diff options
author | Mark Dickinson <dickinsm@gmail.com> | 2010-05-23 13:33:13 (GMT) |
---|---|---|
committer | Mark Dickinson <dickinsm@gmail.com> | 2010-05-23 13:33:13 (GMT) |
commit | dc787d2055a7b562b64ca91b8f1af6d49fa39f1c (patch) | |
tree | f6a3868e8134c25c662868f19306bfea76b0ab45 /Lib/test/test_numeric_tower.py | |
parent | 03721133a68814696e3eee75b1eb09f5016ff078 (diff) | |
download | cpython-dc787d2055a7b562b64ca91b8f1af6d49fa39f1c.zip cpython-dc787d2055a7b562b64ca91b8f1af6d49fa39f1c.tar.gz cpython-dc787d2055a7b562b64ca91b8f1af6d49fa39f1c.tar.bz2 |
Issue #8188: Introduce a new scheme for computing hashes of numbers
(instances of int, float, complex, decimal.Decimal and
fractions.Fraction) that makes it easy to maintain the invariant that
hash(x) == hash(y) whenever x and y have equal value.
Diffstat (limited to 'Lib/test/test_numeric_tower.py')
-rw-r--r-- | Lib/test/test_numeric_tower.py | 151 |
1 files changed, 151 insertions, 0 deletions
diff --git a/Lib/test/test_numeric_tower.py b/Lib/test/test_numeric_tower.py new file mode 100644 index 0000000..eafdb0f --- /dev/null +++ b/Lib/test/test_numeric_tower.py @@ -0,0 +1,151 @@ +# test interactions betwen int, float, Decimal and Fraction + +import unittest +import random +import math +import sys +import operator +from test.support import run_unittest + +from decimal import Decimal as D +from fractions import Fraction as F + +# Constants related to the hash implementation; hash(x) is based +# on the reduction of x modulo the prime _PyHASH_MODULUS. +_PyHASH_MODULUS = sys.hash_info.modulus +_PyHASH_INF = sys.hash_info.inf + +class HashTest(unittest.TestCase): + def check_equal_hash(self, x, y): + # check both that x and y are equal and that their hashes are equal + self.assertEqual(hash(x), hash(y), + "got different hashes for {!r} and {!r}".format(x, y)) + self.assertEqual(x, y) + + def test_bools(self): + self.check_equal_hash(False, 0) + self.check_equal_hash(True, 1) + + def test_integers(self): + # check that equal values hash equal + + # exact integers + for i in range(-1000, 1000): + self.check_equal_hash(i, float(i)) + self.check_equal_hash(i, D(i)) + self.check_equal_hash(i, F(i)) + + # the current hash is based on reduction modulo 2**n-1 for some + # n, so pay special attention to numbers of the form 2**n and 2**n-1. + for i in range(100): + n = 2**i - 1 + if n == int(float(n)): + self.check_equal_hash(n, float(n)) + self.check_equal_hash(-n, -float(n)) + self.check_equal_hash(n, D(n)) + self.check_equal_hash(n, F(n)) + self.check_equal_hash(-n, D(-n)) + self.check_equal_hash(-n, F(-n)) + + n = 2**i + self.check_equal_hash(n, float(n)) + self.check_equal_hash(-n, -float(n)) + self.check_equal_hash(n, D(n)) + self.check_equal_hash(n, F(n)) + self.check_equal_hash(-n, D(-n)) + self.check_equal_hash(-n, F(-n)) + + # random values of various sizes + for _ in range(1000): + e = random.randrange(300) + n = random.randrange(-10**e, 10**e) + self.check_equal_hash(n, D(n)) + self.check_equal_hash(n, F(n)) + if n == int(float(n)): + self.check_equal_hash(n, float(n)) + + def test_binary_floats(self): + # check that floats hash equal to corresponding Fractions and Decimals + + # floats that are distinct but numerically equal should hash the same + self.check_equal_hash(0.0, -0.0) + + # zeros + self.check_equal_hash(0.0, D(0)) + self.check_equal_hash(-0.0, D(0)) + self.check_equal_hash(-0.0, D('-0.0')) + self.check_equal_hash(0.0, F(0)) + + # infinities and nans + self.check_equal_hash(float('inf'), D('inf')) + self.check_equal_hash(float('-inf'), D('-inf')) + + for _ in range(1000): + x = random.random() * math.exp(random.random()*200.0 - 100.0) + self.check_equal_hash(x, D.from_float(x)) + self.check_equal_hash(x, F.from_float(x)) + + def test_complex(self): + # complex numbers with zero imaginary part should hash equal to + # the corresponding float + + test_values = [0.0, -0.0, 1.0, -1.0, 0.40625, -5136.5, + float('inf'), float('-inf')] + + for zero in -0.0, 0.0: + for value in test_values: + self.check_equal_hash(value, complex(value, zero)) + + def test_decimals(self): + # check that Decimal instances that have different representations + # but equal values give the same hash + zeros = ['0', '-0', '0.0', '-0.0e10', '000e-10'] + for zero in zeros: + self.check_equal_hash(D(zero), D(0)) + + self.check_equal_hash(D('1.00'), D(1)) + self.check_equal_hash(D('1.00000'), D(1)) + self.check_equal_hash(D('-1.00'), D(-1)) + self.check_equal_hash(D('-1.00000'), D(-1)) + self.check_equal_hash(D('123e2'), D(12300)) + self.check_equal_hash(D('1230e1'), D(12300)) + self.check_equal_hash(D('12300'), D(12300)) + self.check_equal_hash(D('12300.0'), D(12300)) + self.check_equal_hash(D('12300.00'), D(12300)) + self.check_equal_hash(D('12300.000'), D(12300)) + + def test_fractions(self): + # check special case for fractions where either the numerator + # or the denominator is a multiple of _PyHASH_MODULUS + self.assertEqual(hash(F(1, _PyHASH_MODULUS)), _PyHASH_INF) + self.assertEqual(hash(F(-1, 3*_PyHASH_MODULUS)), -_PyHASH_INF) + self.assertEqual(hash(F(7*_PyHASH_MODULUS, 1)), 0) + self.assertEqual(hash(F(-_PyHASH_MODULUS, 1)), 0) + + def test_hash_normalization(self): + # Test for a bug encountered while changing long_hash. + # + # Given objects x and y, it should be possible for y's + # __hash__ method to return hash(x) in order to ensure that + # hash(x) == hash(y). But hash(x) is not exactly equal to the + # result of x.__hash__(): there's some internal normalization + # to make sure that the result fits in a C long, and is not + # equal to the invalid hash value -1. This internal + # normalization must therefore not change the result of + # hash(x) for any x. + + class HalibutProxy: + def __hash__(self): + return hash('halibut') + def __eq__(self, other): + return other == 'halibut' + + x = {'halibut', HalibutProxy()} + self.assertEqual(len(x), 1) + + +def test_main(): + run_unittest(HashTest) + +if __name__ == '__main__': + test_main() |