diff options
author | Raymond Hettinger <rhettinger@users.noreply.github.com> | 2019-04-23 07:06:35 (GMT) |
---|---|---|
committer | GitHub <noreply@github.com> | 2019-04-23 07:06:35 (GMT) |
commit | 9013ccf6d8037f6ae78145a42d194141cb10d332 (patch) | |
tree | 9a1bf5b8739569012d9d3ecbf50b739936b730e2 /Lib/test/test_statistics.py | |
parent | d437012cdd4a38b5b3d05f139d5f0a28196e4769 (diff) | |
download | cpython-9013ccf6d8037f6ae78145a42d194141cb10d332.zip cpython-9013ccf6d8037f6ae78145a42d194141cb10d332.tar.gz cpython-9013ccf6d8037f6ae78145a42d194141cb10d332.tar.bz2 |
bpo-36546: Add statistics.quantiles() (#12710)
Diffstat (limited to 'Lib/test/test_statistics.py')
-rw-r--r-- | Lib/test/test_statistics.py | 142 |
1 files changed, 142 insertions, 0 deletions
diff --git a/Lib/test/test_statistics.py b/Lib/test/test_statistics.py index 4d397eb..c988d7f 100644 --- a/Lib/test/test_statistics.py +++ b/Lib/test/test_statistics.py @@ -3,6 +3,7 @@ approx_equal function. """ +import bisect import collections import collections.abc import copy @@ -2038,6 +2039,7 @@ class TestStdev(VarianceStdevMixin, NumericTestCase): expected = math.sqrt(statistics.variance(data)) self.assertEqual(self.func(data), expected) + class TestGeometricMean(unittest.TestCase): def test_basics(self): @@ -2126,6 +2128,146 @@ class TestGeometricMean(unittest.TestCase): with self.assertRaises(ValueError): geometric_mean([Inf, -Inf]) + +class TestQuantiles(unittest.TestCase): + + def test_specific_cases(self): + # Match results computed by hand and cross-checked + # against the PERCENTILE.EXC function in MS Excel. + quantiles = statistics.quantiles + data = [120, 200, 250, 320, 350] + random.shuffle(data) + for n, expected in [ + (1, []), + (2, [250.0]), + (3, [200.0, 320.0]), + (4, [160.0, 250.0, 335.0]), + (5, [136.0, 220.0, 292.0, 344.0]), + (6, [120.0, 200.0, 250.0, 320.0, 350.0]), + (8, [100.0, 160.0, 212.5, 250.0, 302.5, 335.0, 357.5]), + (10, [88.0, 136.0, 184.0, 220.0, 250.0, 292.0, 326.0, 344.0, 362.0]), + (12, [80.0, 120.0, 160.0, 200.0, 225.0, 250.0, 285.0, 320.0, 335.0, + 350.0, 365.0]), + (15, [72.0, 104.0, 136.0, 168.0, 200.0, 220.0, 240.0, 264.0, 292.0, + 320.0, 332.0, 344.0, 356.0, 368.0]), + ]: + self.assertEqual(expected, quantiles(data, n=n)) + self.assertEqual(len(quantiles(data, n=n)), n - 1) + self.assertEqual(list(map(float, expected)), + quantiles(map(Decimal, data), n=n)) + self.assertEqual(list(map(Decimal, expected)), + quantiles(map(Decimal, data), n=n)) + self.assertEqual(list(map(Fraction, expected)), + quantiles(map(Fraction, data), n=n)) + # Invariant under tranlation and scaling + def f(x): + return 3.5 * x - 1234.675 + exp = list(map(f, expected)) + act = quantiles(map(f, data), n=n) + self.assertTrue(all(math.isclose(e, a) for e, a in zip(exp, act))) + # Quartiles of a standard normal distribution + for n, expected in [ + (1, []), + (2, [0.0]), + (3, [-0.4307, 0.4307]), + (4 ,[-0.6745, 0.0, 0.6745]), + ]: + actual = quantiles(statistics.NormalDist(), n=n) + self.assertTrue(all(math.isclose(e, a, abs_tol=0.0001) + for e, a in zip(expected, actual))) + + def test_specific_cases_inclusive(self): + # Match results computed by hand and cross-checked + # against the PERCENTILE.INC function in MS Excel + # and against the quaatile() function in SciPy. + quantiles = statistics.quantiles + data = [100, 200, 400, 800] + random.shuffle(data) + for n, expected in [ + (1, []), + (2, [300.0]), + (3, [200.0, 400.0]), + (4, [175.0, 300.0, 500.0]), + (5, [160.0, 240.0, 360.0, 560.0]), + (6, [150.0, 200.0, 300.0, 400.0, 600.0]), + (8, [137.5, 175, 225.0, 300.0, 375.0, 500.0,650.0]), + (10, [130.0, 160.0, 190.0, 240.0, 300.0, 360.0, 440.0, 560.0, 680.0]), + (12, [125.0, 150.0, 175.0, 200.0, 250.0, 300.0, 350.0, 400.0, + 500.0, 600.0, 700.0]), + (15, [120.0, 140.0, 160.0, 180.0, 200.0, 240.0, 280.0, 320.0, 360.0, + 400.0, 480.0, 560.0, 640.0, 720.0]), + ]: + self.assertEqual(expected, quantiles(data, n=n, method="inclusive")) + self.assertEqual(len(quantiles(data, n=n, method="inclusive")), n - 1) + self.assertEqual(list(map(float, expected)), + quantiles(map(Decimal, data), n=n, method="inclusive")) + self.assertEqual(list(map(Decimal, expected)), + quantiles(map(Decimal, data), n=n, method="inclusive")) + self.assertEqual(list(map(Fraction, expected)), + quantiles(map(Fraction, data), n=n, method="inclusive")) + # Invariant under tranlation and scaling + def f(x): + return 3.5 * x - 1234.675 + exp = list(map(f, expected)) + act = quantiles(map(f, data), n=n, method="inclusive") + self.assertTrue(all(math.isclose(e, a) for e, a in zip(exp, act))) + # Quartiles of a standard normal distribution + for n, expected in [ + (1, []), + (2, [0.0]), + (3, [-0.4307, 0.4307]), + (4 ,[-0.6745, 0.0, 0.6745]), + ]: + actual = quantiles(statistics.NormalDist(), n=n, method="inclusive") + self.assertTrue(all(math.isclose(e, a, abs_tol=0.0001) + for e, a in zip(expected, actual))) + + def test_equal_sized_groups(self): + quantiles = statistics.quantiles + total = 10_000 + data = [random.expovariate(0.2) for i in range(total)] + while len(set(data)) != total: + data.append(random.expovariate(0.2)) + data.sort() + + # Cases where the group size exactly divides the total + for n in (1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000): + group_size = total // n + self.assertEqual( + [bisect.bisect(data, q) for q in quantiles(data, n=n)], + list(range(group_size, total, group_size))) + + # When the group sizes can't be exactly equal, they should + # differ by no more than one + for n in (13, 19, 59, 109, 211, 571, 1019, 1907, 5261, 9769): + group_sizes = {total // n, total // n + 1} + pos = [bisect.bisect(data, q) for q in quantiles(data, n=n)] + sizes = {q - p for p, q in zip(pos, pos[1:])} + self.assertTrue(sizes <= group_sizes) + + def test_error_cases(self): + quantiles = statistics.quantiles + StatisticsError = statistics.StatisticsError + with self.assertRaises(TypeError): + quantiles() # Missing arguments + with self.assertRaises(TypeError): + quantiles([10, 20, 30], 13, n=4) # Too many arguments + with self.assertRaises(TypeError): + quantiles([10, 20, 30], 4) # n is a positional argument + with self.assertRaises(StatisticsError): + quantiles([10, 20, 30], n=0) # n is zero + with self.assertRaises(StatisticsError): + quantiles([10, 20, 30], n=-1) # n is negative + with self.assertRaises(TypeError): + quantiles([10, 20, 30], n=1.5) # n is not an integer + with self.assertRaises(ValueError): + quantiles([10, 20, 30], method='X') # method is unknown + with self.assertRaises(StatisticsError): + quantiles([10], n=4) # not enough data points + with self.assertRaises(TypeError): + quantiles([10, None, 30], n=4) # data is non-numeric + + class TestNormalDist(unittest.TestCase): # General note on precision: The pdf(), cdf(), and overlap() methods |