises(TypeError, eval, "9.0 in m", locals())
+
+ def test_memoryview_index(self):
+
+ # ndim = 0
+ ex = ndarray(12.5, shape=[], format='d')
+ m = memoryview(ex)
+ self.assertEqual(m[()], 12.5)
+ self.assertEqual(m[...], m)
+ self.assertEqual(m[...], ex)
+ self.assertRaises(TypeError, m.__getitem__, 0)
+
+ ex = ndarray((1,2,3), shape=[], format='iii')
+ m = memoryview(ex)
+ self.assertRaises(NotImplementedError, m.__getitem__, ())
+
+ # range
+ ex = ndarray(list(range(7)), shape=[7], flags=ND_WRITABLE)
+ m = memoryview(ex)
+
+ self.assertRaises(IndexError, m.__getitem__, 2**64)
+ self.assertRaises(TypeError, m.__getitem__, 2.0)
+ self.assertRaises(TypeError, m.__getitem__, 0.0)
+
+ # out of bounds
+ self.assertRaises(IndexError, m.__getitem__, -8)
+ self.assertRaises(IndexError, m.__getitem__, 8)
+
+ # Not implemented: multidimensional sub-views
+ ex = ndarray(list(range(12)), shape=[3,4], flags=ND_WRITABLE)
+ m = memoryview(ex)
+
+ self.assertRaises(NotImplementedError, m.__getitem__, 0)
+ self.assertRaises(NotImplementedError, m.__setitem__, 0, 9)
+ self.assertRaises(NotImplementedError, m.__getitem__, 0)
+
+ def test_memoryview_assign(self):
+
+ # ndim = 0
+ ex = ndarray(12.5, shape=[], format='f', flags=ND_WRITABLE)
+ m = memoryview(ex)
+ m[()] = 22.5
+ self.assertEqual(m[()], 22.5)
+ m[...] = 23.5
+ self.assertEqual(m[()], 23.5)
+ self.assertRaises(TypeError, m.__setitem__, 0, 24.7)
+
+ # read-only
+ ex = ndarray(list(range(7)), shape=[7])
+ m = memoryview(ex)
+ self.assertRaises(TypeError, m.__setitem__, 2, 10)
+
+ # range
+ ex = ndarray(list(range(7)), shape=[7], flags=ND_WRITABLE)
+ m = memoryview(ex)
+
+ self.assertRaises(IndexError, m.__setitem__, 2**64, 9)
+ self.assertRaises(TypeError, m.__setitem__, 2.0, 10)
+ self.assertRaises(TypeError, m.__setitem__, 0.0, 11)
+
+ # out of bounds
+ self.assertRaises(IndexError, m.__setitem__, -8, 20)
+ self.assertRaises(IndexError, m.__setitem__, 8, 25)
+
+ # pack_single() success:
+ for fmt in fmtdict['@']:
+ if fmt == 'c' or fmt == '?':
+ continue
+ ex = ndarray([1,2,3], shape=[3], format=fmt, flags=ND_WRITABLE)
+ m = memoryview(ex)
+ i = randrange(-3, 3)
+ m[i] = 8
+ self.assertEqual(m[i], 8)
+ self.assertEqual(m[i], ex[i])
+
+ ex = ndarray([b'1', b'2', b'3'], shape=[3], format='c',
+ flags=ND_WRITABLE)
+ m = memoryview(ex)
+ m[2] = b'9'
+ self.assertEqual(m[2], b'9')
+
+ ex = ndarray([True, False, True], shape=[3], format='?',
+ flags=ND_WRITABLE)
+ m = memoryview(ex)
+ m[1] = True
+ self.assertEqual(m[1], True)
+
+ # pack_single() exceptions:
+ nd = ndarray([b'x'], shape=[1], format='c', flags=ND_WRITABLE)
+ m = memoryview(nd)
+ self.assertRaises(TypeError, m.__setitem__, 0, 100)
+
+ ex = ndarray(list(range(120)), shape=[1,2,3,4,5], flags=ND_WRITABLE)
+ m1 = memoryview(ex)
+
+ for fmt, _range in fmtdict['@'].items():
+ if (fmt == '?'): # PyObject_IsTrue() accepts anything
+ continue
+ if fmt == 'c': # special case tested above
+ continue
+ m2 = m1.cast(fmt)
+ lo, hi = _range
+ if fmt == 'd' or fmt == 'f':
+ lo, hi = -2**1024, 2**1024
+ if fmt != 'P': # PyLong_AsVoidPtr() accepts negative numbers
+ self.assertRaises(ValueError, m2.__setitem__, 0, lo-1)
+ self.assertRaises(TypeError, m2.__setitem__, 0, "xyz")
+ self.assertRaises(ValueError, m2.__setitem__, 0, hi)
+
+ # invalid item
+ m2 = m1.cast('c')
+ self.assertRaises(ValueError, m2.__setitem__, 0, b'\xff\xff')
+
+ # format not implemented
+ ex = ndarray(list(range(1)), shape=[1], format="xL", flags=ND_WRITABLE)
+ m = memoryview(ex)
+ self.assertRaises(NotImplementedError, m.__setitem__, 0, 1)
+
+ ex = ndarray([b'12345'], shape=[1], format="s", flags=ND_WRITABLE)
+ m = memoryview(ex)
+ self.assertRaises(NotImplementedError, m.__setitem__, 0, 1)
+
+ # Not implemented: multidimensional sub-views
+ ex = ndarray(list(range(12)), shape=[3,4], flags=ND_WRITABLE)
+ m = memoryview(ex)
+
+ self.assertRaises(NotImplementedError, m.__setitem__, 0, [2, 3])
+
+ def test_memoryview_slice(self):
+
+ ex = ndarray(list(range(12)), shape=[12], flags=ND_WRITABLE)
+ m = memoryview(ex)
+
+ # zero step
+ self.assertRaises(ValueError, m.__getitem__, slice(0,2,0))
+ self.assertRaises(ValueError, m.__setitem__, slice(0,2,0),
+ bytearray([1,2]))
+
+ # invalid slice key
+ self.assertRaises(TypeError, m.__getitem__, ())
+
+ # multidimensional slices
+ ex = ndarray(list(range(12)), shape=[12], flags=ND_WRITABLE)
+ m = memoryview(ex)
+
+ self.assertRaises(NotImplementedError, m.__getitem__,
+ (slice(0,2,1), slice(0,2,1)))
+ self.assertRaises(NotImplementedError, m.__setitem__,
+ (slice(0,2,1), slice(0,2,1)), bytearray([1,2]))
+
+ # invalid slice tuple
+ self.assertRaises(TypeError, m.__getitem__, (slice(0,2,1), {}))
+ self.assertRaises(TypeError, m.__setitem__, (slice(0,2,1), {}),
+ bytearray([1,2]))
+
+ # rvalue is not an exporter
+ self.assertRaises(TypeError, m.__setitem__, slice(0,1,1), [1])
+
+ # non-contiguous slice assignment
+ for flags in (0, ND_PIL):
+ ex1 = ndarray(list(range(12)), shape=[12], strides=[-1], offset=11,
+ flags=ND_WRITABLE|flags)
+ ex2 = ndarray(list(range(24)), shape=[12], strides=[2], flags=flags)
+ m1 = memoryview(ex1)
+ m2 = memoryview(ex2)
+
+ ex1[2:5] = ex1[2:5]
+ m1[2:5] = m2[2:5]
+
+ self.assertEqual(m1, ex1)
+ self.assertEqual(m2, ex2)
+
+ ex1[1:3][::-1] = ex2[0:2][::1]
+ m1[1:3][::-1] = m2[0:2][::1]
+
+ self.assertEqual(m1, ex1)
+ self.assertEqual(m2, ex2)
+
+ ex1[4:1:-2][::-1] = ex1[1:4:2][::1]
+ m1[4:1:-2][::-1] = m1[1:4:2][::1]
+
+ self.assertEqual(m1, ex1)
+ self.assertEqual(m2, ex2)
+
+ def test_memoryview_array(self):
+
+ def cmptest(testcase, a, b, m, singleitem):
+ for i, _ in enumerate(a):
+ ai = a[i]
+ mi = m[i]
+ testcase.assertEqual(ai, mi)
+ a[i] = singleitem
+ if singleitem != ai:
+ testcase.assertNotEqual(a, m)
+ testcase.assertNotEqual(a, b)
+ else:
+ testcase.assertEqual(a, m)
+ testcase.assertEqual(a, b)
+ m[i] = singleitem
+ testcase.assertEqual(a, m)
+ testcase.assertEqual(b, m)
+ a[i] = ai
+ m[i] = mi
+
+ for n in range(1, 5):
+ for fmt, items, singleitem in iter_format(n, 'array'):
+ for lslice in genslices(n):
+ for rslice in genslices(n):
+
+ a = array.array(fmt, items)
+ b = array.array(fmt, items)
+ m = memoryview(b)
+
+ self.assertEqual(m, a)
+ self.assertEqual(m.tolist(), a.tolist())
+ self.assertEqual(m.tobytes(), a.tobytes())
+ self.assertEqual(len(m), len(a))
+
+ cmptest(self, a, b, m, singleitem)
+
+ array_err = None
+ have_resize = None
+ try:
+ al = a[lslice]
+ ar = a[rslice]
+ a[lslice] = a[rslice]
+ have_resize = len(al) != len(ar)
+ except Exception as e:
+ array_err = e.__class__
+
+ m_err = None
+ try:
+ m[lslice] = m[rslice]
+ except Exception as e:
+ m_err = e.__class__
+
+ if have_resize: # memoryview cannot change shape
+ self.assertIs(m_err, ValueError)
+ elif m_err or array_err:
+ self.assertIs(m_err, array_err)
+ else:
+ self.assertEqual(m, a)
+ self.assertEqual(m.tolist(), a.tolist())
+ self.assertEqual(m.tobytes(), a.tobytes())
+ cmptest(self, a, b, m, singleitem)
+
+ def test_memoryview_compare(self):
+
+ a = array.array('L', [1, 2, 3])
+ b = array.array('L', [1, 2, 7])
+
+ # Ordering comparisons raise:
+ v = memoryview(a)
+ w = memoryview(b)
+ for attr in ('__lt__', '__le__', '__gt__', '__ge__'):
+ self.assertIs(getattr(v, attr)(w), NotImplemented)
+ self.assertIs(getattr(a, attr)(v), NotImplemented)
+
+ # Released views compare equal to themselves:
+ v = memoryview(a)
+ v.release()
+ self.assertEqual(v, v)
+ self.assertNotEqual(v, a)
+ self.assertNotEqual(a, v)
+
+ v = memoryview(a)
+ w = memoryview(a)
+ w.release()
+ self.assertNotEqual(v, w)
+ self.assertNotEqual(w, v)
+
+ # Operand does not implement the buffer protocol:
+ v = memoryview(a)
+ self.assertNotEqual(v, [1, 2, 3])
+
+ # Different formats:
+ c = array.array('l', [1, 2, 3])
+ v = memoryview(a)
+ self.assertNotEqual(v, c)
+ self.assertNotEqual(c, v)
+
+ # Not implemented formats. Ugly, but inevitable. This is the same as
+ # issue #2531: equality is also used for membership testing and must
+ # return a result.
+ a = ndarray([(1, 1.5), (2, 2.7)], shape=[2], format='ld')
+ v = memoryview(a)
+ self.assertNotEqual(v, a)
+ self.assertNotEqual(a, v)
+
+ a = ndarray([b'12345'], shape=[1], format="s")
+ v = memoryview(a)
+ self.assertNotEqual(v, a)
+ self.assertNotEqual(a, v)
+
+ nd = ndarray([(1,1,1), (2,2,2), (3,3,3)], shape=[3], format='iii')
+ v = memoryview(nd)
+ self.assertNotEqual(v, nd)
+ self.assertNotEqual(nd, v)
+
+ # '@' prefix can be dropped:
+ nd1 = ndarray([1,2,3], shape=[3], format='@i')
+ nd2 = ndarray([1,2,3], shape=[3], format='i')
+ v = memoryview(nd1)
+ w = memoryview(nd2)
+ self.assertEqual(v, w)
+ self.assertEqual(w, v)
+ self.assertEqual(v, nd2)
+ self.assertEqual(nd2, v)
+ self.assertEqual(w, nd1)
+ self.assertEqual(nd1, w)
+
+ # ndim = 0
+ nd1 = ndarray(1729, shape=[], format='@L')
+ nd2 = ndarray(1729, shape=[], format='L', flags=ND_WRITABLE)
+ v = memoryview(nd1)
+ w = memoryview(nd2)
+ self.assertEqual(v, w)
+ self.assertEqual(w, v)
+ self.assertEqual(v, nd2)
+ self.assertEqual(nd2, v)
+ self.assertEqual(w, nd1)
+ self.assertEqual(nd1, w)
+
+ self.assertFalse(v.__ne__(w))
+ self.assertFalse(w.__ne__(v))
+
+ w[()] = 1728
+ self.assertNotEqual(v, w)
+ self.assertNotEqual(w, v)
+ self.assertNotEqual(v, nd2)
+ self.assertNotEqual(nd2, v)
+ self.assertNotEqual(w, nd1)
+ self.assertNotEqual(nd1, w)
+
+ self.assertFalse(v.__eq__(w))
+ self.assertFalse(w.__eq__(v))
+
+ nd = ndarray(list(range(12)), shape=[12], flags=ND_WRITABLE|ND_PIL)
+ ex = ndarray(list(range(12)), shape=[12], flags=ND_WRITABLE|ND_PIL)
+ m = memoryview(ex)
+
+ self.assertEqual(m, nd)
+ m[9] = 100
+ self.assertNotEqual(m, nd)
+
+ # ndim = 1: contiguous
+ nd1 = ndarray([-529, 576, -625, 676, -729], shape=[5], format='@h')
+ nd2 = ndarray([-529, 576, -625, 676, 729], shape=[5], format='@h')
+ v = memoryview(nd1)
+ w = memoryview(nd2)
+
+ self.assertEqual(v, nd1)
+ self.assertEqual(w, nd2)
+ self.assertNotEqual(v, nd2)
+ self.assertNotEqual(w, nd1)
+ self.assertNotEqual(v, w)
+
+ # ndim = 1: non-contiguous
+ nd1 = ndarray([-529, -625, -729], shape=[3], format='@h')
+ nd2 = ndarray([-529, 576, -625, 676, -729], shape=[5], format='@h')
+ v = memoryview(nd1)
+ w = memoryview(nd2)
+
+ self.assertEqual(v, nd2[::2])
+ self.assertEqual(w[::2], nd1)
+ self.assertEqual(v, w[::2])
+ self.assertEqual(v[::-1], w[::-2])
+
+ # ndim = 1: non-contiguous, suboffsets
+ nd1 = ndarray([-529, -625, -729], shape=[3], format='@h')
+ nd2 = ndarray([-529, 576, -625, 676, -729], shape=[5], format='@h',
+ flags=ND_PIL)
+ v = memoryview(nd1)
+ w = memoryview(nd2)
+
+ self.assertEqual(v, nd2[::2])
+ self.assertEqual(w[::2], nd1)
+ self.assertEqual(v, w[::2])
+ self.assertEqual(v[::-1], w[::-2])
+
+ # ndim = 1: zeros in shape
+ nd1 = ndarray([900, 961], shape=[0], format='@h')
+ nd2 = ndarray([-900, -961], shape=[0], format='@h')
+ v = memoryview(nd1)
+ w = memoryview(nd2)
+
+ self.assertEqual(v, nd1)
+ self.assertEqual(w, nd2)
+ self.assertEqual(v, nd2)
+ self.assertEqual(w, nd1)
+ self.assertEqual(v, w)
+
+ # ndim = 1: zero strides
+ nd1 = ndarray([900, 900, 900, 900], shape=[4], format='@L')
+ nd2 = ndarray([900], shape=[4], strides=[0], format='L')
+ v = memoryview(nd1)
+ w = memoryview(nd2)
+
+ self.assertEqual(v, nd1)
+ self.assertEqual(w, nd2)
+ self.assertEqual(v, nd2)
+ self.assertEqual(w, nd1)
+ self.assertEqual(v, w)
+
+ n = 10
+ for char in fmtdict['@m']:
+ fmt, items, singleitem = randitems(n, 'memoryview', '@', char)
+ for flags in (0, ND_PIL):
+ nd = ndarray(items, shape=[n], format=fmt, flags=flags)
+ m = memoryview(nd)
+ self.assertEqual(m, nd)
+
+ nd = nd[::-3]
+ m = memoryview(nd)
+ self.assertEqual(m, nd)
+
+ ##### ndim > 1: C-contiguous
+ # different values
+ nd1 = ndarray(list(range(-15, 15)), shape=[3, 2, 5], format='@h')
+ nd2 = ndarray(list(range(0, 30)), shape=[3, 2, 5], format='@h')
+ v = memoryview(nd1)
+ w = memoryview(nd2)
+
+ self.assertEqual(v, nd1)
+ self.assertEqual(w, nd2)
+ self.assertNotEqual(v, nd2)
+ self.assertNotEqual(w, nd1)
+ self.assertNotEqual(v, w)
+
+ # different shape
+ nd1 = ndarray(list(range(30)), shape=[2, 3, 5], format='L')
+ nd2 = ndarray(list(range(30)), shape=[3, 2, 5], format='L')
+ v = memoryview(nd1)
+ w = memoryview(nd2)
+
+ self.assertEqual(v, nd1)
+ self.assertEqual(w, nd2)
+ self.assertNotEqual(v, nd2)
+ self.assertNotEqual(w, nd1)
+ self.assertNotEqual(v, w)
+
+ # different format
+ nd1 = ndarray(list(range(30)), shape=[2, 3, 5], format='L')
+ nd2 = ndarray(list(range(30)), shape=[2, 3, 5], format='l')
+ v = memoryview(nd1)
+ w = memoryview(nd2)
+
+ self.assertEqual(v, nd1)
+ self.assertEqual(w, nd2)
+ self.assertNotEqual(v, nd2)
+ self.assertNotEqual(w, nd1)
+ self.assertNotEqual(v, w)
+
+ ##### ndim > 1: Fortran contiguous
+ # different values
+ nd1 = ndarray(list(range(-15, 15)), shape=[5, 2, 3], format='@h',
+ flags=ND_FORTRAN)
+ nd2 = ndarray(list(range(0, 30)), shape=[5, 2, 3], format='@h',
+ flags=ND_FORTRAN)
+ v = memoryview(nd1)
+ w = memoryview(nd2)
+
+ self.assertEqual(v, nd1)
+ self.assertEqual(w, nd2)
+ self.assertNotEqual(v, nd2)
+ self.assertNotEqual(w, nd1)
+ self.assertNotEqual(v, w)
+
+ # different shape
+ nd1 = ndarray(list(range(-15, 15)), shape=[2, 3, 5], format='l',
+ flags=ND_FORTRAN)
+ nd2 = ndarray(list(range(-15, 15)), shape=[3, 2, 5], format='l',
+ flags=ND_FORTRAN)
+ v = memoryview(nd1)
+ w = memoryview(nd2)
+
+ self.assertEqual(v, nd1)
+ self.assertEqual(w, nd2)
+ self.assertNotEqual(v, nd2)
+ self.assertNotEqual(w, nd1)
+ self.assertNotEqual(v, w)
+
+ # different format
+ nd1 = ndarray(list(range(30)), shape=[5, 2, 3], format='@h',
+ flags=ND_FORTRAN)
+ nd2 = ndarray(list(range(30)), shape=[5, 2, 3], format='@b',
+ flags=ND_FORTRAN)
+ v = memoryview(nd1)
+ w = memoryview(nd2)
+
+ self.assertEqual(v, nd1)
+ self.assertEqual(w, nd2)
+ self.assertNotEqual(v, nd2)
+ self.assertNotEqual(w, nd1)
+ self.assertNotEqual(v, w)
+
+ ##### ndim > 1: mixed C/Fortran contiguous
+ lst1 = list(range(-15, 15))
+ lst2 = transpose(lst1, [3, 2, 5])
+ nd1 = ndarray(lst1, shape=[3, 2, 5], format='@l')
+ nd2 = ndarray(lst2, shape=[3, 2, 5], format='l', flags=ND_FORTRAN)
+ v = memoryview(nd1)
+ w = memoryview(nd2)
+
+ self.assertEqual(v, nd1)
+ self.assertEqual(w, nd2)
+ self.assertEqual(v, w)
+
+ ##### ndim > 1: non-contiguous
+ # different values
+ ex1 = ndarray(list(range(40)), shape=[5, 8], format='@I')
+ nd1 = ex1[3:1:-1, ::-2]
+ ex2 = ndarray(list(range(40)), shape=[5, 8], format='I')
+ nd2 = ex2[1:3:1, ::-2]
+ v = memoryview(nd1)
+ w = memoryview(nd2)
+
+ self.assertEqual(v, nd1)
+ self.assertEqual(w, nd2)
+ self.assertNotEqual(v, nd2)
+ self.assertNotEqual(w, nd1)
+ self.assertNotEqual(v, w)
+
+ # different shape
+ ex1 = ndarray(list(range(30)), shape=[2, 3, 5], format='b')
+ nd1 = ex1[1:3:, ::-2]
+ nd2 = ndarray(list(range(30)), shape=[3, 2, 5], format='b')
+ nd2 = ex2[1:3:, ::-2]
+ v = memoryview(nd1)
+ w = memoryview(nd2)
+
+ self.assertEqual(v, nd1)
+ self.assertEqual(w, nd2)
+ self.assertNotEqual(v, nd2)
+ self.assertNotEqual(w, nd1)
+ self.assertNotEqual(v, w)
+
+ # different format
+ ex1 = ndarray(list(range(30)), shape=[5, 3, 2], format='i')
+ nd1 = ex1[1:3:, ::-2]
+ nd2 = ndarray(list(range(30)), shape=[5, 3, 2], format='@I')
+ nd2 = ex2[1:3:, ::-2]
+ v = memoryview(nd1)
+ w = memoryview(nd2)
+
+ self.assertEqual(v, nd1)
+ self.assertEqual(w, nd2)
+ self.assertNotEqual(v, nd2)
+ self.assertNotEqual(w, nd1)
+ self.assertNotEqual(v, w)
+
+ ##### ndim > 1: zeros in shape
+ nd1 = ndarray(list(range(30)), shape=[0, 3, 2], format='i')
+ nd2 = ndarray(list(range(30)), shape=[5, 0, 2], format='@i')
+ v = memoryview(nd1)
+ w = memoryview(nd2)
+
+ self.assertEqual(v, nd1)
+ self.assertEqual(w, nd2)
+ self.assertNotEqual(v, nd2)
+ self.assertNotEqual(w, nd1)
+ self.assertNotEqual(v, w)
+
+ # ndim > 1: zero strides
+ nd1 = ndarray([900]*80, shape=[4, 5, 4], format='@L')
+ nd2 = ndarray([900], shape=[4, 5, 4], strides=[0, 0, 0], format='L')
+ v = memoryview(nd1)
+ w = memoryview(nd2)
+
+ self.assertEqual(v, nd1)
+ self.assertEqual(w, nd2)
+ self.assertEqual(v, nd2)
+ self.assertEqual(w, nd1)
+ self.assertEqual(v, w)
+ self.assertEqual(v.tolist(), w.tolist())
+
+ ##### ndim > 1: suboffsets
+ ex1 = ndarray(list(range(40)), shape=[5, 8], format='@I')
+ nd1 = ex1[3:1:-1, ::-2]
+ ex2 = ndarray(list(range(40)), shape=[5, 8], format='I', flags=ND_PIL)
+ nd2 = ex2[1:3:1, ::-2]
+ v = memoryview(nd1)
+ w = memoryview(nd2)
+
+ self.assertEqual(v, nd1)
+ self.assertEqual(w, nd2)
+ self.assertNotEqual(v, nd2)
+ self.assertNotEqual(w, nd1)
+ self.assertNotEqual(v, w)
+
+ # different shape
+ ex1 = ndarray(list(range(30)), shape=[2, 3, 5], format='b', flags=ND_PIL)
+ nd1 = ex1[1:3:, ::-2]
+ nd2 = ndarray(list(range(30)), shape=[3, 2, 5], format='b')
+ nd2 = ex2[1:3:, ::-2]
+ v = memoryview(nd1)
+ w = memoryview(nd2)
+
+ self.assertEqual(v, nd1)
+ self.assertEqual(w, nd2)
+ self.assertNotEqual(v, nd2)
+ self.assertNotEqual(w, nd1)
+ self.assertNotEqual(v, w)
+
+ # different format
+ ex1 = ndarray(list(range(30)), shape=[5, 3, 2], format='i', flags=ND_PIL)
+ nd1 = ex1[1:3:, ::-2]
+ nd2 = ndarray(list(range(30)), shape=[5, 3, 2], format='@I', flags=ND_PIL)
+ nd2 = ex2[1:3:, ::-2]
+ v = memoryview(nd1)
+ w = memoryview(nd2)
+
+ self.assertEqual(v, nd1)
+ self.assertEqual(w, nd2)
+ self.assertNotEqual(v, nd2)
+ self.assertNotEqual(w, nd1)
+ self.assertNotEqual(v, w)
+
+ # initialize mixed C/Fortran + suboffsets
+ lst1 = list(range(-15, 15))
+ lst2 = transpose(lst1, [3, 2, 5])
+ nd1 = ndarray(lst1, shape=[3, 2, 5], format='@l', flags=ND_PIL)
+ nd2 = ndarray(lst2, shape=[3, 2, 5], format='l', flags=ND_FORTRAN|ND_PIL)
+ v = memoryview(nd1)
+ w = memoryview(nd2)
+
+ self.assertEqual(v, nd1)
+ self.assertEqual(w, nd2)
+ self.assertEqual(v, w)
+
+ def test_memoryview_check_released(self):
+
+ a = array.array('d', [1.1, 2.2, 3.3])
+
+ m = memoryview(a)
+ m.release()
+
+ # PyMemoryView_FromObject()
+ self.assertRaises(ValueError, memoryview, m)
+ # memoryview.cast()
+ self.assertRaises(ValueError, m.cast, 'c')
+ # getbuffer()
+ self.assertRaises(ValueError, ndarray, m)
+ # memoryview.tolist()
+ self.assertRaises(ValueError, m.tolist)
+ # memoryview.tobytes()
+ self.assertRaises(ValueError, m.tobytes)
+ # sequence
+ self.assertRaises(ValueError, eval, "1.0 in m", locals())
+ # subscript
+ self.assertRaises(ValueError, m.__getitem__, 0)
+ # assignment
+ self.assertRaises(ValueError, m.__setitem__, 0, 1)
+
+ for attr in ('obj', 'nbytes', 'readonly', 'itemsize', 'format', 'ndim',
+ 'shape', 'strides', 'suboffsets', 'c_contiguous',
+ 'f_contiguous', 'contiguous'):
+ self.assertRaises(ValueError, m.__getattribute__, attr)
+
+ # richcompare
+ b = array.array('d', [1.1, 2.2, 3.3])
+ m1 = memoryview(a)
+ m2 = memoryview(b)
+
+ self.assertEqual(m1, m2)
+ m1.release()
+ self.assertNotEqual(m1, m2)
+ self.assertNotEqual(m1, a)
+ self.assertEqual(m1, m1)
+
+ def test_memoryview_tobytes(self):
+ # Many implicit tests are already in self.verify().
+
+ nd = ndarray([-529, 576, -625, 676, -729], shape=[5], format='@h')
+
+ m = memoryview(nd)
+ self.assertEqual(m.tobytes(), nd.tobytes())
+
+ def test_memoryview_get_contiguous(self):
+ # Many implicit tests are already in self.verify().
+
+ # no buffer interface
+ self.assertRaises(TypeError, get_contiguous, {}, PyBUF_READ, 'F')
+
+ # writable request to read-only object
+ self.assertRaises(BufferError, get_contiguous, b'x', PyBUF_WRITE, 'C')
+
+ # writable request to non-contiguous object
+ nd = ndarray([1, 2, 3], shape=[2], strides=[2])
+ self.assertRaises(BufferError, get_contiguous, nd, PyBUF_WRITE, 'A')
+
+ # scalar, read-only request from read-only exporter
+ nd = ndarray(9, shape=(), format="L")
+ for order in ['C', 'F', 'A']:
+ m = get_contiguous(nd, PyBUF_READ, order)
+ self.assertEqual(m, nd)
+ self.assertEqual(m[()], 9)
+
+ # scalar, read-only request from writable exporter
+ nd = ndarray(9, shape=(), format="L", flags=ND_WRITABLE)
+ for order in ['C', 'F', 'A']:
+ m = get_contiguous(nd, PyBUF_READ, order)
+ self.assertEqual(m, nd)
+ self.assertEqual(m[()], 9)
+
+ # scalar, writable request
+ for order in ['C', 'F', 'A']:
+ nd[()] = 9
+ m = get_contiguous(nd, PyBUF_WRITE, order)
+ self.assertEqual(m, nd)
+ self.assertEqual(m[()], 9)
+
+ m[()] = 10
+ self.assertEqual(m[()], 10)
+ self.assertEqual(nd[()], 10)
+
+ # zeros in shape
+ nd = ndarray([1], shape=[0], format="L", flags=ND_WRITABLE)
+ for order in ['C', 'F', 'A']:
+ m = get_contiguous(nd, PyBUF_READ, order)
+ self.assertRaises(IndexError, m.__getitem__, 0)
+ self.assertEqual(m, nd)
+ self.assertEqual(m.tolist(), [])
+
+ nd = ndarray(list(range(8)), shape=[2, 0, 7], format="L",
+ flags=ND_WRITABLE)
+ for order in ['C', 'F', 'A']:
+ m = get_contiguous(nd, PyBUF_READ, order)
+ self.assertEqual(ndarray(m).tolist(), [[], []])
+
+ # one-dimensional
+ nd = ndarray([1], shape=[1], format="h", flags=ND_WRITABLE)
+ for order in ['C', 'F', 'A']:
+ m = get_contiguous(nd, PyBUF_WRITE, order)
+ self.assertEqual(m, nd)
+ self.assertEqual(m.tolist(), nd.tolist())
+
+ nd = ndarray([1, 2, 3], shape=[3], format="b", flags=ND_WRITABLE)
+ for order in ['C', 'F', 'A']:
+ m = get_contiguous(nd, PyBUF_WRITE, order)
+ self.assertEqual(m, nd)
+ self.assertEqual(m.tolist(), nd.tolist())
+
+ # one-dimensional, non-contiguous
+ nd = ndarray([1, 2, 3], shape=[2], strides=[2], flags=ND_WRITABLE)
+ for order in ['C', 'F', 'A']:
+ m = get_contiguous(nd, PyBUF_READ, order)
+ self.assertEqual(m, nd)
+ self.assertEqual(m.tolist(), nd.tolist())
+ self.assertRaises(TypeError, m.__setitem__, 1, 20)
+ self.assertEqual(m[1], 3)
+ self.assertEqual(nd[1], 3)
+
+ nd = nd[::-1]
+ for order in ['C', 'F', 'A']:
+ m = get_contiguous(nd, PyBUF_READ, order)
+ self.assertEqual(m, nd)
+ self.assertEqual(m.tolist(), nd.tolist())
+ self.assertRaises(TypeError, m.__setitem__, 1, 20)
+ self.assertEqual(m[1], 1)
+ self.assertEqual(nd[1], 1)
+
+ # multi-dimensional, contiguous input
+ nd = ndarray(list(range(12)), shape=[3, 4], flags=ND_WRITABLE)
+ for order in ['C', 'A']:
+ m = get_contiguous(nd, PyBUF_WRITE, order)
+ self.assertEqual(ndarray(m).tolist(), nd.tolist())
+
+ self.assertRaises(BufferError, get_contiguous, nd, PyBUF_WRITE, 'F')
+ m = get_contiguous(nd, PyBUF_READ, order)
+ self.assertEqual(ndarray(m).tolist(), nd.tolist())
+
+ nd = ndarray(list(range(12)), shape=[3, 4],
+ flags=ND_WRITABLE|ND_FORTRAN)
+ for order in ['F', 'A']:
+ m = get_contiguous(nd, PyBUF_WRITE, order)
+ self.assertEqual(ndarray(m).tolist(), nd.tolist())
+
+ self.assertRaises(BufferError, get_contiguous, nd, PyBUF_WRITE, 'C')
+ m = get_contiguous(nd, PyBUF_READ, order)
+ self.assertEqual(ndarray(m).tolist(), nd.tolist())
+
+ # multi-dimensional, non-contiguous input
+ nd = ndarray(list(range(12)), shape=[3, 4], flags=ND_WRITABLE|ND_PIL)
+ for order in ['C', 'F', 'A']:
+ self.assertRaises(BufferError, get_contiguous, nd, PyBUF_WRITE,
+ order)
+ m = get_contiguous(nd, PyBUF_READ, order)
+ self.assertEqual(ndarray(m).tolist(), nd.tolist())
+
+ # flags
+ nd = ndarray([1,2,3,4,5], shape=[3], strides=[2])
+ m = get_contiguous(nd, PyBUF_READ, 'C')
+ self.assertTrue(m.c_contiguous)
+
+ def test_memoryview_serializing(self):
+
+ # C-contiguous
+ size = struct.calcsize('i')
+ a = array.array('i', [1,2,3,4,5])
+ m = memoryview(a)
+ buf = io.BytesIO(m)
+ b = bytearray(5*size)
+ buf.readinto(b)
+ self.assertEqual(m.tobytes(), b)
+
+ # C-contiguous, multi-dimensional
+ size = struct.calcsize('L')
+ nd = ndarray(list(range(12)), shape=[2,3,2], format="L")
+ m = memoryview(nd)
+ buf = io.BytesIO(m)
+ b = bytearray(2*3*2*size)
+ buf.readinto(b)
+ self.assertEqual(m.tobytes(), b)
+
+ # Fortran contiguous, multi-dimensional
+ #size = struct.calcsize('L')
+ #nd = ndarray(list(range(12)), shape=[2,3,2], format="L",
+ # flags=ND_FORTRAN)
+ #m = memoryview(nd)
+ #buf = io.BytesIO(m)
+ #b = bytearray(2*3*2*size)
+ #buf.readinto(b)
+ #self.assertEqual(m.tobytes(), b)
+
+ def test_memoryview_hash(self):
+
+ # bytes exporter
+ b = bytes(list(range(12)))
+ m = memoryview(b)
+ self.assertEqual(hash(b), hash(m))
+
+ # C-contiguous
+ mc = m.cast('c', shape=[3,4])
+ self.assertEqual(hash(mc), hash(b))
+
+ # non-contiguous
+ mx = m[::-2]
+ b = bytes(list(range(12))[::-2])
+ self.assertEqual(hash(mx), hash(b))
+
+ # Fortran contiguous
+ nd = ndarray(list(range(30)), shape=[3,2,5], flags=ND_FORTRAN)
+ m = memoryview(nd)
+ self.assertEqual(hash(m), hash(nd))
+
+ # multi-dimensional slice
+ nd = ndarray(list(range(30)), shape=[3,2,5])
+ x = nd[::2, ::, ::-1]
+ m = memoryview(x)
+ self.assertEqual(hash(m), hash(x))
+
+ # multi-dimensional slice with suboffsets
+ nd = ndarray(list(range(30)), shape=[2,5,3], flags=ND_PIL)
+ x = nd[::2, ::, ::-1]
+ m = memoryview(x)
+ self.assertEqual(hash(m), hash(x))
+
+ # non-byte formats
+ nd = ndarray(list(range(12)), shape=[2,2,3], format='L')
+ m = memoryview(nd)
+ self.assertEqual(hash(m), hash(nd.tobytes()))
+
+ nd = ndarray(list(range(-6, 6)), shape=[2,2,3], format='h')
+ m = memoryview(nd)
+ self.assertEqual(hash(m), hash(nd.tobytes()))
+
+ def test_memoryview_release(self):
+
+ # Create re-exporter from getbuffer(memoryview), then release the view.
+ a = bytearray([1,2,3])
+ m = memoryview(a)
+ nd = ndarray(m) # re-exporter
+ self.assertRaises(BufferError, m.release)
+ del nd
+ m.release()
+
+ # chained views
+ a = bytearray([1,2,3])
+ m1 = memoryview(a)
+ m2 = memoryview(m1)
+ nd = ndarray(m2) # re-exporter
+ m1.release()
+ self.assertRaises(BufferError, m2.release)
+ del nd
+ m2.release()
+
+ # Allow changing layout while buffers are exported.
+ nd = ndarray([1,2,3], shape=[3], flags=ND_VAREXPORT)
+ m1 = memoryview(nd)
+
+ nd.push([4,5,6,7,8], shape=[5]) # mutate nd
+ m2 = memoryview(nd)
+
+ x = memoryview(m1)
+ self.assertEqual(x.tolist(), m1.tolist())
+
+ y = memoryview(m2)
+ self.assertEqual(y.tolist(), m2.tolist())
+ self.assertEqual(y.tolist(), nd.tolist())
+ m2.release()
+ y.release()
+
+ nd.pop() # pop the current view
+ self.assertEqual(x.tolist(), nd.tolist())
+
+ del nd
+ m1.release()
+ x.release()
+
+ # If multiple memoryviews share the same managed buffer, implicit
+ # release() in the context manager's __exit__() method should still
+ # work.
+ def catch22(b):
+ with memoryview(b) as m2:
+ pass
+
+ x = bytearray(b'123')
+ with memoryview(x) as m1:
+ catch22(m1)
+ self.assertEqual(m1[0], ord(b'1'))
+
+ # XXX If m1 has exports, raise BufferError.
+ # x = bytearray(b'123')
+ # with memoryview(x) as m1:
+ # ex = ndarray(m1)
+ # m1[0] == ord(b'1')
+
+ def test_issue_7385(self):
+ x = ndarray([1,2,3], shape=[3], flags=ND_GETBUF_FAIL)
+ self.assertRaises(BufferError, memoryview, x)
+
+
+def test_main():
+ support.run_unittest(TestBufferProtocol)
+
+
+if __name__ == "__main__":
+ test_main()