diff options
author | Mark Dickinson <dickinsm@gmail.com> | 2009-12-27 15:09:50 (GMT) |
---|---|---|
committer | Mark Dickinson <dickinsm@gmail.com> | 2009-12-27 15:09:50 (GMT) |
commit | cbb62745acc34e7f6ac27a6eb3fb6a5858494d5f (patch) | |
tree | 4ecc5eb3a6073089f3668da6654dd2629b4379ac /Lib/test/test_long.py | |
parent | 99b2c8f811a2afcd129ac82625e876c7e3731c04 (diff) | |
download | cpython-cbb62745acc34e7f6ac27a6eb3fb6a5858494d5f.zip cpython-cbb62745acc34e7f6ac27a6eb3fb6a5858494d5f.tar.gz cpython-cbb62745acc34e7f6ac27a6eb3fb6a5858494d5f.tar.bz2 |
Merged revisions 77062 via svnmerge from
svn+ssh://pythondev@svn.python.org/python/trunk
........
r77062 | mark.dickinson | 2009-12-27 14:55:57 +0000 (Sun, 27 Dec 2009) | 2 lines
Issue #1811: Improve accuracy and consistency of true division for integers.
........
Diffstat (limited to 'Lib/test/test_long.py')
-rw-r--r-- | Lib/test/test_long.py | 168 |
1 files changed, 164 insertions, 4 deletions
diff --git a/Lib/test/test_long.py b/Lib/test/test_long.py index a7dbb5c..98221e6 100644 --- a/Lib/test/test_long.py +++ b/Lib/test/test_long.py @@ -14,6 +14,11 @@ class Frm(object): def __str__(self): return self.format % self.args +# decorator for skipping tests on non-IEEE 754 platforms +requires_IEEE_754 = unittest.skipUnless( + float.__getformat__("double").startswith("IEEE"), + "test requires IEEE 754 doubles") + # SHIFT should match the value in longintrepr.h for best testing. SHIFT = sys.int_info.bits_per_digit BASE = 2 ** SHIFT @@ -35,6 +40,43 @@ del p2 # add complements & negations special += [~x for x in special] + [-x for x in special] +DBL_MAX = sys.float_info.max +DBL_MAX_EXP = sys.float_info.max_exp +DBL_MIN_EXP = sys.float_info.min_exp +DBL_MANT_DIG = sys.float_info.mant_dig +DBL_MIN_OVERFLOW = 2**DBL_MAX_EXP - 2**(DBL_MAX_EXP - DBL_MANT_DIG - 1) + +# pure Python version of correctly-rounded true division +def truediv(a, b): + """Correctly-rounded true division for integers.""" + negative = a^b < 0 + a, b = abs(a), abs(b) + + # exceptions: division by zero, overflow + if not b: + raise ZeroDivisionError("division by zero") + if a >= DBL_MIN_OVERFLOW * b: + raise OverflowError("int/int too large to represent as a float") + + # find integer d satisfying 2**(d - 1) <= a/b < 2**d + d = a.bit_length() - b.bit_length() + if d >= 0 and a >= 2**d * b or d < 0 and a * 2**-d >= b: + d += 1 + + # compute 2**-exp * a / b for suitable exp + exp = max(d, DBL_MIN_EXP) - DBL_MANT_DIG + a, b = a << max(-exp, 0), b << max(exp, 0) + q, r = divmod(a, b) + + # round-half-to-even: fractional part is r/b, which is > 0.5 iff + # 2*r > b, and == 0.5 iff 2*r == b. + if 2*r > b or 2*r == b and q % 2 == 1: + q += 1 + + result = float(q) * 2.**exp + return -result if negative else result + + class LongTest(unittest.TestCase): # Get quasi-random long consisting of ndigits digits (in base BASE). @@ -306,10 +348,6 @@ class LongTest(unittest.TestCase): @unittest.skipUnless(float.__getformat__("double").startswith("IEEE"), "test requires IEEE 754 doubles") def test_float_conversion(self): - import sys - DBL_MAX = sys.float_info.max - DBL_MAX_EXP = sys.float_info.max_exp - DBL_MANT_DIG = sys.float_info.mant_dig exact_values = [0, 1, 2, 2**53-3, @@ -614,6 +652,128 @@ class LongTest(unittest.TestCase): for zero in ["huge / 0", "mhuge / 0"]: self.assertRaises(ZeroDivisionError, eval, zero, namespace) + def check_truediv(self, a, b, skip_small=True): + """Verify that the result of a/b is correctly rounded, by + comparing it with a pure Python implementation of correctly + rounded division. b should be nonzero.""" + + # skip check for small a and b: in this case, the current + # implementation converts the arguments to float directly and + # then applies a float division. This can give doubly-rounded + # results on x87-using machines (particularly 32-bit Linux). + if skip_small and max(abs(a), abs(b)) < 2**DBL_MANT_DIG: + return + + try: + # use repr so that we can distinguish between -0.0 and 0.0 + expected = repr(truediv(a, b)) + except OverflowError: + expected = 'overflow' + except ZeroDivisionError: + expected = 'zerodivision' + + try: + got = repr(a / b) + except OverflowError: + got = 'overflow' + except ZeroDivisionError: + got = 'zerodivision' + + if expected != got: + self.fail("Incorrectly rounded division {}/{}: expected {!r}, " + "got {!r}.".format(a, b, expected, got)) + + @requires_IEEE_754 + def test_correctly_rounded_true_division(self): + # more stringent tests than those above, checking that the + # result of true division of ints is always correctly rounded. + # This test should probably be considered CPython-specific. + + # Exercise all the code paths not involving Gb-sized ints. + # ... divisions involving zero + self.check_truediv(123, 0) + self.check_truediv(-456, 0) + self.check_truediv(0, 3) + self.check_truediv(0, -3) + self.check_truediv(0, 0) + # ... overflow or underflow by large margin + self.check_truediv(671 * 12345 * 2**DBL_MAX_EXP, 12345) + self.check_truediv(12345, 345678 * 2**(DBL_MANT_DIG - DBL_MIN_EXP)) + # ... a much larger or smaller than b + self.check_truediv(12345*2**100, 98765) + self.check_truediv(12345*2**30, 98765*7**81) + # ... a / b near a boundary: one of 1, 2**DBL_MANT_DIG, 2**DBL_MIN_EXP, + # 2**DBL_MAX_EXP, 2**(DBL_MIN_EXP-DBL_MANT_DIG) + bases = (0, DBL_MANT_DIG, DBL_MIN_EXP, + DBL_MAX_EXP, DBL_MIN_EXP - DBL_MANT_DIG) + for base in bases: + for exp in range(base - 15, base + 15): + self.check_truediv(75312*2**max(exp, 0), 69187*2**max(-exp, 0)) + self.check_truediv(69187*2**max(exp, 0), 75312*2**max(-exp, 0)) + + # overflow corner case + for m in [1, 2, 7, 17, 12345, 7**100, + -1, -2, -5, -23, -67891, -41**50]: + for n in range(-10, 10): + self.check_truediv(m*DBL_MIN_OVERFLOW + n, m) + self.check_truediv(m*DBL_MIN_OVERFLOW + n, -m) + + # check detection of inexactness in shifting stage + for n in range(250): + # (2**DBL_MANT_DIG+1)/(2**DBL_MANT_DIG) lies halfway + # between two representable floats, and would usually be + # rounded down under round-half-to-even. The tiniest of + # additions to the numerator should cause it to be rounded + # up instead. + self.check_truediv((2**DBL_MANT_DIG + 1)*12345*2**200 + 2**n, + 2**DBL_MANT_DIG*12345) + + # 1/2731 is one of the smallest division cases that's subject + # to double rounding on IEEE 754 machines working internally with + # 64-bit precision. On such machines, the next check would fail, + # were it not explicitly skipped in check_truediv. + self.check_truediv(1, 2731) + + # a particularly bad case for the old algorithm: gives an + # error of close to 3.5 ulps. + self.check_truediv(295147931372582273023, 295147932265116303360) + for i in range(1000): + self.check_truediv(10**(i+1), 10**i) + self.check_truediv(10**i, 10**(i+1)) + + # test round-half-to-even behaviour, normal result + for m in [1, 2, 4, 7, 8, 16, 17, 32, 12345, 7**100, + -1, -2, -5, -23, -67891, -41**50]: + for n in range(-10, 10): + self.check_truediv(2**DBL_MANT_DIG*m + n, m) + + # test round-half-to-even, subnormal result + for n in range(-20, 20): + self.check_truediv(n, 2**1076) + + # largeish random divisions: a/b where |a| <= |b| <= + # 2*|a|; |ans| is between 0.5 and 1.0, so error should + # always be bounded by 2**-54 with equality possible only + # if the least significant bit of q=ans*2**53 is zero. + for M in [10**10, 10**100, 10**1000]: + for i in range(1000): + a = random.randrange(1, M) + b = random.randrange(a, 2*a+1) + self.check_truediv(a, b) + self.check_truediv(-a, b) + self.check_truediv(a, -b) + self.check_truediv(-a, -b) + + # and some (genuinely) random tests + for _ in range(10000): + a_bits = random.randrange(1000) + b_bits = random.randrange(1, 1000) + x = random.randrange(2**a_bits) + y = random.randrange(1, 2**b_bits) + self.check_truediv(x, y) + self.check_truediv(x, -y) + self.check_truediv(-x, y) + self.check_truediv(-x, -y) def test_small_ints(self): for i in range(-5, 257): |