diff options
author | Steven D'Aprano <steve@pearwood.info> | 2016-08-09 03:58:10 (GMT) |
---|---|---|
committer | Steven D'Aprano <steve@pearwood.info> | 2016-08-09 03:58:10 (GMT) |
commit | 9a2be91c6b974c82d61ce7160f36d0b293e66a2b (patch) | |
tree | bafafcd919fe0cad84648e44acd805514d518726 /Lib/test/test_statistics.py | |
parent | e7fef52f9865b29785be04d1dc7d9b0b52f3c085 (diff) | |
download | cpython-9a2be91c6b974c82d61ce7160f36d0b293e66a2b.zip cpython-9a2be91c6b974c82d61ce7160f36d0b293e66a2b.tar.gz cpython-9a2be91c6b974c82d61ce7160f36d0b293e66a2b.tar.bz2 |
Issue27181 add geometric mean.
Diffstat (limited to 'Lib/test/test_statistics.py')
-rw-r--r-- | Lib/test/test_statistics.py | 285 |
1 files changed, 285 insertions, 0 deletions
diff --git a/Lib/test/test_statistics.py b/Lib/test/test_statistics.py index 4b3fd36..8b0c01f 100644 --- a/Lib/test/test_statistics.py +++ b/Lib/test/test_statistics.py @@ -1010,6 +1010,291 @@ class FailNegTest(unittest.TestCase): self.assertEqual(errmsg, msg) +class Test_Product(NumericTestCase): + """Test the private _product function.""" + + def test_ints(self): + data = [1, 2, 5, 7, 9] + self.assertEqual(statistics._product(data), (0, 630)) + self.assertEqual(statistics._product(data*100), (0, 630**100)) + + def test_floats(self): + data = [1.0, 2.0, 4.0, 8.0] + self.assertEqual(statistics._product(data), (8, 0.25)) + + def test_overflow(self): + # Test with floats that overflow. + data = [1e300]*5 + self.assertEqual(statistics._product(data), (5980, 0.6928287951283193)) + + def test_fractions(self): + F = Fraction + data = [F(14, 23), F(69, 1), F(665, 529), F(299, 105), F(1683, 39)] + exp, mant = statistics._product(data) + self.assertEqual(exp, 0) + self.assertEqual(mant, F(2*3*7*11*17*19, 23)) + self.assertTrue(isinstance(mant, F)) + # Mixed Fraction and int. + data = [3, 25, F(2, 15)] + exp, mant = statistics._product(data) + self.assertEqual(exp, 0) + self.assertEqual(mant, F(10)) + self.assertTrue(isinstance(mant, F)) + + @unittest.expectedFailure + def test_decimal(self): + D = Decimal + data = [D('24.5'), D('17.6'), D('0.025'), D('1.3')] + assert False + + def test_mixed_decimal_float(self): + # Test that mixed Decimal and float raises. + self.assertRaises(TypeError, statistics._product, [1.0, Decimal(1)]) + self.assertRaises(TypeError, statistics._product, [Decimal(1), 1.0]) + + +class Test_Nth_Root(NumericTestCase): + """Test the functionality of the private _nth_root function.""" + + def setUp(self): + self.nroot = statistics._nth_root + + # --- Special values (infinities, NANs, zeroes) --- + + def test_float_NAN(self): + # Test that the root of a float NAN is a float NAN. + NAN = float('nan') + for n in range(2, 9): + with self.subTest(n=n): + result = self.nroot(NAN, n) + self.assertTrue(math.isnan(result)) + + def test_decimal_QNAN(self): + # Test the behaviour when taking the root of a Decimal quiet NAN. + NAN = decimal.Decimal('nan') + with decimal.localcontext() as ctx: + ctx.traps[decimal.InvalidOperation] = 1 + self.assertRaises(decimal.InvalidOperation, self.nroot, NAN, 5) + ctx.traps[decimal.InvalidOperation] = 0 + self.assertTrue(self.nroot(NAN, 5).is_qnan()) + + def test_decimal_SNAN(self): + # Test that taking the root of a Decimal sNAN always raises. + sNAN = decimal.Decimal('snan') + with decimal.localcontext() as ctx: + ctx.traps[decimal.InvalidOperation] = 1 + self.assertRaises(decimal.InvalidOperation, self.nroot, sNAN, 5) + ctx.traps[decimal.InvalidOperation] = 0 + self.assertRaises(decimal.InvalidOperation, self.nroot, sNAN, 5) + + def test_inf(self): + # Test that the root of infinity is infinity. + for INF in (float('inf'), decimal.Decimal('inf')): + for n in range(2, 9): + with self.subTest(n=n, inf=INF): + self.assertEqual(self.nroot(INF, n), INF) + + def testNInf(self): + # Test that the root of -inf is -inf for odd n. + for NINF in (float('-inf'), decimal.Decimal('-inf')): + for n in range(3, 11, 2): + with self.subTest(n=n, inf=NINF): + self.assertEqual(self.nroot(NINF, n), NINF) + + # FIXME: need to check Decimal zeroes too. + def test_zero(self): + # Test that the root of +0.0 is +0.0. + for n in range(2, 11): + with self.subTest(n=n): + result = self.nroot(+0.0, n) + self.assertEqual(result, 0.0) + self.assertEqual(sign(result), +1) + + # FIXME: need to check Decimal zeroes too. + def test_neg_zero(self): + # Test that the root of -0.0 is -0.0. + for n in range(2, 11): + with self.subTest(n=n): + result = self.nroot(-0.0, n) + self.assertEqual(result, 0.0) + self.assertEqual(sign(result), -1) + + # --- Test return types --- + + def check_result_type(self, x, n, outtype): + self.assertIsInstance(self.nroot(x, n), outtype) + class MySubclass(type(x)): + pass + self.assertIsInstance(self.nroot(MySubclass(x), n), outtype) + + def testDecimal(self): + # Test that Decimal arguments return Decimal results. + self.check_result_type(decimal.Decimal('33.3'), 3, decimal.Decimal) + + def testFloat(self): + # Test that other arguments return float results. + for x in (0.2, Fraction(11, 7), 91): + self.check_result_type(x, 6, float) + + # --- Test bad input --- + + def testBadOrderTypes(self): + # Test that nroot raises correctly when n has the wrong type. + for n in (5.0, 2j, None, 'x', b'x', [], {}, set(), sign): + with self.subTest(n=n): + self.assertRaises(TypeError, self.nroot, 2.5, n) + + def testBadOrderValues(self): + # Test that nroot raises correctly when n has a wrong value. + for n in (1, 0, -1, -2, -87): + with self.subTest(n=n): + self.assertRaises(ValueError, self.nroot, 2.5, n) + + def testBadTypes(self): + # Test that nroot raises correctly when x has the wrong type. + for x in (None, 'x', b'x', [], {}, set(), sign): + with self.subTest(x=x): + self.assertRaises(TypeError, self.nroot, x, 3) + + def testNegativeEvenPower(self): + # Test negative x with even n raises correctly. + x = random.uniform(-20.0, -0.1) + assert x < 0 + for n in range(2, 9, 2): + with self.subTest(x=x, n=n): + self.assertRaises(ValueError, self.nroot, x, n) + + # --- Test that nroot is never worse than calling math.pow() --- + + def check_error_is_no_worse(self, x, n): + y = math.pow(x, n) + with self.subTest(x=x, n=n, y=y): + err1 = abs(self.nroot(y, n) - x) + err2 = abs(math.pow(y, 1.0/n) - x) + self.assertLessEqual(err1, err2) + + def testCompareWithPowSmall(self): + # Compare nroot with pow for small values of x. + for i in range(200): + x = random.uniform(1e-9, 1.0-1e-9) + n = random.choice(range(2, 16)) + self.check_error_is_no_worse(x, n) + + def testCompareWithPowMedium(self): + # Compare nroot with pow for medium-sized values of x. + for i in range(200): + x = random.uniform(1.0, 100.0) + n = random.choice(range(2, 16)) + self.check_error_is_no_worse(x, n) + + def testCompareWithPowLarge(self): + # Compare nroot with pow for largish values of x. + for i in range(200): + x = random.uniform(100.0, 10000.0) + n = random.choice(range(2, 16)) + self.check_error_is_no_worse(x, n) + + def testCompareWithPowHuge(self): + # Compare nroot with pow for huge values of x. + for i in range(200): + x = random.uniform(1e20, 1e50) + # We restrict the order here to avoid an Overflow error. + n = random.choice(range(2, 7)) + self.check_error_is_no_worse(x, n) + + # --- Test for numerically correct answers --- + + def testExactPowers(self): + # Test that small integer powers are calculated exactly. + for i in range(1, 51): + for n in range(2, 16): + if (i, n) == (35, 13): + # See testExpectedFailure35p13 + continue + with self.subTest(i=i, n=n): + x = i**n + self.assertEqual(self.nroot(x, n), i) + + def testExactPowersNegatives(self): + # Test that small negative integer powers are calculated exactly. + for i in range(-1, -51, -1): + for n in range(3, 16, 2): + if (i, n) == (-35, 13): + # See testExpectedFailure35p13 + continue + with self.subTest(i=i, n=n): + x = i**n + assert sign(x) == -1 + self.assertEqual(self.nroot(x, n), i) + + def testExpectedFailure35p13(self): + # Test the expected failure 35**13 is almost exact. + x = 35**13 + err = abs(self.nroot(x, 13) - 35) + self.assertLessEqual(err, 0.000000001) + err = abs(self.nroot(-x, 13) + 35) + self.assertLessEqual(err, 0.000000001) + + def testOne(self): + # Test that the root of 1.0 is 1.0. + for n in range(2, 11): + with self.subTest(n=n): + self.assertEqual(self.nroot(1.0, n), 1.0) + + def testFraction(self): + # Test Fraction results. + x = Fraction(89, 75) + self.assertEqual(self.nroot(x**12, 12), float(x)) + + def testInt(self): + # Test int results. + x = 276 + self.assertEqual(self.nroot(x**24, 24), x) + + def testBigInt(self): + # Test that ints too big to convert to floats work. + bignum = 10**20 # That's not that big... + self.assertEqual(self.nroot(bignum**280, 280), bignum) + # Can we make it bigger? + hugenum = bignum**50 + # Make sure that it is too big to convert to a float. + try: + y = float(hugenum) + except OverflowError: + pass + else: + raise AssertionError('hugenum is not big enough') + self.assertEqual(self.nroot(hugenum, 50), float(bignum)) + + def testDecimal(self): + # Test Decimal results. + for s in '3.759 64.027 5234.338'.split(): + x = decimal.Decimal(s) + with self.subTest(x=x): + a = self.nroot(x**5, 5) + self.assertEqual(a, x) + a = self.nroot(x**17, 17) + self.assertEqual(a, x) + + def testFloat(self): + # Test float results. + for x in (3.04e-16, 18.25, 461.3, 1.9e17): + with self.subTest(x=x): + self.assertEqual(self.nroot(x**3, 3), x) + self.assertEqual(self.nroot(x**8, 8), x) + self.assertEqual(self.nroot(x**11, 11), x) + + +class Test_NthRoot_NS(unittest.TestCase): + """Test internals of the nth_root function, hidden in _nroot_NS.""" + + def test_class_cannot_be_instantiated(self): + # Test that _nroot_NS cannot be instantiated. + # It should be a namespace, like in C++ or C#, but Python + # lacks that feature and so we have to make do with a class. + self.assertRaises(TypeError, statistics._nroot_NS) + + # === Tests for public functions === class UnivariateCommonMixin: |