summaryrefslogtreecommitdiffstats
path: root/Lib/test/test_generators.py
diff options
context:
space:
mode:
authorTim Peters <tim.peters@gmail.com>2001-07-13 09:12:12 (GMT)
committerTim Peters <tim.peters@gmail.com>2001-07-13 09:12:12 (GMT)
commit9a8c8e270bd2293a21160872d792dcc6a3ddb46b (patch)
tree2df21ca9398955f518ba2d0dd6782a7eabb6986c /Lib/test/test_generators.py
parent7eea271464dccc48525cae2b677a68dd7f442c5d (diff)
downloadcpython-9a8c8e270bd2293a21160872d792dcc6a3ddb46b.zip
cpython-9a8c8e270bd2293a21160872d792dcc6a3ddb46b.tar.gz
cpython-9a8c8e270bd2293a21160872d792dcc6a3ddb46b.tar.bz2
Having fun on my own time: quicker flat_conjoin; Knights Tour solver
simplified and generalized to rectangular boards.
Diffstat (limited to 'Lib/test/test_generators.py')
-rw-r--r--Lib/test/test_generators.py236
1 files changed, 123 insertions, 113 deletions
diff --git a/Lib/test/test_generators.py b/Lib/test/test_generators.py
index db6d66f..9aa462f 100644
--- a/Lib/test/test_generators.py
+++ b/Lib/test/test_generators.py
@@ -903,33 +903,42 @@ def conjoin(gs):
# conjoin too.
# NOTE WELL: This allows large problems to be solved with only trivial
# demands on stack space. Without explicitly resumable generators, this is
-# much harder to achieve.
+# much harder to achieve. OTOH, this is much slower (up to a factor of 2)
+# than the fancy unrolled recursive conjoin.
def flat_conjoin(gs): # rename to conjoin to run tests with this instead
n = len(gs)
values = [None] * n
iters = [None] * n
+ _StopIteration = StopIteration # make local because caught a *lot*
i = 0
- while i >= 0:
- # Need a fresh iterator.
- if i >= n:
- yield values
- # Backtrack.
- i -= 1
+ while 1:
+ # Descend.
+ try:
+ while i < n:
+ it = iters[i] = gs[i]().next
+ values[i] = it()
+ i += 1
+ except _StopIteration:
+ pass
else:
- iters[i] = gs[i]().next
+ assert i == n
+ yield values
- # Need next value from current iterator.
+ # Backtrack until an older iterator can be resumed.
+ i -= 1
while i >= 0:
try:
values[i] = iters[i]()
- except StopIteration:
- # Backtrack.
- i -= 1
- else:
- # Start fresh at next level.
+ # Success! Start fresh at next level.
i += 1
break
+ except _StopIteration:
+ # Continue backtracking.
+ i -= 1
+ else:
+ assert i < 0
+ break
# A conjoin-based N-Queens solver.
@@ -986,31 +995,21 @@ class Queens:
# A conjoin-based Knight's Tour solver. This is pretty sophisticated
# (e.g., when used with flat_conjoin above, and passing hard=1 to the
# constructor, a 200x200 Knight's Tour was found quickly -- note that we're
-# creating 10s of thousands of generators then!), so goes on at some length
+# creating 10s of thousands of generators then!), and is lengthy.
class Knights:
- def __init__(self, n, hard=0):
- self.n = n
+ def __init__(self, m, n, hard=0):
+ self.m, self.n = m, n
- def coords2index(i, j):
- return i*n + j
-
- offsets = [( 1, 2), ( 2, 1), ( 2, -1), ( 1, -2),
- (-1, -2), (-2, -1), (-2, 1), (-1, 2)]
- succs = []
- for i in range(n):
- for j in range(n):
- s = [coords2index(i+io, j+jo) for io, jo in offsets
- if 0 <= i+io < n and
- 0 <= j+jo < n]
- succs.append(s)
- del s
- del offsets
+ # solve() will set up succs[i] to be a list of square #i's
+ # successors.
+ succs = self.succs = []
- free = [0] * n**2 # 0 if occupied, 1 if visited
- nexits = free[:] # number of free successors
+ # Remove i0 from each of its successor's successor lists, i.e.
+ # successors can't go back to i0 again. Return 0 if we can
+ # detect this makes a solution impossible, else return 1.
- def decrexits(i0):
+ def remove_from_successors(i0, len=len):
# If we remove all exits from a free square, we're dead:
# even if we move to it next, we can't leave it again.
# If we create a square with one exit, we must visit it next;
@@ -1021,159 +1020,170 @@ class Knights:
# the other one a dead end.
ne0 = ne1 = 0
for i in succs[i0]:
- if free[i]:
- e = nexits[i] - 1
- nexits[i] = e
- if e == 0:
- ne0 += 1
- elif e == 1:
- ne1 += 1
+ s = succs[i]
+ s.remove(i0)
+ e = len(s)
+ if e == 0:
+ ne0 += 1
+ elif e == 1:
+ ne1 += 1
return ne0 == 0 and ne1 < 2
- def increxits(i0):
+ # Put i0 back in each of its successor's successor lists.
+
+ def add_to_successors(i0):
for i in succs[i0]:
- if free[i]:
- nexits[i] += 1
+ succs[i].append(i0)
# Generate the first move.
def first():
- if n < 1:
+ if m < 1 or n < 1:
return
- # Initialize board structures.
- for i in xrange(n**2):
- free[i] = 1
- nexits[i] = len(succs[i])
-
# Since we're looking for a cycle, it doesn't matter where we
# start. Starting in a corner makes the 2nd move easy.
- corner = coords2index(0, 0)
- free[corner] = 0
- decrexits(corner)
+ corner = self.coords2index(0, 0)
+ remove_from_successors(corner)
self.lastij = corner
yield corner
- increxits(corner)
- free[corner] = 1
+ add_to_successors(corner)
# Generate the second moves.
def second():
- corner = coords2index(0, 0)
+ corner = self.coords2index(0, 0)
assert self.lastij == corner # i.e., we started in the corner
- if n < 3:
+ if m < 3 or n < 3:
return
- assert nexits[corner] == len(succs[corner]) == 2
- assert coords2index(1, 2) in succs[corner]
- assert coords2index(2, 1) in succs[corner]
+ assert len(succs[corner]) == 2
+ assert self.coords2index(1, 2) in succs[corner]
+ assert self.coords2index(2, 1) in succs[corner]
# Only two choices. Whichever we pick, the other must be the
- # square picked on move n**2, as it's the only way to get back
+ # square picked on move m*n, as it's the only way to get back
# to (0, 0). Save its index in self.final so that moves before
# the last know it must be kept free.
for i, j in (1, 2), (2, 1):
- this, final = coords2index(i, j), coords2index(3-i, 3-j)
- assert free[this] and free[final]
+ this = self.coords2index(i, j)
+ final = self.coords2index(3-i, 3-j)
self.final = final
- nexits[final] += 1 # it has an exit back to 0,0
- free[this] = 0
- decrexits(this)
+ remove_from_successors(this)
+ succs[final].append(corner)
self.lastij = this
yield this
- increxits(this)
- free[this] = 1
+ succs[final].remove(corner)
+ add_to_successors(this)
- nexits[final] -= 1
-
- # Generate moves 3 thru n**2-1.
- def advance():
+ # Generate moves 3 thru m*n-1.
+ def advance(len=len):
# If some successor has only one exit, must take it.
# Else favor successors with fewer exits.
candidates = []
for i in succs[self.lastij]:
- if free[i]:
- e = nexits[i]
- assert e > 0, "else decrexits() pruning flawed"
- if e == 1:
- candidates = [(e, i)]
- break
- candidates.append((e, i))
+ e = len(succs[i])
+ assert e > 0, "else remove_from_successors() pruning flawed"
+ if e == 1:
+ candidates = [(e, i)]
+ break
+ candidates.append((e, i))
else:
candidates.sort()
for e, i in candidates:
if i != self.final:
- if decrexits(i):
- free[i] = 0
+ if remove_from_successors(i):
self.lastij = i
yield i
- free[i] = 1
- increxits(i)
+ add_to_successors(i)
- # Generate moves 3 thru n**2-1. Alternative version using a
+ # Generate moves 3 thru m*n-1. Alternative version using a
# stronger (but more expensive) heuristic to order successors.
- # Since the # of backtracking levels is n**2, a poor move early on
- # can take eons to undo. Smallest n for which this matters a lot is
- # n==52.
- def advance_hard(midpoint=(n-1)/2.0):
+ # Since the # of backtracking levels is m*n, a poor move early on
+ # can take eons to undo. Smallest square board for which this
+ # matters a lot is 52x52.
+ def advance_hard(vmid=(m-1)/2.0, hmid=(n-1)/2.0, len=len):
# If some successor has only one exit, must take it.
# Else favor successors with fewer exits.
# Break ties via max distance from board centerpoint (favor
# corners and edges whenever possible).
candidates = []
for i in succs[self.lastij]:
- if free[i]:
- e = nexits[i]
- assert e > 0, "else decrexits() pruning flawed"
- if e == 1:
- candidates = [(e, 0, i)]
- break
- i1, j1 = divmod(i, n)
- d = (i1 - midpoint)**2 + (j1 - midpoint)**2
- candidates.append((e, -d, i))
+ e = len(succs[i])
+ assert e > 0, "else remove_from_successors() pruning flawed"
+ if e == 1:
+ candidates = [(e, 0, i)]
+ break
+ i1, j1 = self.index2coords(i)
+ d = (i1 - vmid)**2 + (j1 - hmid)**2
+ candidates.append((e, -d, i))
else:
candidates.sort()
for e, d, i in candidates:
if i != self.final:
- if decrexits(i):
- free[i] = 0
+ if remove_from_successors(i):
self.lastij = i
yield i
- free[i] = 1
- increxits(i)
+ add_to_successors(i)
# Generate the last move.
def last():
assert self.final in succs[self.lastij]
yield self.final
- if n <= 1:
- self.rowgenerators = [first]
+ if m*n < 4:
+ self.squaregenerators = [first]
else:
- self.rowgenerators = [first, second] + \
- [hard and advance_hard or advance] * (n**2 - 3) + \
+ self.squaregenerators = [first, second] + \
+ [hard and advance_hard or advance] * (m*n - 3) + \
[last]
+ def coords2index(self, i, j):
+ assert 0 <= i < self.m
+ assert 0 <= j < self.n
+ return i * self.n + j
+
+ def index2coords(self, index):
+ assert 0 <= index < self.m * self.n
+ return divmod(index, self.n)
+
+ def _init_board(self):
+ succs = self.succs
+ del succs[:]
+ m, n = self.m, self.n
+ c2i = self.coords2index
+
+ offsets = [( 1, 2), ( 2, 1), ( 2, -1), ( 1, -2),
+ (-1, -2), (-2, -1), (-2, 1), (-1, 2)]
+ rangen = range(n)
+ for i in range(m):
+ for j in rangen:
+ s = [c2i(i+io, j+jo) for io, jo in offsets
+ if 0 <= i+io < m and
+ 0 <= j+jo < n]
+ succs.append(s)
+
# Generate solutions.
def solve(self):
- for x in conjoin(self.rowgenerators):
+ self._init_board()
+ for x in conjoin(self.squaregenerators):
yield x
def printsolution(self, x):
- n = self.n
- assert len(x) == n**2
- w = len(str(n**2 + 1))
+ m, n = self.m, self.n
+ assert len(x) == m*n
+ w = len(str(m*n))
format = "%" + str(w) + "d"
- squares = [[None] * n for i in range(n)]
+ squares = [[None] * n for i in range(m)]
k = 1
for i in x:
- i1, j1 = divmod(i, n)
+ i1, j1 = self.index2coords(i)
squares[i1][j1] = format % k
k += 1
sep = "+" + ("-" * w + "+") * n
print sep
- for i in range(n):
+ for i in range(m):
row = squares[i]
print "|" + "|".join(row) + "|"
print sep
@@ -1269,7 +1279,7 @@ Solution 2
And run a Knight's Tour on a 10x10 board. Note that there are about
20,000 solutions even on a 6x6 board, so don't dare run this to exhaustion.
->>> k = Knights(10)
+>>> k = Knights(10, 10)
>>> LIMIT = 2
>>> count = 0
>>> for x in k.solve():