diff options
author | Serhiy Storchaka <storchaka@gmail.com> | 2013-02-10 17:29:20 (GMT) |
---|---|---|
committer | Serhiy Storchaka <storchaka@gmail.com> | 2013-02-10 17:29:20 (GMT) |
commit | ac99576a8eda27d7554c5293df22d29ec9a2043d (patch) | |
tree | b868719081a180b33bc0e39e10e4fd52e25ad545 /Lib/test/test_random.py | |
parent | 801d955f04d46994ac5bc7270fea86a7703c5192 (diff) | |
parent | 6c22b1d7609413f711cb1bcf258ecc13ef15af07 (diff) | |
download | cpython-ac99576a8eda27d7554c5293df22d29ec9a2043d.zip cpython-ac99576a8eda27d7554c5293df22d29ec9a2043d.tar.gz cpython-ac99576a8eda27d7554c5293df22d29ec9a2043d.tar.bz2 |
Issue #17141: random.vonmisesvariate() no more hangs for large kappas.
Diffstat (limited to 'Lib/test/test_random.py')
-rw-r--r-- | Lib/test/test_random.py | 34 |
1 files changed, 32 insertions, 2 deletions
diff --git a/Lib/test/test_random.py b/Lib/test/test_random.py index b176ea1..c3ab7d2 100644 --- a/Lib/test/test_random.py +++ b/Lib/test/test_random.py @@ -440,6 +440,7 @@ class TestDistributions(unittest.TestCase): g.random = x[:].pop; g.paretovariate(1.0) g.random = x[:].pop; g.expovariate(1.0) g.random = x[:].pop; g.weibullvariate(1.0, 1.0) + g.random = x[:].pop; g.vonmisesvariate(1.0, 1.0) g.random = x[:].pop; g.normalvariate(0.0, 1.0) g.random = x[:].pop; g.gauss(0.0, 1.0) g.random = x[:].pop; g.lognormvariate(0.0, 1.0) @@ -460,6 +461,7 @@ class TestDistributions(unittest.TestCase): (g.uniform, (1.0,10.0), (10.0+1.0)/2, (10.0-1.0)**2/12), (g.triangular, (0.0, 1.0, 1.0/3.0), 4.0/9.0, 7.0/9.0/18.0), (g.expovariate, (1.5,), 1/1.5, 1/1.5**2), + (g.vonmisesvariate, (1.23, 0), pi, pi**2/3), (g.paretovariate, (5.0,), 5.0/(5.0-1), 5.0/((5.0-1)**2*(5.0-2))), (g.weibullvariate, (1.0, 3.0), gamma(1+1/3.0), @@ -476,8 +478,30 @@ class TestDistributions(unittest.TestCase): s1 += e s2 += (e - mu) ** 2 N = len(y) - self.assertAlmostEqual(s1/N, mu, places=2) - self.assertAlmostEqual(s2/(N-1), sigmasqrd, places=2) + self.assertAlmostEqual(s1/N, mu, places=2, + msg='%s%r' % (variate.__name__, args)) + self.assertAlmostEqual(s2/(N-1), sigmasqrd, places=2, + msg='%s%r' % (variate.__name__, args)) + + def test_constant(self): + g = random.Random() + N = 100 + for variate, args, expected in [ + (g.uniform, (10.0, 10.0), 10.0), + (g.triangular, (10.0, 10.0), 10.0), + #(g.triangular, (10.0, 10.0, 10.0), 10.0), + (g.expovariate, (float('inf'),), 0.0), + (g.vonmisesvariate, (3.0, float('inf')), 3.0), + (g.gauss, (10.0, 0.0), 10.0), + (g.lognormvariate, (0.0, 0.0), 1.0), + (g.lognormvariate, (-float('inf'), 0.0), 0.0), + (g.normalvariate, (10.0, 0.0), 10.0), + (g.paretovariate, (float('inf'),), 1.0), + (g.weibullvariate, (10.0, float('inf')), 10.0), + (g.weibullvariate, (0.0, 10.0), 0.0), + ]: + for i in range(N): + self.assertEqual(variate(*args), expected) def test_von_mises_range(self): # Issue 17149: von mises variates were not consistently in the @@ -493,6 +517,12 @@ class TestDistributions(unittest.TestCase): msg=("vonmisesvariate({}, {}) produced a result {} out" " of range [0, 2*pi]").format(mu, kappa, sample)) + def test_von_mises_large_kappa(self): + # Issue #17141: vonmisesvariate() was hang for large kappas + random.vonmisesvariate(0, 1e15) + random.vonmisesvariate(0, 1e100) + + class TestModule(unittest.TestCase): def testMagicConstants(self): self.assertAlmostEqual(random.NV_MAGICCONST, 1.71552776992141) |