diff options
author | Martin v. Löwis <martin@v.loewis.de> | 2008-09-21 07:32:10 (GMT) |
---|---|---|
committer | Martin v. Löwis <martin@v.loewis.de> | 2008-09-21 07:32:10 (GMT) |
commit | 60ebb8b0aa0e0aa2ae7c06aa05434f33ae1fe696 (patch) | |
tree | 91c87c1592948732b3ed9818f4d8069fa1277ca2 /Lib/tkinter | |
parent | 8e3548350d81c3461a5be63eb3fd646e3243a2c6 (diff) | |
download | cpython-60ebb8b0aa0e0aa2ae7c06aa05434f33ae1fe696.zip cpython-60ebb8b0aa0e0aa2ae7c06aa05434f33ae1fe696.tar.gz cpython-60ebb8b0aa0e0aa2ae7c06aa05434f33ae1fe696.tar.bz2 |
Bug #3884: Make the turtle module toplevel again.
Diffstat (limited to 'Lib/tkinter')
-rw-r--r-- | Lib/tkinter/turtle.py | 4051 |
1 files changed, 0 insertions, 4051 deletions
diff --git a/Lib/tkinter/turtle.py b/Lib/tkinter/turtle.py deleted file mode 100644 index 1497d2d..0000000 --- a/Lib/tkinter/turtle.py +++ /dev/null @@ -1,4051 +0,0 @@ -# -# turtle.py: a Tkinter based turtle graphics module for Python -# Version 1.0b1 - 31. 5. 2008 -# -# Copyright (C) 2006 - 2008 Gregor Lingl -# email: glingl@aon.at -# -# This software is provided 'as-is', without any express or implied -# warranty. In no event will the authors be held liable for any damages -# arising from the use of this software. -# -# Permission is granted to anyone to use this software for any purpose, -# including commercial applications, and to alter it and redistribute it -# freely, subject to the following restrictions: -# -# 1. The origin of this software must not be misrepresented; you must not -# claim that you wrote the original software. If you use this software -# in a product, an acknowledgment in the product documentation would be -# appreciated but is not required. -# 2. Altered source versions must be plainly marked as such, and must not be -# misrepresented as being the original software. -# 3. This notice may not be removed or altered from any source distribution. - - -""" -Turtle graphics is a popular way for introducing programming to -kids. It was part of the original Logo programming language developed -by Wally Feurzig and Seymour Papert in 1966. - -Imagine a robotic turtle starting at (0, 0) in the x-y plane. Give it -the command turtle.forward(15), and it moves (on-screen!) 15 pixels in -the direction it is facing, drawing a line as it moves. Give it the -command turtle.left(25), and it rotates in-place 25 degrees clockwise. - -By combining together these and similar commands, intricate shapes and -pictures can easily be drawn. - ------ turtle.py - -This module is an extended reimplementation of turtle.py from the -Python standard distribution up to Python 2.5. (See: http:\\www.python.org) - -It tries to keep the merits of turtle.py and to be (nearly) 100% -compatible with it. This means in the first place to enable the -learning programmer to use all the commands, classes and methods -interactively when using the module from within IDLE run with -the -n switch. - -Roughly it has the following features added: - -- Better animation of the turtle movements, especially of turning the - turtle. So the turtles can more easily be used as a visual feedback - instrument by the (beginning) programmer. - -- Different turtle shapes, gif-images as turtle shapes, user defined - and user controllable turtle shapes, among them compound - (multicolored) shapes. Turtle shapes can be stgretched and tilted, which - makes turtles zu very versatile geometrical objects. - -- Fine control over turtle movement and screen updates via delay(), - and enhanced tracer() and speed() methods. - -- Aliases for the most commonly used commands, like fd for forward etc., - following the early Logo traditions. This reduces the boring work of - typing long sequences of commands, which often occur in a natural way - when kids try to program fancy pictures on their first encounter with - turtle graphcis. - -- Turtles now have an undo()-method with configurable undo-buffer. - -- Some simple commands/methods for creating event driven programs - (mouse-, key-, timer-events). Especially useful for programming games. - -- A scrollable Canvas class. The default scrollable Canvas can be - extended interactively as needed while playing around with the turtle(s). - -- A TurtleScreen class with methods controlling background color or - background image, window and canvas size and other properties of the - TurtleScreen. - -- There is a method, setworldcoordinates(), to install a user defined - coordinate-system for the TurtleScreen. - -- The implementation uses a 2-vector class named Vec2D, derived from tuple. - This class is public, so it can be imported by the application programmer, - which makes certain types of computations very natural and compact. - -- Appearance of the TurtleScreen and the Turtles at startup/import can be - configured by means of a turtle.cfg configuration file. - The default configuration mimics the appearance of the old turtle module. - -- If configured appropriately the module reads in docstrings from a docstring - dictionary in some different language, supplied separately and replaces - the english ones by those read in. There is a utility function - write_docstringdict() to write a dictionary with the original (english) - docstrings to disc, so it can serve as a template for translations. - -Behind the scenes there are some features included with possible -extensionsin in mind. These will be commented and documented elsewhere. - -""" - -_ver = "turtle 1.0b1- - for Python 3.0 - 9. 6. 2008, 01:15" - -# print(_ver) - -import tkinter as TK -import types -import math -import time -import os - -from os.path import isfile, split, join -from copy import deepcopy - -#from math import * ## for compatibility with old turtle module - -_tg_classes = ['ScrolledCanvas', 'TurtleScreen', 'Screen', - 'RawTurtle', 'Turtle', 'RawPen', 'Pen', 'Shape', 'Vec2D'] -_tg_screen_functions = ['addshape', 'bgcolor', 'bgpic', 'bye', - 'clearscreen', 'colormode', 'delay', 'exitonclick', 'getcanvas', - 'getshapes', 'listen', 'mode', 'onkey', 'onscreenclick', 'ontimer', - 'register_shape', 'resetscreen', 'screensize', 'setup', - 'setworldcoordinates', 'title', 'tracer', 'turtles', 'update', - 'window_height', 'window_width'] -_tg_turtle_functions = ['back', 'backward', 'begin_fill', 'begin_poly', 'bk', - 'circle', 'clear', 'clearstamp', 'clearstamps', 'clone', 'color', - 'degrees', 'distance', 'dot', 'down', 'end_fill', 'end_poly', 'fd', - #'fill', - 'fillcolor', 'forward', 'get_poly', 'getpen', 'getscreen', - 'getturtle', 'goto', 'heading', 'hideturtle', 'home', 'ht', 'isdown', - 'isvisible', 'left', 'lt', 'onclick', 'ondrag', 'onrelease', 'pd', - 'pen', 'pencolor', 'pendown', 'pensize', 'penup', 'pos', 'position', - 'pu', 'radians', 'right', 'reset', 'resizemode', 'rt', - 'seth', 'setheading', 'setpos', 'setposition', 'settiltangle', - 'setundobuffer', 'setx', 'sety', 'shape', 'shapesize', 'showturtle', - 'speed', 'st', 'stamp', 'tilt', 'tiltangle', 'towards', #'tracer', - 'turtlesize', 'undo', 'undobufferentries', 'up', 'width', - #'window_height', 'window_width', - 'write', 'xcor', 'ycor'] -_tg_utilities = ['write_docstringdict', 'done', 'mainloop'] -##_math_functions = ['acos', 'asin', 'atan', 'atan2', 'ceil', 'cos', 'cosh', -## 'e', 'exp', 'fabs', 'floor', 'fmod', 'frexp', 'hypot', 'ldexp', 'log', -## 'log10', 'modf', 'pi', 'pow', 'sin', 'sinh', 'sqrt', 'tan', 'tanh'] - -__all__ = (_tg_classes + _tg_screen_functions + _tg_turtle_functions + - _tg_utilities) # + _math_functions) - -_alias_list = ['addshape', 'backward', 'bk', 'fd', 'ht', 'lt', 'pd', 'pos', - 'pu', 'rt', 'seth', 'setpos', 'setposition', 'st', - 'turtlesize', 'up', 'width'] - -_CFG = {"width" : 0.5, # Screen - "height" : 0.75, - "canvwidth" : 400, - "canvheight": 300, - "leftright": None, - "topbottom": None, - "mode": "standard", # TurtleScreen - "colormode": 1.0, - "delay": 10, - "undobuffersize": 1000, # RawTurtle - "shape": "classic", - "pencolor" : "black", - "fillcolor" : "black", - "resizemode" : "noresize", - "visible" : True, - "language": "english", # docstrings - "exampleturtle": "turtle", - "examplescreen": "screen", - "title": "Python Turtle Graphics", - "using_IDLE": False - } - -##print "cwd:", os.getcwd() -##print "__file__:", __file__ -## -##def show(dictionary): -## print "==========================" -## for key in sorted(dictionary.keys()): -## print key, ":", dictionary[key] -## print "==========================" -## print - -def config_dict(filename): - """Convert content of config-file into dictionary.""" - f = open(filename, "r") - cfglines = f.readlines() - f.close() - cfgdict = {} - for line in cfglines: - line = line.strip() - if not line or line.startswith("#"): - continue - try: - key, value = line.split("=") - except: - print("Bad line in config-file %s:\n%s" % (filename,line)) - continue - key = key.strip() - value = value.strip() - if value in ["True", "False", "None", "''", '""']: - value = eval(value) - else: - try: - if "." in value: - value = float(value) - else: - value = int(value) - except: - pass # value need not be converted - cfgdict[key] = value - return cfgdict - -def readconfig(cfgdict): - """Read config-files, change configuration-dict accordingly. - - If there is a turtle.cfg file in the current working directory, - read it from there. If this contains an importconfig-value, - say 'myway', construct filename turtle_mayway.cfg else use - turtle.cfg and read it from the import-directory, where - turtle.py is located. - Update configuration dictionary first according to config-file, - in the import directory, then according to config-file in the - current working directory. - If no config-file is found, the default configuration is used. - """ - default_cfg = "turtle.cfg" - cfgdict1 = {} - cfgdict2 = {} - if isfile(default_cfg): - cfgdict1 = config_dict(default_cfg) - #print "1. Loading config-file %s from: %s" % (default_cfg, os.getcwd()) - if "importconfig" in cfgdict1: - default_cfg = "turtle_%s.cfg" % cfgdict1["importconfig"] - try: - head, tail = split(__file__) - cfg_file2 = join(head, default_cfg) - except: - cfg_file2 = "" - if isfile(cfg_file2): - #print "2. Loading config-file %s:" % cfg_file2 - cfgdict2 = config_dict(cfg_file2) -## show(_CFG) -## show(cfgdict2) - _CFG.update(cfgdict2) -## show(_CFG) -## show(cfgdict1) - _CFG.update(cfgdict1) -## show(_CFG) - -try: - readconfig(_CFG) -except: - print ("No configfile read, reason unknown") - - -class Vec2D(tuple): - """A 2 dimensional vector class, used as a helper class - for implementing turtle graphics. - May be useful for turtle graphics programs also. - Derived from tuple, so a vector is a tuple! - - Provides (for a, b vectors, k number): - a+b vector addition - a-b vector subtraction - a*b inner product - k*a and a*k multiplication with scalar - |a| absolute value of a - a.rotate(angle) rotation - """ - def __new__(cls, x, y): - return tuple.__new__(cls, (x, y)) - def __add__(self, other): - return Vec2D(self[0]+other[0], self[1]+other[1]) - def __mul__(self, other): - if isinstance(other, Vec2D): - return self[0]*other[0]+self[1]*other[1] - return Vec2D(self[0]*other, self[1]*other) - def __rmul__(self, other): - if isinstance(other, int) or isinstance(other, float): - return Vec2D(self[0]*other, self[1]*other) - def __sub__(self, other): - return Vec2D(self[0]-other[0], self[1]-other[1]) - def __neg__(self): - return Vec2D(-self[0], -self[1]) - def __abs__(self): - return (self[0]**2 + self[1]**2)**0.5 - def rotate(self, angle): - """rotate self counterclockwise by angle - """ - perp = Vec2D(-self[1], self[0]) - angle = angle * math.pi / 180.0 - c, s = math.cos(angle), math.sin(angle) - return Vec2D(self[0]*c+perp[0]*s, self[1]*c+perp[1]*s) - def __getnewargs__(self): - return (self[0], self[1]) - def __repr__(self): - return "(%.2f,%.2f)" % self - - -############################################################################## -### From here up to line : Tkinter - Interface for turtle.py ### -### May be replaced by an interface to some different graphcis-toolkit ### -############################################################################## - -## helper functions for Scrolled Canvas, to forward Canvas-methods -## to ScrolledCanvas class - -def __methodDict(cls, _dict): - """helper function for Scrolled Canvas""" - baseList = list(cls.__bases__) - baseList.reverse() - for _super in baseList: - __methodDict(_super, _dict) - for key, value in cls.__dict__.items(): - if type(value) == types.FunctionType: - _dict[key] = value - -def __methods(cls): - """helper function for Scrolled Canvas""" - _dict = {} - __methodDict(cls, _dict) - return _dict.keys() - -__stringBody = ( - 'def %(method)s(self, *args, **kw): return ' + - 'self.%(attribute)s.%(method)s(*args, **kw)') - -def __forwardmethods(fromClass, toClass, toPart, exclude = ()): - ### MANY CHANGES ### - _dict_1 = {} - __methodDict(toClass, _dict_1) - _dict = {} - mfc = __methods(fromClass) - for ex in _dict_1.keys(): - if ex[:1] == '_' or ex[-1:] == '_' or ex in exclude or ex in mfc: - pass - else: - _dict[ex] = _dict_1[ex] - - for method, func in _dict.items(): - d = {'method': method, 'func': func} - if isinstance(toPart, str): - execString = \ - __stringBody % {'method' : method, 'attribute' : toPart} - exec(execString, d) - setattr(fromClass, method, d[method]) ### NEWU! - - -class ScrolledCanvas(TK.Frame): - """Modeled after the scrolled canvas class from Grayons's Tkinter book. - - Used as the default canvas, which pops up automatically when - using turtle graphics functions or the Turtle class. - """ - def __init__(self, master, width=500, height=350, - canvwidth=600, canvheight=500): - TK.Frame.__init__(self, master, width=width, height=height) - self._root = self.winfo_toplevel() - self.width, self.height = width, height - self.canvwidth, self.canvheight = canvwidth, canvheight - self.bg = "white" - self._canvas = TK.Canvas(master, width=width, height=height, - bg=self.bg, relief=TK.SUNKEN, borderwidth=2) - self.hscroll = TK.Scrollbar(master, command=self._canvas.xview, - orient=TK.HORIZONTAL) - self.vscroll = TK.Scrollbar(master, command=self._canvas.yview) - self._canvas.configure(xscrollcommand=self.hscroll.set, - yscrollcommand=self.vscroll.set) - self.rowconfigure(0, weight=1, minsize=0) - self.columnconfigure(0, weight=1, minsize=0) - self._canvas.grid(padx=1, in_ = self, pady=1, row=0, - column=0, rowspan=1, columnspan=1, sticky='news') - self.vscroll.grid(padx=1, in_ = self, pady=1, row=0, - column=1, rowspan=1, columnspan=1, sticky='news') - self.hscroll.grid(padx=1, in_ = self, pady=1, row=1, - column=0, rowspan=1, columnspan=1, sticky='news') - self.reset() - self._root.bind('<Configure>', self.onResize) - - def reset(self, canvwidth=None, canvheight=None, bg = None): - """Ajust canvas and scrollbars according to given canvas size.""" - if canvwidth: - self.canvwidth = canvwidth - if canvheight: - self.canvheight = canvheight - if bg: - self.bg = bg - self._canvas.config(bg=bg, - scrollregion=(-self.canvwidth//2, -self.canvheight//2, - self.canvwidth//2, self.canvheight//2)) - self._canvas.xview_moveto(0.5*(self.canvwidth - self.width + 30) / - self.canvwidth) - self._canvas.yview_moveto(0.5*(self.canvheight- self.height + 30) / - self.canvheight) - self.adjustScrolls() - - - def adjustScrolls(self): - """ Adjust scrollbars according to window- and canvas-size. - """ - cwidth = self._canvas.winfo_width() - cheight = self._canvas.winfo_height() - self._canvas.xview_moveto(0.5*(self.canvwidth-cwidth)/self.canvwidth) - self._canvas.yview_moveto(0.5*(self.canvheight-cheight)/self.canvheight) - if cwidth < self.canvwidth or cheight < self.canvheight: - self.hscroll.grid(padx=1, in_ = self, pady=1, row=1, - column=0, rowspan=1, columnspan=1, sticky='news') - self.vscroll.grid(padx=1, in_ = self, pady=1, row=0, - column=1, rowspan=1, columnspan=1, sticky='news') - else: - self.hscroll.grid_forget() - self.vscroll.grid_forget() - - def onResize(self, event): - """self-explanatory""" - self.adjustScrolls() - - def bbox(self, *args): - """ 'forward' method, which canvas itself has inherited... - """ - return self._canvas.bbox(*args) - - def cget(self, *args, **kwargs): - """ 'forward' method, which canvas itself has inherited... - """ - return self._canvas.cget(*args, **kwargs) - - def config(self, *args, **kwargs): - """ 'forward' method, which canvas itself has inherited... - """ - self._canvas.config(*args, **kwargs) - - def bind(self, *args, **kwargs): - """ 'forward' method, which canvas itself has inherited... - """ - self._canvas.bind(*args, **kwargs) - - def unbind(self, *args, **kwargs): - """ 'forward' method, which canvas itself has inherited... - """ - self._canvas.unbind(*args, **kwargs) - - def focus_force(self): - """ 'forward' method, which canvas itself has inherited... - """ - self._canvas.focus_force() - -__forwardmethods(ScrolledCanvas, TK.Canvas, '_canvas') - - -class _Root(TK.Tk): - """Root class for Screen based on Tkinter.""" - def __init__(self): - TK.Tk.__init__(self) - - def setupcanvas(self, width, height, cwidth, cheight): - self._canvas = ScrolledCanvas(self, width, height, cwidth, cheight) - self._canvas.pack(expand=1, fill="both") - - def _getcanvas(self): - return self._canvas - - def set_geometry(self, width, height, startx, starty): - self.geometry("%dx%d%+d%+d"%(width, height, startx, starty)) - - def ondestroy(self, destroy): - self.wm_protocol("WM_DELETE_WINDOW", destroy) - - def win_width(self): - return self.winfo_screenwidth() - - def win_height(self): - return self.winfo_screenheight() - -Canvas = TK.Canvas - - -class TurtleScreenBase(object): - """Provide the basic graphics functionality. - Interface between Tkinter and turtle.py. - - To port turtle.py to some different graphics toolkit - a corresponding TurtleScreenBase class has to be implemented. - """ - - @staticmethod - def _blankimage(): - """return a blank image object - """ - img = TK.PhotoImage(width=1, height=1) - img.blank() - return img - - @staticmethod - def _image(filename): - """return an image object containing the - imagedata from a gif-file named filename. - """ - return TK.PhotoImage(file=filename) - - def __init__(self, cv): - self.cv = cv - if isinstance(cv, ScrolledCanvas): - w = self.cv.canvwidth - h = self.cv.canvheight - else: # expected: ordinary TK.Canvas - w = int(self.cv.cget("width")) - h = int(self.cv.cget("height")) - self.cv.config(scrollregion = (-w//2, -h//2, w//2, h//2 )) - self.canvwidth = w - self.canvheight = h - self.xscale = self.yscale = 1.0 - - def _createpoly(self): - """Create an invisible polygon item on canvas self.cv) - """ - return self.cv.create_polygon((0, 0, 0, 0, 0, 0), fill="", outline="") - - def _drawpoly(self, polyitem, coordlist, fill=None, - outline=None, width=None, top=False): - """Configure polygonitem polyitem according to provided - arguments: - coordlist is sequence of coordinates - fill is filling color - outline is outline color - top is a boolean value, which specifies if polyitem - will be put on top of the canvas' displaylist so it - will not be covered by other items. - """ - cl = [] - for x, y in coordlist: - cl.append(x * self.xscale) - cl.append(-y * self.yscale) - self.cv.coords(polyitem, *cl) - if fill is not None: - self.cv.itemconfigure(polyitem, fill=fill) - if outline is not None: - self.cv.itemconfigure(polyitem, outline=outline) - if width is not None: - self.cv.itemconfigure(polyitem, width=width) - if top: - self.cv.tag_raise(polyitem) - - def _createline(self): - """Create an invisible line item on canvas self.cv) - """ - return self.cv.create_line(0, 0, 0, 0, fill="", width=2, - capstyle = TK.ROUND) - - def _drawline(self, lineitem, coordlist=None, - fill=None, width=None, top=False): - """Configure lineitem according to provided arguments: - coordlist is sequence of coordinates - fill is drawing color - width is width of drawn line. - top is a boolean value, which specifies if polyitem - will be put on top of the canvas' displaylist so it - will not be covered by other items. - """ - if coordlist is not None: - cl = [] - for x, y in coordlist: - cl.append(x * self.xscale) - cl.append(-y * self.yscale) - self.cv.coords(lineitem, *cl) - if fill is not None: - self.cv.itemconfigure(lineitem, fill=fill) - if width is not None: - self.cv.itemconfigure(lineitem, width=width) - if top: - self.cv.tag_raise(lineitem) - - def _delete(self, item): - """Delete graphics item from canvas. - If item is"all" delete all graphics items. - """ - self.cv.delete(item) - - def _update(self): - """Redraw graphics items on canvas - """ - self.cv.update() - - def _delay(self, delay): - """Delay subsequent canvas actions for delay ms.""" - self.cv.after(delay) - - def _iscolorstring(self, color): - """Check if the string color is a legal Tkinter color string. - """ - try: - rgb = self.cv.winfo_rgb(color) - ok = True - except TK.TclError: - ok = False - return ok - - def _bgcolor(self, color=None): - """Set canvas' backgroundcolor if color is not None, - else return backgroundcolor.""" - if color is not None: - self.cv.config(bg = color) - self._update() - else: - return self.cv.cget("bg") - - def _write(self, pos, txt, align, font, pencolor): - """Write txt at pos in canvas with specified font - and color. - Return text item and x-coord of right bottom corner - of text's bounding box.""" - x, y = pos - x = x * self.xscale - y = y * self.yscale - anchor = {"left":"sw", "center":"s", "right":"se" } - item = self.cv.create_text(x-1, -y, text = txt, anchor = anchor[align], - fill = pencolor, font = font) - x0, y0, x1, y1 = self.cv.bbox(item) - self.cv.update() - return item, x1-1 - -## def _dot(self, pos, size, color): -## """may be implemented for some other graphics toolkit""" - - def _onclick(self, item, fun, num=1, add=None): - """Bind fun to mouse-click event on turtle. - fun must be a function with two arguments, the coordinates - of the clicked point on the canvas. - num, the number of the mouse-button defaults to 1 - """ - if fun is None: - self.cv.tag_unbind(item, "<Button-%s>" % num) - else: - def eventfun(event): - x, y = (self.cv.canvasx(event.x)/self.xscale, - -self.cv.canvasy(event.y)/self.yscale) - fun(x, y) - self.cv.tag_bind(item, "<Button-%s>" % num, eventfun, add) - - def _onrelease(self, item, fun, num=1, add=None): - """Bind fun to mouse-button-release event on turtle. - fun must be a function with two arguments, the coordinates - of the point on the canvas where mouse button is released. - num, the number of the mouse-button defaults to 1 - - If a turtle is clicked, first _onclick-event will be performed, - then _onscreensclick-event. - """ - if fun is None: - self.cv.tag_unbind(item, "<Button%s-ButtonRelease>" % num) - else: - def eventfun(event): - x, y = (self.cv.canvasx(event.x)/self.xscale, - -self.cv.canvasy(event.y)/self.yscale) - fun(x, y) - self.cv.tag_bind(item, "<Button%s-ButtonRelease>" % num, - eventfun, add) - - def _ondrag(self, item, fun, num=1, add=None): - """Bind fun to mouse-move-event (with pressed mouse button) on turtle. - fun must be a function with two arguments, the coordinates of the - actual mouse position on the canvas. - num, the number of the mouse-button defaults to 1 - - Every sequence of mouse-move-events on a turtle is preceded by a - mouse-click event on that turtle. - """ - if fun is None: - self.cv.tag_unbind(item, "<Button%s-Motion>" % num) - else: - def eventfun(event): - try: - x, y = (self.cv.canvasx(event.x)/self.xscale, - -self.cv.canvasy(event.y)/self.yscale) - fun(x, y) - except: - pass - self.cv.tag_bind(item, "<Button%s-Motion>" % num, eventfun, add) - - def _onscreenclick(self, fun, num=1, add=None): - """Bind fun to mouse-click event on canvas. - fun must be a function with two arguments, the coordinates - of the clicked point on the canvas. - num, the number of the mouse-button defaults to 1 - - If a turtle is clicked, first _onclick-event will be performed, - then _onscreensclick-event. - """ - if fun is None: - self.cv.unbind("<Button-%s>" % num) - else: - def eventfun(event): - x, y = (self.cv.canvasx(event.x)/self.xscale, - -self.cv.canvasy(event.y)/self.yscale) - fun(x, y) - self.cv.bind("<Button-%s>" % num, eventfun, add) - - def _onkey(self, fun, key): - """Bind fun to key-release event of key. - Canvas must have focus. See method listen - """ - if fun is None: - self.cv.unbind("<KeyRelease-%s>" % key, None) - else: - def eventfun(event): - fun() - self.cv.bind("<KeyRelease-%s>" % key, eventfun) - - def _listen(self): - """Set focus on canvas (in order to collect key-events) - """ - self.cv.focus_force() - - def _ontimer(self, fun, t): - """Install a timer, which calls fun after t milliseconds. - """ - if t == 0: - self.cv.after_idle(fun) - else: - self.cv.after(t, fun) - - def _createimage(self, image): - """Create and return image item on canvas. - """ - return self.cv.create_image(0, 0, image=image) - - def _drawimage(self, item, pos, image): - """Configure image item as to draw image object - at position (x,y) on canvas) - """ - x, y = pos - self.cv.coords(item, (x * self.xscale, -y * self.yscale)) - self.cv.itemconfig(item, image=image) - - def _setbgpic(self, item, image): - """Configure image item as to draw image object - at center of canvas. Set item to the first item - in the displaylist, so it will be drawn below - any other item .""" - self.cv.itemconfig(item, image=image) - self.cv.tag_lower(item) - - def _type(self, item): - """Return 'line' or 'polygon' or 'image' depending on - type of item. - """ - return self.cv.type(item) - - def _pointlist(self, item): - """returns list of coordinate-pairs of points of item - Example (for insiders): - >>> from turtle import * - >>> getscreen()._pointlist(getturtle().turtle._item) - [(0.0, 9.9999999999999982), (0.0, -9.9999999999999982), - (9.9999999999999982, 0.0)] - >>> """ - cl = list(self.cv.coords(item)) - pl = [(cl[i], -cl[i+1]) for i in range(0, len(cl), 2)] - return pl - - def _setscrollregion(self, srx1, sry1, srx2, sry2): - self.cv.config(scrollregion=(srx1, sry1, srx2, sry2)) - - def _rescale(self, xscalefactor, yscalefactor): - items = self.cv.find_all() - for item in items: - coordinates = list(self.cv.coords(item)) - newcoordlist = [] - while coordinates: - x, y = coordinates[:2] - newcoordlist.append(x * xscalefactor) - newcoordlist.append(y * yscalefactor) - coordinates = coordinates[2:] - self.cv.coords(item, *newcoordlist) - - def _resize(self, canvwidth=None, canvheight=None, bg=None): - """Resize the canvas, the turtles are drawing on. Does - not alter the drawing window. - """ - # needs amendment - if not isinstance(self.cv, ScrolledCanvas): - return self.canvwidth, self.canvheight - if canvwidth is None and canvheight is None and bg is None: - return self.cv.canvwidth, self.cv.canvheight - if canvwidth is not None: - self.canvwidth = canvwidth - if canvheight is not None: - self.canvheight = canvheight - self.cv.reset(canvwidth, canvheight, bg) - - def _window_size(self): - """ Return the width and height of the turtle window. - """ - width = self.cv.winfo_width() - if width <= 1: # the window isn't managed by a geometry manager - width = self.cv['width'] - height = self.cv.winfo_height() - if height <= 1: # the window isn't managed by a geometry manager - height = self.cv['height'] - return width, height - - -############################################################################## -### End of Tkinter - interface ### -############################################################################## - - -class Terminator (Exception): - """Will be raised in TurtleScreen.update, if _RUNNING becomes False. - - Thus stops execution of turtle graphics script. Main purpose: use in - in the Demo-Viewer turtle.Demo.py. - """ - pass - - -class TurtleGraphicsError(Exception): - """Some TurtleGraphics Error - """ - - -class Shape(object): - """Data structure modeling shapes. - - attribute _type is one of "polygon", "image", "compound" - attribute _data is - depending on _type a poygon-tuple, - an image or a list constructed using the addcomponent method. - """ - def __init__(self, type_, data=None): - self._type = type_ - if type_ == "polygon": - if isinstance(data, list): - data = tuple(data) - elif type_ == "image": - if isinstance(data, str): - if data.lower().endswith(".gif") and isfile(data): - data = TurtleScreen._image(data) - # else data assumed to be Photoimage - elif type_ == "compound": - data = [] - else: - raise TurtleGraphicsError("There is no shape type %s" % type_) - self._data = data - - def addcomponent(self, poly, fill, outline=None): - """Add component to a shape of type compound. - - Arguments: poly is a polygon, i. e. a tuple of number pairs. - fill is the fillcolor of the component, - outline is the outline color of the component. - - call (for a Shapeobject namend s): - -- s.addcomponent(((0,0), (10,10), (-10,10)), "red", "blue") - - Example: - >>> poly = ((0,0),(10,-5),(0,10),(-10,-5)) - >>> s = Shape("compound") - >>> s.addcomponent(poly, "red", "blue") - ### .. add more components and then use register_shape() - """ - if self._type != "compound": - raise TurtleGraphicsError("Cannot add component to %s Shape" - % self._type) - if outline is None: - outline = fill - self._data.append([poly, fill, outline]) - - -class Tbuffer(object): - """Ring buffer used as undobuffer for RawTurtle objects.""" - def __init__(self, bufsize=10): - self.bufsize = bufsize - self.buffer = [[None]] * bufsize - self.ptr = -1 - self.cumulate = False - def reset(self, bufsize=None): - if bufsize is None: - for i in range(self.bufsize): - self.buffer[i] = [None] - else: - self.bufsize = bufsize - self.buffer = [[None]] * bufsize - self.ptr = -1 - def push(self, item): - if self.bufsize > 0: - if not self.cumulate: - self.ptr = (self.ptr + 1) % self.bufsize - self.buffer[self.ptr] = item - else: - self.buffer[self.ptr].append(item) - def pop(self): - if self.bufsize > 0: - item = self.buffer[self.ptr] - if item is None: - return None - else: - self.buffer[self.ptr] = [None] - self.ptr = (self.ptr - 1) % self.bufsize - return (item) - def nr_of_items(self): - return self.bufsize - self.buffer.count([None]) - def __repr__(self): - return str(self.buffer) + " " + str(self.ptr) - - - -class TurtleScreen(TurtleScreenBase): - """Provides screen oriented methods like setbg etc. - - Only relies upon the methods of TurtleScreenBase and NOT - upon components of the underlying graphics toolkit - - which is Tkinter in this case. - """ -# _STANDARD_DELAY = 5 - _RUNNING = True - - def __init__(self, cv, mode=_CFG["mode"], - colormode=_CFG["colormode"], delay=_CFG["delay"]): - self._shapes = { - "arrow" : Shape("polygon", ((-10,0), (10,0), (0,10))), - "turtle" : Shape("polygon", ((0,16), (-2,14), (-1,10), (-4,7), - (-7,9), (-9,8), (-6,5), (-7,1), (-5,-3), (-8,-6), - (-6,-8), (-4,-5), (0,-7), (4,-5), (6,-8), (8,-6), - (5,-3), (7,1), (6,5), (9,8), (7,9), (4,7), (1,10), - (2,14))), - "circle" : Shape("polygon", ((10,0), (9.51,3.09), (8.09,5.88), - (5.88,8.09), (3.09,9.51), (0,10), (-3.09,9.51), - (-5.88,8.09), (-8.09,5.88), (-9.51,3.09), (-10,0), - (-9.51,-3.09), (-8.09,-5.88), (-5.88,-8.09), - (-3.09,-9.51), (-0.00,-10.00), (3.09,-9.51), - (5.88,-8.09), (8.09,-5.88), (9.51,-3.09))), - "square" : Shape("polygon", ((10,-10), (10,10), (-10,10), - (-10,-10))), - "triangle" : Shape("polygon", ((10,-5.77), (0,11.55), - (-10,-5.77))), - "classic": Shape("polygon", ((0,0),(-5,-9),(0,-7),(5,-9))), - "blank" : Shape("image", self._blankimage()) - } - - self._bgpics = {"nopic" : ""} - - TurtleScreenBase.__init__(self, cv) - self._mode = mode - self._delayvalue = delay - self._colormode = _CFG["colormode"] - self._keys = [] - self.clear() - - def clear(self): - """Delete all drawings and all turtles from the TurtleScreen. - - Reset empty TurtleScreen to it's initial state: white background, - no backgroundimage, no eventbindings and tracing on. - - No argument. - - Example (for a TurtleScreen instance named screen): - screen.clear() - - Note: this method is not available as function. - """ - self._delayvalue = _CFG["delay"] - self._colormode = _CFG["colormode"] - self._delete("all") - self._bgpic = self._createimage("") - self._bgpicname = "nopic" - self._tracing = 1 - self._updatecounter = 0 - self._turtles = [] - self.bgcolor("white") - for btn in 1, 2, 3: - self.onclick(None, btn) - for key in self._keys[:]: - self.onkey(None, key) - Turtle._pen = None - - def mode(self, mode=None): - """Set turtle-mode ('standard', 'logo' or 'world') and perform reset. - - Optional argument: - mode -- on of the strings 'standard', 'logo' or 'world' - - Mode 'standard' is compatible with turtle.py. - Mode 'logo' is compatible with most Logo-Turtle-Graphics. - Mode 'world' uses userdefined 'worldcoordinates'. *Attention*: in - this mode angles appear distorted if x/y unit-ratio doesn't equal 1. - If mode is not given, return the current mode. - - Mode Initial turtle heading positive angles - ------------|-------------------------|------------------- - 'standard' to the right (east) counterclockwise - 'logo' upward (north) clockwise - - Examples: - >>> mode('logo') # resets turtle heading to north - >>> mode() - 'logo' - """ - if mode == None: - return self._mode - mode = mode.lower() - if mode not in ["standard", "logo", "world"]: - raise TurtleGraphicsError("No turtle-graphics-mode %s" % mode) - self._mode = mode - if mode in ["standard", "logo"]: - self._setscrollregion(-self.canvwidth//2, -self.canvheight//2, - self.canvwidth//2, self.canvheight//2) - self.xscale = self.yscale = 1.0 - self.reset() - - def setworldcoordinates(self, llx, lly, urx, ury): - """Set up a user defined coordinate-system. - - Arguments: - llx -- a number, x-coordinate of lower left corner of canvas - lly -- a number, y-coordinate of lower left corner of canvas - urx -- a number, x-coordinate of upper right corner of canvas - ury -- a number, y-coordinate of upper right corner of canvas - - Set up user coodinat-system and switch to mode 'world' if necessary. - This performs a screen.reset. If mode 'world' is already active, - all drawings are redrawn according to the new coordinates. - - But ATTENTION: in user-defined coordinatesystems angles may appear - distorted. (see Screen.mode()) - - Example (for a TurtleScreen instance named screen): - >>> screen.setworldcoordinates(-10,-0.5,50,1.5) - >>> for _ in range(36): - left(10) - forward(0.5) - """ - if self.mode() != "world": - self.mode("world") - xspan = float(urx - llx) - yspan = float(ury - lly) - wx, wy = self._window_size() - self.screensize(wx-20, wy-20) - oldxscale, oldyscale = self.xscale, self.yscale - self.xscale = self.canvwidth / xspan - self.yscale = self.canvheight / yspan - srx1 = llx * self.xscale - sry1 = -ury * self.yscale - srx2 = self.canvwidth + srx1 - sry2 = self.canvheight + sry1 - self._setscrollregion(srx1, sry1, srx2, sry2) - self._rescale(self.xscale/oldxscale, self.yscale/oldyscale) - self.update() - - def register_shape(self, name, shape=None): - """Adds a turtle shape to TurtleScreen's shapelist. - - Arguments: - (1) name is the name of a gif-file and shape is None. - Installs the corresponding image shape. - !! Image-shapes DO NOT rotate when turning the turtle, - !! so they do not display the heading of the turtle! - (2) name is an arbitrary string and shape is a tuple - of pairs of coordinates. Installs the corresponding - polygon shape - (3) name is an arbitrary string and shape is a - (compound) Shape object. Installs the corresponding - compound shape. - To use a shape, you have to issue the command shape(shapename). - - call: register_shape("turtle.gif") - --or: register_shape("tri", ((0,0), (10,10), (-10,10))) - - Example (for a TurtleScreen instance named screen): - >>> screen.register_shape("triangle", ((5,-3),(0,5),(-5,-3))) - - """ - if shape is None: - # image - if name.lower().endswith(".gif"): - shape = Shape("image", self._image(name)) - else: - raise TurtleGraphicsError("Bad arguments for register_shape.\n" - + "Use help(register_shape)" ) - elif isinstance(shape, tuple): - shape = Shape("polygon", shape) - ## else shape assumed to be Shape-instance - self._shapes[name] = shape - # print "shape added:" , self._shapes - - def _colorstr(self, color): - """Return color string corresponding to args. - - Argument may be a string or a tuple of three - numbers corresponding to actual colormode, - i.e. in the range 0<=n<=colormode. - - If the argument doesn't represent a color, - an error is raised. - """ - if len(color) == 1: - color = color[0] - if isinstance(color, str): - if self._iscolorstring(color) or color == "": - return color - else: - raise TurtleGraphicsError("bad color string: %s" % str(color)) - try: - r, g, b = color - except: - raise TurtleGraphicsError("bad color arguments: %s" % str(color)) - if self._colormode == 1.0: - r, g, b = [round(255.0*x) for x in (r, g, b)] - if not ((0 <= r <= 255) and (0 <= g <= 255) and (0 <= b <= 255)): - raise TurtleGraphicsError("bad color sequence: %s" % str(color)) - return "#%02x%02x%02x" % (r, g, b) - - def _color(self, cstr): - if not cstr.startswith("#"): - return cstr - if len(cstr) == 7: - cl = [int(cstr[i:i+2], 16) for i in (1, 3, 5)] - elif len(cstr) == 4: - cl = [16*int(cstr[h], 16) for h in cstr[1:]] - else: - raise TurtleGraphicsError("bad colorstring: %s" % cstr) - return tuple([c * self._colormode/255 for c in cl]) - - def colormode(self, cmode=None): - """Return the colormode or set it to 1.0 or 255. - - Optional argument: - cmode -- one of the values 1.0 or 255 - - r, g, b values of colortriples have to be in range 0..cmode. - - Example (for a TurtleScreen instance named screen): - >>> screen.colormode() - 1.0 - >>> screen.colormode(255) - >>> turtle.pencolor(240,160,80) - """ - if cmode is None: - return self._colormode - if cmode == 1.0: - self._colormode = float(cmode) - elif cmode == 255: - self._colormode = int(cmode) - - def reset(self): - """Reset all Turtles on the Screen to their initial state. - - No argument. - - Example (for a TurtleScreen instance named screen): - >>> screen.reset() - """ - for turtle in self._turtles: - turtle._setmode(self._mode) - turtle.reset() - - def turtles(self): - """Return the list of turtles on the screen. - - Example (for a TurtleScreen instance named screen): - >>> screen.turtles() - [<turtle.Turtle object at 0x00E11FB0>] - """ - return self._turtles - - def bgcolor(self, *args): - """Set or return backgroundcolor of the TurtleScreen. - - Arguments (if given): a color string or three numbers - in the range 0..colormode or a 3-tuple of such numbers. - - Example (for a TurtleScreen instance named screen): - >>> screen.bgcolor("orange") - >>> screen.bgcolor() - 'orange' - >>> screen.bgcolor(0.5,0,0.5) - >>> screen.bgcolor() - '#800080' - """ - if args: - color = self._colorstr(args) - else: - color = None - color = self._bgcolor(color) - if color is not None: - color = self._color(color) - return color - - def tracer(self, n=None, delay=None): - """Turns turtle animation on/off and set delay for update drawings. - - Optional arguments: - n -- nonnegative integer - delay -- nonnegative integer - - If n is given, only each n-th regular screen update is really performed. - (Can be used to accelerate the drawing of complex graphics.) - Second arguments sets delay value (see RawTurtle.delay()) - - Example (for a TurtleScreen instance named screen): - >>> screen.tracer(8, 25) - >>> dist = 2 - >>> for i in range(200): - fd(dist) - rt(90) - dist += 2 - """ - if n is None: - return self._tracing - self._tracing = int(n) - self._updatecounter = 0 - if delay is not None: - self._delayvalue = int(delay) - if self._tracing: - self.update() - - def delay(self, delay=None): - """ Return or set the drawing delay in milliseconds. - - Optional argument: - delay -- positive integer - - Example (for a TurtleScreen instance named screen): - >>> screen.delay(15) - >>> screen.delay() - 15 - """ - if delay is None: - return self._delayvalue - self._delayvalue = int(delay) - - def _incrementudc(self): - "Increment upadate counter.""" - if not TurtleScreen._RUNNING: - TurtleScreen._RUNNNING = True - raise Terminator - if self._tracing > 0: - self._updatecounter += 1 - self._updatecounter %= self._tracing - - def update(self): - """Perform a TurtleScreen update. - """ - for t in self.turtles(): - t._update_data() - t._drawturtle() - self._update() - - def window_width(self): - """ Return the width of the turtle window. - - Example (for a TurtleScreen instance named screen): - >>> screen.window_width() - 640 - """ - return self._window_size()[0] - - def window_height(self): - """ Return the height of the turtle window. - - Example (for a TurtleScreen instance named screen): - >>> screen.window_height() - 480 - """ - return self._window_size()[1] - - def getcanvas(self): - """Return the Canvas of this TurtleScreen. - - No argument. - - Example (for a Screen instance named screen): - >>> cv = screen.getcanvas() - >>> cv - <turtle.ScrolledCanvas instance at 0x010742D8> - """ - return self.cv - - def getshapes(self): - """Return a list of names of all currently available turtle shapes. - - No argument. - - Example (for a TurtleScreen instance named screen): - >>> screen.getshapes() - ['arrow', 'blank', 'circle', ... , 'turtle'] - """ - return sorted(self._shapes.keys()) - - def onclick(self, fun, btn=1, add=None): - """Bind fun to mouse-click event on canvas. - - Arguments: - fun -- a function with two arguments, the coordinates of the - clicked point on the canvas. - num -- the number of the mouse-button, defaults to 1 - - Example (for a TurtleScreen instance named screen - and a Turtle instance named turtle): - - >>> screen.onclick(turtle.goto) - - ### Subsequently clicking into the TurtleScreen will - ### make the turtle move to the clicked point. - >>> screen.onclick(None) - - ### event-binding will be removed - """ - self._onscreenclick(fun, btn, add) - - def onkey(self, fun, key): - """Bind fun to key-release event of key. - - Arguments: - fun -- a function with no arguments - key -- a string: key (e.g. "a") or key-symbol (e.g. "space") - - In order ro be able to register key-events, TurtleScreen - must have focus. (See method listen.) - - Example (for a TurtleScreen instance named screen - and a Turtle instance named turtle): - - >>> def f(): - fd(50) - lt(60) - - - >>> screen.onkey(f, "Up") - >>> screen.listen() - - ### Subsequently the turtle can be moved by - ### repeatedly pressing the up-arrow key, - ### consequently drawing a hexagon - """ - if fun == None: - self._keys.remove(key) - elif key not in self._keys: - self._keys.append(key) - self._onkey(fun, key) - - def listen(self, xdummy=None, ydummy=None): - """Set focus on TurtleScreen (in order to collect key-events) - - No arguments. - Dummy arguments are provided in order - to be able to pass listen to the onclick method. - - Example (for a TurtleScreen instance named screen): - >>> screen.listen() - """ - self._listen() - - def ontimer(self, fun, t=0): - """Install a timer, which calls fun after t milliseconds. - - Arguments: - fun -- a function with no arguments. - t -- a number >= 0 - - Example (for a TurtleScreen instance named screen): - - >>> running = True - >>> def f(): - if running: - fd(50) - lt(60) - screen.ontimer(f, 250) - - >>> f() ### makes the turtle marching around - >>> running = False - """ - self._ontimer(fun, t) - - def bgpic(self, picname=None): - """Set background image or return name of current backgroundimage. - - Optional argument: - picname -- a string, name of a gif-file or "nopic". - - If picname is a filename, set the corresponing image as background. - If picname is "nopic", delete backgroundimage, if present. - If picname is None, return the filename of the current backgroundimage. - - Example (for a TurtleScreen instance named screen): - >>> screen.bgpic() - 'nopic' - >>> screen.bgpic("landscape.gif") - >>> screen.bgpic() - 'landscape.gif' - """ - if picname is None: - return self._bgpicname - if picname not in self._bgpics: - self._bgpics[picname] = self._image(picname) - self._setbgpic(self._bgpic, self._bgpics[picname]) - self._bgpicname = picname - - def screensize(self, canvwidth=None, canvheight=None, bg=None): - """Resize the canvas, the turtles are drawing on. - - Optional arguments: - canvwidth -- positive integer, new width of canvas in pixels - canvheight -- positive integer, new height of canvas in pixels - bg -- colorstring or color-tupel, new backgroundcolor - If no arguments are given, return current (canvaswidth, canvasheight) - - Do not alter the drawing window. To observe hidden parts of - the canvas use the scrollbars. (Can make visible those parts - of a drawing, which were outside the canvas before!) - - Example (for a Turtle instance named turtle): - >>> turtle.screensize(2000,1500) - ### e. g. to search for an erroneously escaped turtle ;-) - """ - return self._resize(canvwidth, canvheight, bg) - - onscreenclick = onclick - resetscreen = reset - clearscreen = clear - addshape = register_shape - -class TNavigator(object): - """Navigation part of the RawTurtle. - Implements methods for turtle movement. - """ - START_ORIENTATION = { - "standard": Vec2D(1.0, 0.0), - "world" : Vec2D(1.0, 0.0), - "logo" : Vec2D(0.0, 1.0) } - DEFAULT_MODE = "standard" - DEFAULT_ANGLEOFFSET = 0 - DEFAULT_ANGLEORIENT = 1 - - def __init__(self, mode=DEFAULT_MODE): - self._angleOffset = self.DEFAULT_ANGLEOFFSET - self._angleOrient = self.DEFAULT_ANGLEORIENT - self._mode = mode - self.undobuffer = None - self.degrees() - self._mode = None - self._setmode(mode) - TNavigator.reset(self) - - def reset(self): - """reset turtle to its initial values - - Will be overwritten by parent class - """ - self._position = Vec2D(0.0, 0.0) - self._orient = TNavigator.START_ORIENTATION[self._mode] - - def _setmode(self, mode=None): - """Set turtle-mode to 'standard', 'world' or 'logo'. - """ - if mode == None: - return self._mode - if mode not in ["standard", "logo", "world"]: - return - self._mode = mode - if mode in ["standard", "world"]: - self._angleOffset = 0 - self._angleOrient = 1 - else: # mode == "logo": - self._angleOffset = self._fullcircle/4. - self._angleOrient = -1 - - def _setDegreesPerAU(self, fullcircle): - """Helper function for degrees() and radians()""" - self._fullcircle = fullcircle - self._degreesPerAU = 360/fullcircle - if self._mode == "standard": - self._angleOffset = 0 - else: - self._angleOffset = fullcircle/4. - - def degrees(self, fullcircle=360.0): - """ Set angle measurement units to degrees. - - Optional argument: - fullcircle - a number - - Set angle measurement units, i. e. set number - of 'degrees' for a full circle. Dafault value is - 360 degrees. - - Example (for a Turtle instance named turtle): - >>> turtle.left(90) - >>> turtle.heading() - 90 - >>> turtle.degrees(400.0) # angle measurement in gon - >>> turtle.heading() - 100 - - """ - self._setDegreesPerAU(fullcircle) - - def radians(self): - """ Set the angle measurement units to radians. - - No arguments. - - Example (for a Turtle instance named turtle): - >>> turtle.heading() - 90 - >>> turtle.radians() - >>> turtle.heading() - 1.5707963267948966 - """ - self._setDegreesPerAU(2*math.pi) - - def _go(self, distance): - """move turtle forward by specified distance""" - ende = self._position + self._orient * distance - self._goto(ende) - - def _rotate(self, angle): - """Turn turtle counterclockwise by specified angle if angle > 0.""" - angle *= self._degreesPerAU - self._orient = self._orient.rotate(angle) - - def _goto(self, end): - """move turtle to position end.""" - self._position = end - - def forward(self, distance): - """Move the turtle forward by the specified distance. - - Aliases: forward | fd - - Argument: - distance -- a number (integer or float) - - Move the turtle forward by the specified distance, in the direction - the turtle is headed. - - Example (for a Turtle instance named turtle): - >>> turtle.position() - (0.00, 0.00) - >>> turtle.forward(25) - >>> turtle.position() - (25.00,0.00) - >>> turtle.forward(-75) - >>> turtle.position() - (-50.00,0.00) - """ - self._go(distance) - - def back(self, distance): - """Move the turtle backward by distance. - - Aliases: back | backward | bk - - Argument: - distance -- a number - - Move the turtle backward by distance ,opposite to the direction the - turtle is headed. Do not change the turtle's heading. - - Example (for a Turtle instance named turtle): - >>> turtle.position() - (0.00, 0.00) - >>> turtle.backward(30) - >>> turtle.position() - (-30.00, 0.00) - """ - self._go(-distance) - - def right(self, angle): - """Turn turtle right by angle units. - - Aliases: right | rt - - Argument: - angle -- a number (integer or float) - - Turn turtle right by angle units. (Units are by default degrees, - but can be set via the degrees() and radians() functions.) - Angle orientation depends on mode. (See this.) - - Example (for a Turtle instance named turtle): - >>> turtle.heading() - 22.0 - >>> turtle.right(45) - >>> turtle.heading() - 337.0 - """ - self._rotate(-angle) - - def left(self, angle): - """Turn turtle left by angle units. - - Aliases: left | lt - - Argument: - angle -- a number (integer or float) - - Turn turtle left by angle units. (Units are by default degrees, - but can be set via the degrees() and radians() functions.) - Angle orientation depends on mode. (See this.) - - Example (for a Turtle instance named turtle): - >>> turtle.heading() - 22.0 - >>> turtle.left(45) - >>> turtle.heading() - 67.0 - """ - self._rotate(angle) - - def pos(self): - """Return the turtle's current location (x,y), as a Vec2D-vector. - - Aliases: pos | position - - No arguments. - - Example (for a Turtle instance named turtle): - >>> turtle.pos() - (0.00, 240.00) - """ - return self._position - - def xcor(self): - """ Return the turtle's x coordinate. - - No arguments. - - Example (for a Turtle instance named turtle): - >>> reset() - >>> turtle.left(60) - >>> turtle.forward(100) - >>> print turtle.xcor() - 50.0 - """ - return self._position[0] - - def ycor(self): - """ Return the turtle's y coordinate - --- - No arguments. - - Example (for a Turtle instance named turtle): - >>> reset() - >>> turtle.left(60) - >>> turtle.forward(100) - >>> print turtle.ycor() - 86.6025403784 - """ - return self._position[1] - - - def goto(self, x, y=None): - """Move turtle to an absolute position. - - Aliases: setpos | setposition | goto: - - Arguments: - x -- a number or a pair/vector of numbers - y -- a number None - - call: goto(x, y) # two coordinates - --or: goto((x, y)) # a pair (tuple) of coordinates - --or: goto(vec) # e.g. as returned by pos() - - Move turtle to an absolute position. If the pen is down, - a line will be drawn. The turtle's orientation does not change. - - Example (for a Turtle instance named turtle): - >>> tp = turtle.pos() - >>> tp - (0.00, 0.00) - >>> turtle.setpos(60,30) - >>> turtle.pos() - (60.00,30.00) - >>> turtle.setpos((20,80)) - >>> turtle.pos() - (20.00,80.00) - >>> turtle.setpos(tp) - >>> turtle.pos() - (0.00,0.00) - """ - if y is None: - self._goto(Vec2D(*x)) - else: - self._goto(Vec2D(x, y)) - - def home(self): - """Move turtle to the origin - coordinates (0,0). - - No arguments. - - Move turtle to the origin - coordinates (0,0) and set it's - heading to it's start-orientation (which depends on mode). - - Example (for a Turtle instance named turtle): - >>> turtle.home() - """ - self.goto(0, 0) - self.setheading(0) - - def setx(self, x): - """Set the turtle's first coordinate to x - - Argument: - x -- a number (integer or float) - - Set the turtle's first coordinate to x, leave second coordinate - unchanged. - - Example (for a Turtle instance named turtle): - >>> turtle.position() - (0.00, 240.00) - >>> turtle.setx(10) - >>> turtle.position() - (10.00, 240.00) - """ - self._goto(Vec2D(x, self._position[1])) - - def sety(self, y): - """Set the turtle's second coordinate to y - - Argument: - y -- a number (integer or float) - - Set the turtle's first coordinate to x, second coordinate remains - unchanged. - - Example (for a Turtle instance named turtle): - >>> turtle.position() - (0.00, 40.00) - >>> turtle.sety(-10) - >>> turtle.position() - (0.00, -10.00) - """ - self._goto(Vec2D(self._position[0], y)) - - def distance(self, x, y=None): - """Return the distance from the turtle to (x,y) in turtle step units. - - Arguments: - x -- a number or a pair/vector of numbers or a turtle instance - y -- a number None None - - call: distance(x, y) # two coordinates - --or: distance((x, y)) # a pair (tuple) of coordinates - --or: distance(vec) # e.g. as returned by pos() - --or: distance(mypen) # where mypen is another turtle - - Example (for a Turtle instance named turtle): - >>> turtle.pos() - (0.00, 0.00) - >>> turtle.distance(30,40) - 50.0 - >>> pen = Turtle() - >>> pen.forward(77) - >>> turtle.distance(pen) - 77.0 - """ - if y is not None: - pos = Vec2D(x, y) - if isinstance(x, Vec2D): - pos = x - elif isinstance(x, tuple): - pos = Vec2D(*x) - elif isinstance(x, TNavigator): - pos = x._position - return abs(pos - self._position) - - def towards(self, x, y=None): - """Return the angle of the line from the turtle's position to (x, y). - - Arguments: - x -- a number or a pair/vector of numbers or a turtle instance - y -- a number None None - - call: distance(x, y) # two coordinates - --or: distance((x, y)) # a pair (tuple) of coordinates - --or: distance(vec) # e.g. as returned by pos() - --or: distance(mypen) # where mypen is another turtle - - Return the angle, between the line from turtle-position to position - specified by x, y and the turtle's start orientation. (Depends on - modes - "standard" or "logo") - - Example (for a Turtle instance named turtle): - >>> turtle.pos() - (10.00, 10.00) - >>> turtle.towards(0,0) - 225.0 - """ - if y is not None: - pos = Vec2D(x, y) - if isinstance(x, Vec2D): - pos = x - elif isinstance(x, tuple): - pos = Vec2D(*x) - elif isinstance(x, TNavigator): - pos = x._position - x, y = pos - self._position - result = round(math.atan2(y, x)*180.0/math.pi, 10) % 360.0 - result /= self._degreesPerAU - return (self._angleOffset + self._angleOrient*result) % self._fullcircle - - def heading(self): - """ Return the turtle's current heading. - - No arguments. - - Example (for a Turtle instance named turtle): - >>> turtle.left(67) - >>> turtle.heading() - 67.0 - """ - x, y = self._orient - result = round(math.atan2(y, x)*180.0/math.pi, 10) % 360.0 - result /= self._degreesPerAU - return (self._angleOffset + self._angleOrient*result) % self._fullcircle - - def setheading(self, to_angle): - """Set the orientation of the turtle to to_angle. - - Aliases: setheading | seth - - Argument: - to_angle -- a number (integer or float) - - Set the orientation of the turtle to to_angle. - Here are some common directions in degrees: - - standard - mode: logo-mode: - -------------------|-------------------- - 0 - east 0 - north - 90 - north 90 - east - 180 - west 180 - south - 270 - south 270 - west - - Example (for a Turtle instance named turtle): - >>> turtle.setheading(90) - >>> turtle.heading() - 90 - """ - angle = (to_angle - self.heading())*self._angleOrient - full = self._fullcircle - angle = (angle+full/2.)%full - full/2. - self._rotate(angle) - - def circle(self, radius, extent = None, steps = None): - """ Draw a circle with given radius. - - Arguments: - radius -- a number - extent (optional) -- a number - steps (optional) -- an integer - - Draw a circle with given radius. The center is radius units left - of the turtle; extent - an angle - determines which part of the - circle is drawn. If extent is not given, draw the entire circle. - If extent is not a full circle, one endpoint of the arc is the - current pen position. Draw the arc in counterclockwise direction - if radius is positive, otherwise in clockwise direction. Finally - the direction of the turtle is changed by the amount of extent. - - As the circle is approximated by an inscribed regular polygon, - steps determines the number of steps to use. If not given, - it will be calculated automatically. Maybe used to draw regular - polygons. - - call: circle(radius) # full circle - --or: circle(radius, extent) # arc - --or: circle(radius, extent, steps) - --or: circle(radius, steps=6) # 6-sided polygon - - Example (for a Turtle instance named turtle): - >>> turtle.circle(50) - >>> turtle.circle(120, 180) # semicircle - """ - if self.undobuffer: - self.undobuffer.push(["seq"]) - self.undobuffer.cumulate = True - speed = self.speed() - if extent is None: - extent = self._fullcircle - if steps is None: - frac = abs(extent)/self._fullcircle - steps = 1+int(min(11+abs(radius)/6.0, 59.0)*frac) - w = 1.0 * extent / steps - w2 = 0.5 * w - l = 2.0 * radius * math.sin(w2*math.pi/180.0*self._degreesPerAU) - if radius < 0: - l, w, w2 = -l, -w, -w2 - tr = self._tracer() - dl = self._delay() - if speed == 0: - self._tracer(0, 0) - else: - self.speed(0) - self._rotate(w2) - for i in range(steps): - self.speed(speed) - self._go(l) - self.speed(0) - self._rotate(w) - self._rotate(-w2) - if speed == 0: - self._tracer(tr, dl) - self.speed(speed) - if self.undobuffer: - self.undobuffer.cumulate = False - -## three dummy methods to be implemented by child class: - - def speed(self, s=0): - """dummy method - to be overwritten by child class""" - def _tracer(self, a=None, b=None): - """dummy method - to be overwritten by child class""" - def _delay(self, n=None): - """dummy method - to be overwritten by child class""" - - fd = forward - bk = back - backward = back - rt = right - lt = left - position = pos - setpos = goto - setposition = goto - seth = setheading - - -class TPen(object): - """Drawing part of the RawTurtle. - Implements drawing properties. - """ - def __init__(self, resizemode=_CFG["resizemode"]): - self._resizemode = resizemode # or "user" or "noresize" - self.undobuffer = None - TPen._reset(self) - - def _reset(self, pencolor=_CFG["pencolor"], - fillcolor=_CFG["fillcolor"]): - self._pensize = 1 - self._shown = True - self._pencolor = pencolor - self._fillcolor = fillcolor - self._drawing = True - self._speed = 3 - self._stretchfactor = (1, 1) - self._tilt = 0 - self._outlinewidth = 1 - ### self.screen = None # to override by child class - - def resizemode(self, rmode=None): - """Set resizemode to one of the values: "auto", "user", "noresize". - - (Optional) Argument: - rmode -- one of the strings "auto", "user", "noresize" - - Different resizemodes have the following effects: - - "auto" adapts the appearance of the turtle - corresponding to the value of pensize. - - "user" adapts the appearance of the turtle according to the - values of stretchfactor and outlinewidth (outline), - which are set by shapesize() - - "noresize" no adaption of the turtle's appearance takes place. - If no argument is given, return current resizemode. - resizemode("user") is called by a call of shapesize with arguments. - - - Examples (for a Turtle instance named turtle): - >>> turtle.resizemode("noresize") - >>> turtle.resizemode() - 'noresize' - """ - if rmode is None: - return self._resizemode - rmode = rmode.lower() - if rmode in ["auto", "user", "noresize"]: - self.pen(resizemode=rmode) - - def pensize(self, width=None): - """Set or return the line thickness. - - Aliases: pensize | width - - Argument: - width -- positive number - - Set the line thickness to width or return it. If resizemode is set - to "auto" and turtleshape is a polygon, that polygon is drawn with - the same line thickness. If no argument is given, current pensize - is returned. - - Example (for a Turtle instance named turtle): - >>> turtle.pensize() - 1 - turtle.pensize(10) # from here on lines of width 10 are drawn - """ - if width is None: - return self._pensize - self.pen(pensize=width) - - - def penup(self): - """Pull the pen up -- no drawing when moving. - - Aliases: penup | pu | up - - No argument - - Example (for a Turtle instance named turtle): - >>> turtle.penup() - """ - if not self._drawing: - return - self.pen(pendown=False) - - def pendown(self): - """Pull the pen down -- drawing when moving. - - Aliases: pendown | pd | down - - No argument. - - Example (for a Turtle instance named turtle): - >>> turtle.pendown() - """ - if self._drawing: - return - self.pen(pendown=True) - - def isdown(self): - """Return True if pen is down, False if it's up. - - No argument. - - Example (for a Turtle instance named turtle): - >>> turtle.penup() - >>> turtle.isdown() - False - >>> turtle.pendown() - >>> turtle.isdown() - True - """ - return self._drawing - - def speed(self, speed=None): - """ Return or set the turtle's speed. - - Optional argument: - speed -- an integer in the range 0..10 or a speedstring (see below) - - Set the turtle's speed to an integer value in the range 0 .. 10. - If no argument is given: return current speed. - - If input is a number greater than 10 or smaller than 0.5, - speed is set to 0. - Speedstrings are mapped to speedvalues in the following way: - 'fastest' : 0 - 'fast' : 10 - 'normal' : 6 - 'slow' : 3 - 'slowest' : 1 - speeds from 1 to 10 enforce increasingly faster animation of - line drawing and turtle turning. - - Attention: - speed = 0 : *no* animation takes place. forward/back makes turtle jump - and likewise left/right make the turtle turn instantly. - - Example (for a Turtle instance named turtle): - >>> turtle.speed(3) - """ - speeds = {'fastest':0, 'fast':10, 'normal':6, 'slow':3, 'slowest':1 } - if speed is None: - return self._speed - if speed in speeds: - speed = speeds[speed] - elif 0.5 < speed < 10.5: - speed = int(round(speed)) - else: - speed = 0 - self.pen(speed=speed) - - def color(self, *args): - """Return or set the pencolor and fillcolor. - - Arguments: - Several input formats are allowed. - They use 0, 1, 2, or 3 arguments as follows: - - color() - Return the current pencolor and the current fillcolor - as a pair of color specification strings as are returned - by pencolor and fillcolor. - color(colorstring), color((r,g,b)), color(r,g,b) - inputs as in pencolor, set both, fillcolor and pencolor, - to the given value. - color(colorstring1, colorstring2), - color((r1,g1,b1), (r2,g2,b2)) - equivalent to pencolor(colorstring1) and fillcolor(colorstring2) - and analogously, if the other input format is used. - - If turtleshape is a polygon, outline and interior of that polygon - is drawn with the newly set colors. - For mor info see: pencolor, fillcolor - - Example (for a Turtle instance named turtle): - >>> turtle.color('red', 'green') - >>> turtle.color() - ('red', 'green') - >>> colormode(255) - >>> color((40, 80, 120), (160, 200, 240)) - >>> color() - ('#285078', '#a0c8f0') - """ - if args: - l = len(args) - if l == 1: - pcolor = fcolor = args[0] - elif l == 2: - pcolor, fcolor = args - elif l == 3: - pcolor = fcolor = args - pcolor = self._colorstr(pcolor) - fcolor = self._colorstr(fcolor) - self.pen(pencolor=pcolor, fillcolor=fcolor) - else: - return self._color(self._pencolor), self._color(self._fillcolor) - - def pencolor(self, *args): - """ Return or set the pencolor. - - Arguments: - Four input formats are allowed: - - pencolor() - Return the current pencolor as color specification string, - possibly in hex-number format (see example). - May be used as input to another color/pencolor/fillcolor call. - - pencolor(colorstring) - s is a Tk color specification string, such as "red" or "yellow" - - pencolor((r, g, b)) - *a tuple* of r, g, and b, which represent, an RGB color, - and each of r, g, and b are in the range 0..colormode, - where colormode is either 1.0 or 255 - - pencolor(r, g, b) - r, g, and b represent an RGB color, and each of r, g, and b - are in the range 0..colormode - - If turtleshape is a polygon, the outline of that polygon is drawn - with the newly set pencolor. - - Example (for a Turtle instance named turtle): - >>> turtle.pencolor('brown') - >>> tup = (0.2, 0.8, 0.55) - >>> turtle.pencolor(tup) - >>> turtle.pencolor() - '#33cc8c' - """ - if args: - color = self._colorstr(args) - if color == self._pencolor: - return - self.pen(pencolor=color) - else: - return self._color(self._pencolor) - - def fillcolor(self, *args): - """ Return or set the fillcolor. - - Arguments: - Four input formats are allowed: - - fillcolor() - Return the current fillcolor as color specification string, - possibly in hex-number format (see example). - May be used as input to another color/pencolor/fillcolor call. - - fillcolor(colorstring) - s is a Tk color specification string, such as "red" or "yellow" - - fillcolor((r, g, b)) - *a tuple* of r, g, and b, which represent, an RGB color, - and each of r, g, and b are in the range 0..colormode, - where colormode is either 1.0 or 255 - - fillcolor(r, g, b) - r, g, and b represent an RGB color, and each of r, g, and b - are in the range 0..colormode - - If turtleshape is a polygon, the interior of that polygon is drawn - with the newly set fillcolor. - - Example (for a Turtle instance named turtle): - >>> turtle.fillcolor('violet') - >>> col = turtle.pencolor() - >>> turtle.fillcolor(col) - >>> turtle.fillcolor(0, .5, 0) - """ - if args: - color = self._colorstr(args) - if color == self._fillcolor: - return - self.pen(fillcolor=color) - else: - return self._color(self._fillcolor) - - def showturtle(self): - """Makes the turtle visible. - - Aliases: showturtle | st - - No argument. - - Example (for a Turtle instance named turtle): - >>> turtle.hideturtle() - >>> turtle.showturtle() - """ - self.pen(shown=True) - - def hideturtle(self): - """Makes the turtle invisible. - - Aliases: hideturtle | ht - - No argument. - - It's a good idea to do this while you're in the - middle of a complicated drawing, because hiding - the turtle speeds up the drawing observably. - - Example (for a Turtle instance named turtle): - >>> turtle.hideturtle() - """ - self.pen(shown=False) - - def isvisible(self): - """Return True if the Turtle is shown, False if it's hidden. - - No argument. - - Example (for a Turtle instance named turtle): - >>> turtle.hideturtle() - >>> print turtle.isvisible(): - False - """ - return self._shown - - def pen(self, pen=None, **pendict): - """Return or set the pen's attributes. - - Arguments: - pen -- a dictionary with some or all of the below listed keys. - **pendict -- one or more keyword-arguments with the below - listed keys as keywords. - - Return or set the pen's attributes in a 'pen-dictionary' - with the following key/value pairs: - "shown" : True/False - "pendown" : True/False - "pencolor" : color-string or color-tuple - "fillcolor" : color-string or color-tuple - "pensize" : positive number - "speed" : number in range 0..10 - "resizemode" : "auto" or "user" or "noresize" - "stretchfactor": (positive number, positive number) - "outline" : positive number - "tilt" : number - - This dicionary can be used as argument for a subsequent - pen()-call to restore the former pen-state. Moreover one - or more of these attributes can be provided as keyword-arguments. - This can be used to set several pen attributes in one statement. - - - Examples (for a Turtle instance named turtle): - >>> turtle.pen(fillcolor="black", pencolor="red", pensize=10) - >>> turtle.pen() - {'pensize': 10, 'shown': True, 'resizemode': 'auto', 'outline': 1, - 'pencolor': 'red', 'pendown': True, 'fillcolor': 'black', - 'stretchfactor': (1,1), 'speed': 3} - >>> penstate=turtle.pen() - >>> turtle.color("yellow","") - >>> turtle.penup() - >>> turtle.pen() - {'pensize': 10, 'shown': True, 'resizemode': 'auto', 'outline': 1, - 'pencolor': 'yellow', 'pendown': False, 'fillcolor': '', - 'stretchfactor': (1,1), 'speed': 3} - >>> p.pen(penstate, fillcolor="green") - >>> p.pen() - {'pensize': 10, 'shown': True, 'resizemode': 'auto', 'outline': 1, - 'pencolor': 'red', 'pendown': True, 'fillcolor': 'green', - 'stretchfactor': (1,1), 'speed': 3} - """ - _pd = {"shown" : self._shown, - "pendown" : self._drawing, - "pencolor" : self._pencolor, - "fillcolor" : self._fillcolor, - "pensize" : self._pensize, - "speed" : self._speed, - "resizemode" : self._resizemode, - "stretchfactor" : self._stretchfactor, - "outline" : self._outlinewidth, - "tilt" : self._tilt - } - - if not (pen or pendict): - return _pd - - if isinstance(pen, dict): - p = pen - else: - p = {} - p.update(pendict) - - _p_buf = {} - for key in p: - _p_buf[key] = _pd[key] - - if self.undobuffer: - self.undobuffer.push(("pen", _p_buf)) - - newLine = False - if "pendown" in p: - if self._drawing != p["pendown"]: - newLine = True - if "pencolor" in p: - if isinstance(p["pencolor"], tuple): - p["pencolor"] = self._colorstr((p["pencolor"],)) - if self._pencolor != p["pencolor"]: - newLine = True - if "pensize" in p: - if self._pensize != p["pensize"]: - newLine = True - if newLine: - self._newLine() - if "pendown" in p: - self._drawing = p["pendown"] - if "pencolor" in p: - self._pencolor = p["pencolor"] - if "pensize" in p: - self._pensize = p["pensize"] - if "fillcolor" in p: - if isinstance(p["fillcolor"], tuple): - p["fillcolor"] = self._colorstr((p["fillcolor"],)) - self._fillcolor = p["fillcolor"] - if "speed" in p: - self._speed = p["speed"] - if "resizemode" in p: - self._resizemode = p["resizemode"] - if "stretchfactor" in p: - sf = p["stretchfactor"] - if isinstance(sf, (int, float)): - sf = (sf, sf) - self._stretchfactor = sf - if "outline" in p: - self._outlinewidth = p["outline"] - if "shown" in p: - self._shown = p["shown"] - if "tilt" in p: - self._tilt = p["tilt"] - self._update() - -## three dummy methods to be implemented by child class: - - def _newLine(self, usePos = True): - """dummy method - to be overwritten by child class""" - def _update(self, count=True, forced=False): - """dummy method - to be overwritten by child class""" - def _color(self, args): - """dummy method - to be overwritten by child class""" - def _colorstr(self, args): - """dummy method - to be overwritten by child class""" - - width = pensize - up = penup - pu = penup - pd = pendown - down = pendown - st = showturtle - ht = hideturtle - - -class _TurtleImage(object): - """Helper class: Datatype to store Turtle attributes - """ - - def __init__(self, screen, shapeIndex): - self.screen = screen - self._type = None - self._setshape(shapeIndex) - - def _setshape(self, shapeIndex): - screen = self.screen # RawTurtle.screens[self.screenIndex] - self.shapeIndex = shapeIndex - if self._type == "polygon" == screen._shapes[shapeIndex]._type: - return - if self._type == "image" == screen._shapes[shapeIndex]._type: - return - if self._type in ["image", "polygon"]: - screen._delete(self._item) - elif self._type == "compound": - for item in self._item: - screen._delete(item) - self._type = screen._shapes[shapeIndex]._type - if self._type == "polygon": - self._item = screen._createpoly() - elif self._type == "image": - self._item = screen._createimage(screen._shapes["blank"]._data) - elif self._type == "compound": - self._item = [screen._createpoly() for item in - screen._shapes[shapeIndex]._data] - - -class RawTurtle(TPen, TNavigator): - """Animation part of the RawTurtle. - Puts RawTurtle upon a TurtleScreen and provides tools for - it's animation. - """ - screens = [] - - def __init__(self, canvas=None, - shape=_CFG["shape"], - undobuffersize=_CFG["undobuffersize"], - visible=_CFG["visible"]): - if isinstance(canvas, Screen): - self.screen = canvas - elif isinstance(canvas, TurtleScreen): - if canvas not in RawTurtle.screens: - RawTurtle.screens.append(canvas) - self.screen = canvas - elif isinstance(canvas, (ScrolledCanvas, Canvas)): - for screen in RawTurtle.screens: - if screen.cv == canvas: - self.screen = screen - break - else: - self.screen = TurtleScreen(canvas) - RawTurtle.screens.append(self.screen) - else: - raise TurtleGraphicsError("bad cavas argument %s" % canvas) - - screen = self.screen - TNavigator.__init__(self, screen.mode()) - TPen.__init__(self) - screen._turtles.append(self) - self.drawingLineItem = screen._createline() - self.turtle = _TurtleImage(screen, shape) - self._poly = None - self._creatingPoly = False - self._fillitem = self._fillpath = None - self._shown = visible - self._hidden_from_screen = False - self.currentLineItem = screen._createline() - self.currentLine = [self._position] - self.items = [self.currentLineItem] - self.stampItems = [] - self._undobuffersize = undobuffersize - self.undobuffer = Tbuffer(undobuffersize) - self._update() - - def reset(self): - """Delete the turtle's drawings and restore it's default values. - - No argument. -, - Delete the turtle's drawings from the screen, re-center the turtle - and set variables to the default values. - - Example (for a Turtle instance named turtle): - >>> turtle.position() - (0.00,-22.00) - >>> turtle.heading() - 100.0 - >>> turtle.reset() - >>> turtle.position() - (0.00,0.00) - >>> turtle.heading() - 0.0 - """ - TNavigator.reset(self) - TPen._reset(self) - self._clear() - self._drawturtle() - self._update() - - def setundobuffer(self, size): - """Set or disable undobuffer. - - Argument: - size -- an integer or None - - If size is an integer an empty undobuffer of given size is installed. - Size gives the maximum number of turtle-actions that can be undone - by the undo() function. - If size is None, no undobuffer is present. - - Example (for a Turtle instance named turtle): - >>> turtle.setundobuffer(42) - """ - if size is None: - self.undobuffer = None - else: - self.undobuffer = Tbuffer(size) - - def undobufferentries(self): - """Return count of entries in the undobuffer. - - No argument. - - Example (for a Turtle instance named turtle): - >>> while undobufferentries(): - undo() - """ - if self.undobuffer is None: - return 0 - return self.undobuffer.nr_of_items() - - def _clear(self): - """Delete all of pen's drawings""" - self._fillitem = self._fillpath = None - for item in self.items: - self.screen._delete(item) - self.currentLineItem = self.screen._createline() - self.currentLine = [] - if self._drawing: - self.currentLine.append(self._position) - self.items = [self.currentLineItem] - self.clearstamps() - self.setundobuffer(self._undobuffersize) - - - def clear(self): - """Delete the turtle's drawings from the screen. Do not move turtle. - - No arguments. - - Delete the turtle's drawings from the screen. Do not move turtle. - State and position of the turtle as well as drawings of other - turtles are not affected. - - Examples (for a Turtle instance named turtle): - >>> turtle.clear() - """ - self._clear() - self._update() - - def _update_data(self): - self.screen._incrementudc() - if self.screen._updatecounter != 0: - return - if len(self.currentLine)>1: - self.screen._drawline(self.currentLineItem, self.currentLine, - self._pencolor, self._pensize) - - def _update(self): - """Perform a Turtle-data update. - """ - screen = self.screen - if screen._tracing == 0: - return - elif screen._tracing == 1: - self._update_data() - self._drawturtle() - screen._update() # TurtleScreenBase - screen._delay(screen._delayvalue) # TurtleScreenBase - else: - self._update_data() - if screen._updatecounter == 0: - for t in screen.turtles(): - t._drawturtle() - screen._update() - - def _tracer(self, flag=None, delay=None): - """Turns turtle animation on/off and set delay for update drawings. - - Optional arguments: - n -- nonnegative integer - delay -- nonnegative integer - - If n is given, only each n-th regular screen update is really performed. - (Can be used to accelerate the drawing of complex graphics.) - Second arguments sets delay value (see RawTurtle.delay()) - - Example (for a Turtle instance named turtle): - >>> turtle.tracer(8, 25) - >>> dist = 2 - >>> for i in range(200): - turtle.fd(dist) - turtle.rt(90) - dist += 2 - """ - return self.screen.tracer(flag, delay) - - def _color(self, args): - return self.screen._color(args) - - def _colorstr(self, args): - return self.screen._colorstr(args) - - def _cc(self, args): - """Convert colortriples to hexstrings. - """ - if isinstance(args, str): - return args - try: - r, g, b = args - except: - raise TurtleGraphicsError("bad color arguments: %s" % str(args)) - if self.screen._colormode == 1.0: - r, g, b = [round(255.0*x) for x in (r, g, b)] - if not ((0 <= r <= 255) and (0 <= g <= 255) and (0 <= b <= 255)): - raise TurtleGraphicsError("bad color sequence: %s" % str(args)) - return "#%02x%02x%02x" % (r, g, b) - - def clone(self): - """Create and return a clone of the turtle. - - No argument. - - Create and return a clone of the turtle with same position, heading - and turtle properties. - - Example (for a Turtle instance named mick): - mick = Turtle() - joe = mick.clone() - """ - screen = self.screen - self._newLine(self._drawing) - - turtle = self.turtle - self.screen = None - self.turtle = None # too make self deepcopy-able - - q = deepcopy(self) - - self.screen = screen - self.turtle = turtle - - q.screen = screen - q.turtle = _TurtleImage(screen, self.turtle.shapeIndex) - - screen._turtles.append(q) - ttype = screen._shapes[self.turtle.shapeIndex]._type - if ttype == "polygon": - q.turtle._item = screen._createpoly() - elif ttype == "image": - q.turtle._item = screen._createimage(screen._shapes["blank"]._data) - elif ttype == "compound": - q.turtle._item = [screen._createpoly() for item in - screen._shapes[self.turtle.shapeIndex]._data] - q.currentLineItem = screen._createline() - q._update() - return q - - def shape(self, name=None): - """Set turtle shape to shape with given name / return current shapename. - - Optional argument: - name -- a string, which is a valid shapename - - Set turtle shape to shape with given name or, if name is not given, - return name of current shape. - Shape with name must exist in the TurtleScreen's shape dictionary. - Initially there are the following polygon shapes: - 'arrow', 'turtle', 'circle', 'square', 'triangle', 'classic'. - To learn about how to deal with shapes see Screen-method register_shape. - - Example (for a Turtle instance named turtle): - >>> turtle.shape() - 'arrow' - >>> turtle.shape("turtle") - >>> turtle.shape() - 'turtle' - """ - if name is None: - return self.turtle.shapeIndex - if not name in self.screen.getshapes(): - raise TurtleGraphicsError("There is no shape named %s" % name) - self.turtle._setshape(name) - self._update() - - def shapesize(self, stretch_wid=None, stretch_len=None, outline=None): - """Set/return turtle's stretchfactors/outline. Set resizemode to "user". - - Optinonal arguments: - stretch_wid : positive number - stretch_len : positive number - outline : positive number - - Return or set the pen's attributes x/y-stretchfactors and/or outline. - Set resizemode to "user". - If and only if resizemode is set to "user", the turtle will be displayed - stretched according to its stretchfactors: - stretch_wid is stretchfactor perpendicular to orientation - stretch_len is stretchfactor in direction of turtles orientation. - outline determines the width of the shapes's outline. - - Examples (for a Turtle instance named turtle): - >>> turtle.resizemode("user") - >>> turtle.shapesize(5, 5, 12) - >>> turtle.shapesize(outline=8) - """ - if stretch_wid is None and stretch_len is None and outline == None: - stretch_wid, stretch_len = self._stretchfactor - return stretch_wid, stretch_len, self._outlinewidth - if stretch_wid is not None: - if stretch_len is None: - stretchfactor = stretch_wid, stretch_wid - else: - stretchfactor = stretch_wid, stretch_len - elif stretch_len is not None: - stretchfactor = self._stretchfactor[0], stretch_len - else: - stretchfactor = self._stretchfactor - if outline is None: - outline = self._outlinewidth - self.pen(resizemode="user", - stretchfactor=stretchfactor, outline=outline) - - def settiltangle(self, angle): - """Rotate the turtleshape to point in the specified direction - - Optional argument: - angle -- number - - Rotate the turtleshape to point in the direction specified by angle, - regardless of its current tilt-angle. DO NOT change the turtle's - heading (direction of movement). - - - Examples (for a Turtle instance named turtle): - >>> turtle.shape("circle") - >>> turtle.shapesize(5,2) - >>> turtle.settiltangle(45) - >>> stamp() - >>> turtle.fd(50) - >>> turtle.settiltangle(-45) - >>> stamp() - >>> turtle.fd(50) - """ - tilt = -angle * self._degreesPerAU * self._angleOrient - tilt = (tilt * math.pi / 180.0) % (2*math.pi) - self.pen(resizemode="user", tilt=tilt) - - def tiltangle(self): - """Return the current tilt-angle. - - No argument. - - Return the current tilt-angle, i. e. the angle between the - orientation of the turtleshape and the heading of the turtle - (it's direction of movement). - - Examples (for a Turtle instance named turtle): - >>> turtle.shape("circle") - >>> turtle.shapesize(5,2) - >>> turtle.tilt(45) - >>> turtle.tiltangle() - >>> - """ - tilt = -self._tilt * (180.0/math.pi) * self._angleOrient - return (tilt / self._degreesPerAU) % self._fullcircle - - def tilt(self, angle): - """Rotate the turtleshape by angle. - - Argument: - angle - a number - - Rotate the turtleshape by angle from its current tilt-angle, - but do NOT change the turtle's heading (direction of movement). - - Examples (for a Turtle instance named turtle): - >>> turtle.shape("circle") - >>> turtle.shapesize(5,2) - >>> turtle.tilt(30) - >>> turtle.fd(50) - >>> turtle.tilt(30) - >>> turtle.fd(50) - """ - self.settiltangle(angle + self.tiltangle()) - - def _polytrafo(self, poly): - """Computes transformed polygon shapes from a shape - according to current position and heading. - """ - screen = self.screen - p0, p1 = self._position - e0, e1 = self._orient - e = Vec2D(e0, e1 * screen.yscale / screen.xscale) - e0, e1 = (1.0 / abs(e)) * e - return [(p0+(e1*x+e0*y)/screen.xscale, p1+(-e0*x+e1*y)/screen.yscale) - for (x, y) in poly] - - def _drawturtle(self): - """Manages the correct rendering of the turtle with respect to - it's shape, resizemode, strech and tilt etc.""" - screen = self.screen - shape = screen._shapes[self.turtle.shapeIndex] - ttype = shape._type - titem = self.turtle._item - if self._shown and screen._updatecounter == 0 and screen._tracing > 0: - self._hidden_from_screen = False - tshape = shape._data - if ttype == "polygon": - if self._resizemode == "noresize": - w = 1 - shape = tshape - else: - if self._resizemode == "auto": - lx = ly = max(1, self._pensize/5.0) - w = self._pensize - tiltangle = 0 - elif self._resizemode == "user": - lx, ly = self._stretchfactor - w = self._outlinewidth - tiltangle = self._tilt - shape = [(lx*x, ly*y) for (x, y) in tshape] - t0, t1 = math.sin(tiltangle), math.cos(tiltangle) - shape = [(t1*x+t0*y, -t0*x+t1*y) for (x, y) in shape] - shape = self._polytrafo(shape) - fc, oc = self._fillcolor, self._pencolor - screen._drawpoly(titem, shape, fill=fc, outline=oc, - width=w, top=True) - elif ttype == "image": - screen._drawimage(titem, self._position, tshape) - elif ttype == "compound": - lx, ly = self._stretchfactor - w = self._outlinewidth - for item, (poly, fc, oc) in zip(titem, tshape): - poly = [(lx*x, ly*y) for (x, y) in poly] - poly = self._polytrafo(poly) - screen._drawpoly(item, poly, fill=self._cc(fc), - outline=self._cc(oc), width=w, top=True) - else: - if self._hidden_from_screen: - return - if ttype == "polygon": - screen._drawpoly(titem, ((0, 0), (0, 0), (0, 0)), "", "") - elif ttype == "image": - screen._drawimage(titem, self._position, - screen._shapes["blank"]._data) - elif ttype == "compound": - for item in titem: - screen._drawpoly(item, ((0, 0), (0, 0), (0, 0)), "", "") - self._hidden_from_screen = True - -############################## stamp stuff ############################### - - def stamp(self): - """Stamp a copy of the turtleshape onto the canvas and return it's id. - - No argument. - - Stamp a copy of the turtle shape onto the canvas at the current - turtle position. Return a stamp_id for that stamp, which can be - used to delete it by calling clearstamp(stamp_id). - - Example (for a Turtle instance named turtle): - >>> turtle.color("blue") - >>> turtle.stamp() - 13 - >>> turtle.fd(50) - """ - screen = self.screen - shape = screen._shapes[self.turtle.shapeIndex] - ttype = shape._type - tshape = shape._data - if ttype == "polygon": - stitem = screen._createpoly() - if self._resizemode == "noresize": - w = 1 - shape = tshape - else: - if self._resizemode == "auto": - lx = ly = max(1, self._pensize/5.0) - w = self._pensize - tiltangle = 0 - elif self._resizemode == "user": - lx, ly = self._stretchfactor - w = self._outlinewidth - tiltangle = self._tilt - shape = [(lx*x, ly*y) for (x, y) in tshape] - t0, t1 = math.sin(tiltangle), math.cos(tiltangle) - shape = [(t1*x+t0*y, -t0*x+t1*y) for (x, y) in shape] - shape = self._polytrafo(shape) - fc, oc = self._fillcolor, self._pencolor - screen._drawpoly(stitem, shape, fill=fc, outline=oc, - width=w, top=True) - elif ttype == "image": - stitem = screen._createimage("") - screen._drawimage(stitem, self._position, tshape) - elif ttype == "compound": - stitem = [] - for element in tshape: - item = screen._createpoly() - stitem.append(item) - stitem = tuple(stitem) - lx, ly = self._stretchfactor - w = self._outlinewidth - for item, (poly, fc, oc) in zip(stitem, tshape): - poly = [(lx*x, ly*y) for (x, y) in poly] - poly = self._polytrafo(poly) - screen._drawpoly(item, poly, fill=self._cc(fc), - outline=self._cc(oc), width=w, top=True) - self.stampItems.append(stitem) - self.undobuffer.push(("stamp", stitem)) - return stitem - - def _clearstamp(self, stampid): - """does the work for clearstamp() and clearstamps() - """ - if stampid in self.stampItems: - if isinstance(stampid, tuple): - for subitem in stampid: - self.screen._delete(subitem) - else: - self.screen._delete(stampid) - self.stampItems.remove(stampid) - # Delete stampitem from undobuffer if necessary - # if clearstamp is called directly. - item = ("stamp", stampid) - buf = self.undobuffer - if item not in buf.buffer: - return - index = buf.buffer.index(item) - buf.buffer.remove(item) - if index <= buf.ptr: - buf.ptr = (buf.ptr - 1) % buf.bufsize - buf.buffer.insert((buf.ptr+1)%buf.bufsize, [None]) - - def clearstamp(self, stampid): - """Delete stamp with given stampid - - Argument: - stampid - an integer, must be return value of previous stamp() call. - - Example (for a Turtle instance named turtle): - >>> turtle.color("blue") - >>> astamp = turtle.stamp() - >>> turtle.fd(50) - >>> turtle.clearstamp(astamp) - """ - self._clearstamp(stampid) - self._update() - - def clearstamps(self, n=None): - """Delete all or first/last n of turtle's stamps. - - Optional argument: - n -- an integer - - If n is None, delete all of pen's stamps, - else if n > 0 delete first n stamps - else if n < 0 delete last n stamps. - - Example (for a Turtle instance named turtle): - >>> for i in range(8): - turtle.stamp(); turtle.fd(30) - ... - >>> turtle.clearstamps(2) - >>> turtle.clearstamps(-2) - >>> turtle.clearstamps() - """ - if n is None: - toDelete = self.stampItems[:] - elif n >= 0: - toDelete = self.stampItems[:n] - else: - toDelete = self.stampItems[n:] - for item in toDelete: - self._clearstamp(item) - self._update() - - def _goto(self, end): - """Move the pen to the point end, thereby drawing a line - if pen is down. All other methodes for turtle movement depend - on this one. - """ - ## Version mit undo-stuff - go_modes = ( self._drawing, - self._pencolor, - self._pensize, - isinstance(self._fillpath, list)) - screen = self.screen - undo_entry = ("go", self._position, end, go_modes, - (self.currentLineItem, - self.currentLine[:], - screen._pointlist(self.currentLineItem), - self.items[:]) - ) - if self.undobuffer: - self.undobuffer.push(undo_entry) - start = self._position - if self._speed and screen._tracing == 1: - diff = (end-start) - diffsq = (diff[0]*screen.xscale)**2 + (diff[1]*screen.yscale)**2 - nhops = 1+int((diffsq**0.5)/(3*(1.1**self._speed)*self._speed)) - delta = diff * (1.0/nhops) - for n in range(1, nhops): - if n == 1: - top = True - else: - top = False - self._position = start + delta * n - if self._drawing: - screen._drawline(self.drawingLineItem, - (start, self._position), - self._pencolor, self._pensize, top) - self._update() - if self._drawing: - screen._drawline(self.drawingLineItem, ((0, 0), (0, 0)), - fill="", width=self._pensize) - # Turtle now at end, - if self._drawing: # now update currentLine - self.currentLine.append(end) - if isinstance(self._fillpath, list): - self._fillpath.append(end) - ###### vererbung!!!!!!!!!!!!!!!!!!!!!! - self._position = end - if self._creatingPoly: - self._poly.append(end) - if len(self.currentLine) > 42: # 42! answer to the ultimate question - # of life, the universe and everything - self._newLine() - self._update() #count=True) - - def _undogoto(self, entry): - """Reverse a _goto. Used for undo() - """ - old, new, go_modes, coodata = entry - drawing, pc, ps, filling = go_modes - cLI, cL, pl, items = coodata - screen = self.screen - if abs(self._position - new) > 0.5: - print ("undogoto: HALLO-DA-STIMMT-WAS-NICHT!") - # restore former situation - self.currentLineItem = cLI - self.currentLine = cL - - if pl == [(0, 0), (0, 0)]: - usepc = "" - else: - usepc = pc - screen._drawline(cLI, pl, fill=usepc, width=ps) - - todelete = [i for i in self.items if (i not in items) and - (screen._type(i) == "line")] - for i in todelete: - screen._delete(i) - self.items.remove(i) - - start = old - if self._speed and screen._tracing == 1: - diff = old - new - diffsq = (diff[0]*screen.xscale)**2 + (diff[1]*screen.yscale)**2 - nhops = 1+int((diffsq**0.5)/(3*(1.1**self._speed)*self._speed)) - delta = diff * (1.0/nhops) - for n in range(1, nhops): - if n == 1: - top = True - else: - top = False - self._position = new + delta * n - if drawing: - screen._drawline(self.drawingLineItem, - (start, self._position), - pc, ps, top) - self._update() - if drawing: - screen._drawline(self.drawingLineItem, ((0, 0), (0, 0)), - fill="", width=ps) - # Turtle now at position old, - self._position = old - ## if undo is done during crating a polygon, the last vertex - ## will be deleted. if the polygon is entirel deleted, - ## creatigPoly will be set to False. - ## Polygons created before the last one will not be affected by undo() - if self._creatingPoly: - if len(self._poly) > 0: - self._poly.pop() - if self._poly == []: - self._creatingPoly = False - self._poly = None - if filling: - if self._fillpath == []: - self._fillpath = None - print("Unwahrscheinlich in _undogoto!") - elif self._fillpath is not None: - self._fillpath.pop() - self._update() #count=True) - - def _rotate(self, angle): - """Turns pen clockwise by angle. - """ - if self.undobuffer: - self.undobuffer.push(("rot", angle, self._degreesPerAU)) - angle *= self._degreesPerAU - neworient = self._orient.rotate(angle) - tracing = self.screen._tracing - if tracing == 1 and self._speed > 0: - anglevel = 3.0 * self._speed - steps = 1 + int(abs(angle)/anglevel) - delta = 1.0*angle/steps - for _ in range(steps): - self._orient = self._orient.rotate(delta) - self._update() - self._orient = neworient - self._update() - - def _newLine(self, usePos=True): - """Closes current line item and starts a new one. - Remark: if current line became too long, animation - performance (via _drawline) slowed down considerably. - """ - if len(self.currentLine) > 1: - self.screen._drawline(self.currentLineItem, self.currentLine, - self._pencolor, self._pensize) - self.currentLineItem = self.screen._createline() - self.items.append(self.currentLineItem) - else: - self.screen._drawline(self.currentLineItem, top=True) - self.currentLine = [] - if usePos: - self.currentLine = [self._position] - - def filling(self): - """Return fillstate (True if filling, False else). - - No argument. - - Example (for a Turtle instance named turtle): - >>> turtle.begin_fill() - >>> if turtle.filling(): - turtle.pensize(5) - else: - turtle.pensize(3) - """ - return isinstance(self._fillpath, list) - -## def fill(self, flag=None): -## """Call fill(True) before drawing a shape to fill, fill(False) when done. -## -## Optional argument: -## flag -- True/False (or 1/0 respectively) -## -## Call fill(True) before drawing the shape you want to fill, -## and fill(False) when done. -## When used without argument: return fillstate (True if filling, -## False else) -## -## Example (for a Turtle instance named turtle): -## >>> turtle.fill(True) -## >>> turtle.forward(100) -## >>> turtle.left(90) -## >>> turtle.forward(100) -## >>> turtle.left(90) -## >>> turtle.forward(100) -## >>> turtle.left(90) -## >>> turtle.forward(100) -## >>> turtle.fill(False) -## """ -## filling = isinstance(self._fillpath, list) -## if flag is None: -## return filling -## screen = self.screen -## entry1 = entry2 = () -## if filling: -## if len(self._fillpath) > 2: -## self.screen._drawpoly(self._fillitem, self._fillpath, -## fill=self._fillcolor) -## entry1 = ("dofill", self._fillitem) -## if flag: -## self._fillitem = self.screen._createpoly() -## self.items.append(self._fillitem) -## self._fillpath = [self._position] -## entry2 = ("beginfill", self._fillitem) # , self._fillpath) -## self._newLine() -## else: -## self._fillitem = self._fillpath = None -## if self.undobuffer: -## if entry1 == (): -## if entry2 != (): -## self.undobuffer.push(entry2) -## else: -## if entry2 == (): -## self.undobuffer.push(entry1) -## else: -## self.undobuffer.push(["seq", entry1, entry2]) -## self._update() - - def begin_fill(self): - """Called just before drawing a shape to be filled. - - No argument. - - Example (for a Turtle instance named turtle): - >>> turtle.color("black", "red") - >>> turtle.begin_fill() - >>> turtle.circle(60) - >>> turtle.end_fill() - """ - if not self.filling(): - self._fillitem = self.screen._createpoly() - self.items.append(self._fillitem) - self._fillpath = [self._position] - self._newLine() - if self.undobuffer: - self.undobuffer.push(("beginfill", self._fillitem)) - self._update() - - - def end_fill(self): - """Fill the shape drawn after the call begin_fill(). - - No argument. - - Example (for a Turtle instance named turtle): - >>> turtle.color("black", "red") - >>> turtle.begin_fill() - >>> turtle.circle(60) - >>> turtle.end_fill() - """ - if self.filling(): - if len(self._fillpath) > 2: - self.screen._drawpoly(self._fillitem, self._fillpath, - fill=self._fillcolor) - if self.undobuffer: - self.undobuffer.push(("dofill", self._fillitem)) - self._fillitem = self._fillpath = None - self._update() - - def dot(self, size=None, *color): - """Draw a dot with diameter size, using color. - - Optional argumentS: - size -- an integer >= 1 (if given) - color -- a colorstring or a numeric color tuple - - Draw a circular dot with diameter size, using color. - If size is not given, the maximum of pensize+4 and 2*pensize is used. - - Example (for a Turtle instance named turtle): - >>> turtle.dot() - >>> turtle.fd(50); turtle.dot(20, "blue"); turtle.fd(50) - """ - #print "dot-1:", size, color - if not color: - if isinstance(size, (str, tuple)): - color = self._colorstr(size) - size = self._pensize + max(self._pensize, 4) - else: - color = self._pencolor - if not size: - size = self._pensize + max(self._pensize, 4) - else: - if size is None: - size = self._pensize + max(self._pensize, 4) - color = self._colorstr(color) - #print "dot-2:", size, color - if hasattr(self.screen, "_dot"): - item = self.screen._dot(self._position, size, color) - #print "dot:", size, color, "item:", item - self.items.append(item) - if self.undobuffer: - self.undobuffer.push(("dot", item)) - else: - pen = self.pen() - if self.undobuffer: - self.undobuffer.push(["seq"]) - self.undobuffer.cumulate = True - try: - if self.resizemode() == 'auto': - self.ht() - self.pendown() - self.pensize(size) - self.pencolor(color) - self.forward(0) - finally: - self.pen(pen) - if self.undobuffer: - self.undobuffer.cumulate = False - - def _write(self, txt, align, font): - """Performs the writing for write() - """ - item, end = self.screen._write(self._position, txt, align, font, - self._pencolor) - self.items.append(item) - if self.undobuffer: - self.undobuffer.push(("wri", item)) - return end - - def write(self, arg, move=False, align="left", font=("Arial", 8, "normal")): - """Write text at the current turtle position. - - Arguments: - arg -- info, which is to be written to the TurtleScreen - move (optional) -- True/False - align (optional) -- one of the strings "left", "center" or right" - font (optional) -- a triple (fontname, fontsize, fonttype) - - Write text - the string representation of arg - at the current - turtle position according to align ("left", "center" or right") - and with the given font. - If move is True, the pen is moved to the bottom-right corner - of the text. By default, move is False. - - Example (for a Turtle instance named turtle): - >>> turtle.write('Home = ', True, align="center") - >>> turtle.write((0,0), True) - """ - if self.undobuffer: - self.undobuffer.push(["seq"]) - self.undobuffer.cumulate = True - end = self._write(str(arg), align.lower(), font) - if move: - x, y = self.pos() - self.setpos(end, y) - if self.undobuffer: - self.undobuffer.cumulate = False - - def begin_poly(self): - """Start recording the vertices of a polygon. - - No argument. - - Start recording the vertices of a polygon. Current turtle position - is first point of polygon. - - Example (for a Turtle instance named turtle): - >>> turtle.begin_poly() - """ - self._poly = [self._position] - self._creatingPoly = True - - def end_poly(self): - """Stop recording the vertices of a polygon. - - No argument. - - Stop recording the vertices of a polygon. Current turtle position is - last point of polygon. This will be connected with the first point. - - Example (for a Turtle instance named turtle): - >>> turtle.end_poly() - """ - self._creatingPoly = False - - def get_poly(self): - """Return the lastly recorded polygon. - - No argument. - - Example (for a Turtle instance named turtle): - >>> p = turtle.get_poly() - >>> turtle.register_shape("myFavouriteShape", p) - """ - ## check if there is any poly? -- 1st solution: - if self._poly is not None: - return tuple(self._poly) - - def getscreen(self): - """Return the TurtleScreen object, the turtle is drawing on. - - No argument. - - Return the TurtleScreen object, the turtle is drawing on. - So TurtleScreen-methods can be called for that object. - - Example (for a Turtle instance named turtle): - >>> ts = turtle.getscreen() - >>> ts - <turtle.TurtleScreen object at 0x0106B770> - >>> ts.bgcolor("pink") - """ - return self.screen - - def getturtle(self): - """Return the Turtleobject itself. - - No argument. - - Only reasonable use: as a function to return the 'anonymous turtle': - - Example: - >>> pet = getturtle() - >>> pet.fd(50) - >>> pet - <turtle.Turtle object at 0x0187D810> - >>> turtles() - [<turtle.Turtle object at 0x0187D810>] - """ - return self - - getpen = getturtle - - - ################################################################ - ### screen oriented methods recurring to methods of TurtleScreen - ################################################################ - -## def window_width(self): -## """ Returns the width of the turtle window. -## -## No argument. -## -## Example (for a TurtleScreen instance named screen): -## >>> screen.window_width() -## 640 -## """ -## return self.screen._window_size()[0] -## -## def window_height(self): -## """ Return the height of the turtle window. -## -## No argument. -## -## Example (for a TurtleScreen instance named screen): -## >>> screen.window_height() -## 480 -## """ -## return self.screen._window_size()[1] - - def _delay(self, delay=None): - """Set delay value which determines speed of turtle animation. - """ - return self.screen.delay(delay) - - ##### event binding methods ##### - - def onclick(self, fun, btn=1, add=None): - """Bind fun to mouse-click event on this turtle on canvas. - - Arguments: - fun -- a function with two arguments, to which will be assigned - the coordinates of the clicked point on the canvas. - num -- number of the mouse-button defaults to 1 (left mouse button). - add -- True or False. If True, new binding will be added, otherwise - it will replace a former binding. - - Example for the anonymous turtle, i. e. the procedural way: - - >>> def turn(x, y): - left(360) - - >>> onclick(turn) # Now clicking into the turtle will turn it. - >>> onclick(None) # event-binding will be removed - """ - self.screen._onclick(self.turtle._item, fun, btn, add) - self._update() - - def onrelease(self, fun, btn=1, add=None): - """Bind fun to mouse-button-release event on this turtle on canvas. - - Arguments: - fun -- a function with two arguments, to which will be assigned - the coordinates of the clicked point on the canvas. - num -- number of the mouse-button defaults to 1 (left mouse button). - - Example (for a MyTurtle instance named joe): - >>> class MyTurtle(Turtle): - def glow(self,x,y): - self.fillcolor("red") - def unglow(self,x,y): - self.fillcolor("") - - >>> joe = MyTurtle() - >>> joe.onclick(joe.glow) - >>> joe.onrelease(joe.unglow) - ### clicking on joe turns fillcolor red, - ### unclicking turns it to transparent. - """ - self.screen._onrelease(self.turtle._item, fun, btn, add) - self._update() - - def ondrag(self, fun, btn=1, add=None): - """Bind fun to mouse-move event on this turtle on canvas. - - Arguments: - fun -- a function with two arguments, to which will be assigned - the coordinates of the clicked point on the canvas. - num -- number of the mouse-button defaults to 1 (left mouse button). - - Every sequence of mouse-move-events on a turtle is preceded by a - mouse-click event on that turtle. - - Example (for a Turtle instance named turtle): - >>> turtle.ondrag(turtle.goto) - - ### Subsequently clicking and dragging a Turtle will - ### move it across the screen thereby producing handdrawings - ### (if pen is down). - """ - self.screen._ondrag(self.turtle._item, fun, btn, add) - - - def _undo(self, action, data): - """Does the main part of the work for undo() - """ - if self.undobuffer is None: - return - if action == "rot": - angle, degPAU = data - self._rotate(-angle*degPAU/self._degreesPerAU) - dummy = self.undobuffer.pop() - elif action == "stamp": - stitem = data[0] - self.clearstamp(stitem) - elif action == "go": - self._undogoto(data) - elif action in ["wri", "dot"]: - item = data[0] - self.screen._delete(item) - self.items.remove(item) - elif action == "dofill": - item = data[0] - self.screen._drawpoly(item, ((0, 0),(0, 0),(0, 0)), - fill="", outline="") - elif action == "beginfill": - item = data[0] - self._fillitem = self._fillpath = None - if item in self.items: - self.screen._delete(item) - self.items.remove(item) - elif action == "pen": - TPen.pen(self, data[0]) - self.undobuffer.pop() - - def undo(self): - """undo (repeatedly) the last turtle action. - - No argument. - - undo (repeatedly) the last turtle action. - Number of available undo actions is determined by the size of - the undobuffer. - - Example (for a Turtle instance named turtle): - >>> for i in range(4): - turtle.fd(50); turtle.lt(80) - - >>> for i in range(8): - turtle.undo() - """ - if self.undobuffer is None: - return - item = self.undobuffer.pop() - action = item[0] - data = item[1:] - if action == "seq": - while data: - item = data.pop() - self._undo(item[0], item[1:]) - else: - self._undo(action, data) - - turtlesize = shapesize - -RawPen = RawTurtle - -### Screen - Klasse ######################## - -class Screen(TurtleScreen): - - _root = None - _canvas = None - _title = _CFG["title"] - - # Borg-Idiom - - _shared_state = {} - - def __new__(cls, *args, **kwargs): - obj = object.__new__(cls, *args, **kwargs) - obj.__dict__ = cls._shared_state - return obj - - def __init__(self): - if Screen._root is None: - Screen._root = self._root = _Root() - self._root.title(Screen._title) - self._root.ondestroy(self._destroy) - if Screen._canvas is None: - width = _CFG["width"] - height = _CFG["height"] - canvwidth = _CFG["canvwidth"] - canvheight = _CFG["canvheight"] - leftright = _CFG["leftright"] - topbottom = _CFG["topbottom"] - self._root.setupcanvas(width, height, canvwidth, canvheight) - Screen._canvas = self._root._getcanvas() - self.setup(width, height, leftright, topbottom) - TurtleScreen.__init__(self, Screen._canvas) - Turtle._screen = self - - def setup(self, width=_CFG["width"], height=_CFG["height"], - startx=_CFG["leftright"], starty=_CFG["topbottom"]): - """ Set the size and position of the main window. - - Arguments: - width: as integer a size in pixels, as float a fraction of the screen. - Default is 50% of screen. - height: as integer the height in pixels, as float a fraction of the - screen. Default is 75% of screen. - startx: if positive, starting position in pixels from the left - edge of the screen, if negative from the right edge - Default, startx=None is to center window horizontally. - starty: if positive, starting position in pixels from the top - edge of the screen, if negative from the bottom edge - Default, starty=None is to center window vertically. - - Examples (for a Screen instance named screen): - >>> screen.setup (width=200, height=200, startx=0, starty=0) - - sets window to 200x200 pixels, in upper left of screen - - >>> screen.setup(width=.75, height=0.5, startx=None, starty=None) - - sets window to 75% of screen by 50% of screen and centers - """ - if not hasattr(self._root, "set_geometry"): - return - sw = self._root.win_width() - sh = self._root.win_height() - if isinstance(width, float) and 0 <= width <= 1: - width = sw*width - if startx is None: - startx = (sw - width) / 2 - if isinstance(height, float) and 0 <= height <= 1: - height = sh*height - if starty is None: - starty = (sh - height) / 2 - self._root.set_geometry(width, height, startx, starty) - - def title(self, titlestring): - """Set title of turtle-window - - Argument: - titlestring -- a string, to appear in the titlebar of the - turtle graphics window. - - This is a method of Screen-class. Not available for TurtleScreen- - objects. - - Example (for a Screen instance named screen): - >>> screen.title("Welcome to the turtle-zoo!") - """ - if Screen._root is not None: - Screen._root.title(titlestring) - Screen._title = titlestring - - def _destroy(self): - root = self._root - if root is Screen._root: - Turtle._pen = None - Turtle._screen = None - Screen._root = None - Screen._canvas = None - TurtleScreen._RUNNING = True - root.destroy() - - def bye(self): - """Shut the turtlegraphics window. - - Example (for a TurtleScreen instance named screen): - >>> screen.bye() - """ - self._destroy() - - def exitonclick(self): - """Go into mainloop until the mouse is clicked. - - No arguments. - - Bind bye() method to mouseclick on TurtleScreen. - If "using_IDLE" - value in configuration dictionary is False - (default value), enter mainloop. - If IDLE with -n switch (no subprocess) is used, this value should be - set to True in turtle.cfg. In this case IDLE's mainloop - is active also for the client script. - - This is a method of the Screen-class and not available for - TurtleScreen instances. - - Example (for a Screen instance named screen): - >>> screen.exitonclick() - - """ - def exitGracefully(x, y): - """Screen.bye() with two dummy-parameters""" - self.bye() - self.onclick(exitGracefully) - if _CFG["using_IDLE"]: - return - try: - mainloop() - except AttributeError: - exit(0) - - -class Turtle(RawTurtle): - """RawTurtle auto-crating (scrolled) canvas. - - When a Turtle object is created or a function derived from some - Turtle method is called a TurtleScreen object is automatically created. - """ - _pen = None - _screen = None - - def __init__(self, - shape=_CFG["shape"], - undobuffersize=_CFG["undobuffersize"], - visible=_CFG["visible"]): - if Turtle._screen is None: - Turtle._screen = Screen() - RawTurtle.__init__(self, Turtle._screen, - shape=shape, - undobuffersize=undobuffersize, - visible=visible) - -Pen = Turtle - -def _getpen(): - """Create the 'anonymous' turtle if not already present.""" - if Turtle._pen is None: - Turtle._pen = Turtle() - return Turtle._pen - -def _getscreen(): - """Create a TurtleScreen if not already present.""" - if Turtle._screen is None: - Turtle._screen = Screen() - return Turtle._screen - -def write_docstringdict(filename="turtle_docstringdict"): - """Create and write docstring-dictionary to file. - - Optional argument: - filename -- a string, used as filename - default value is turtle_docstringdict - - Has to be called explicitely, (not used by the turtle-graphics classes) - The docstring dictionary will be written to the Python script <filname>.py - It is intended to serve as a template for translation of the docstrings - into different languages. - """ - docsdict = {} - - for methodname in _tg_screen_functions: - key = "Screen."+methodname - docsdict[key] = eval(key).__doc__ - for methodname in _tg_turtle_functions: - key = "Turtle."+methodname - docsdict[key] = eval(key).__doc__ - - f = open("%s.py" % filename,"w") - keys = sorted([x for x in docsdict.keys() - if x.split('.')[1] not in _alias_list]) - f.write('docsdict = {\n\n') - for key in keys[:-1]: - f.write('%s :\n' % repr(key)) - f.write(' """%s\n""",\n\n' % docsdict[key]) - key = keys[-1] - f.write('%s :\n' % repr(key)) - f.write(' """%s\n"""\n\n' % docsdict[key]) - f.write("}\n") - f.close() - -def read_docstrings(lang): - """Read in docstrings from lang-specific docstring dictionary. - - Transfer docstrings, translated to lang, from a dictionary-file - to the methods of classes Screen and Turtle and - in revised form - - to the corresponding functions. - """ - modname = "turtle_docstringdict_%(language)s" % {'language':lang.lower()} - module = __import__(modname) - docsdict = module.docsdict - for key in docsdict: - try: -# eval(key).im_func.__doc__ = docsdict[key] - eval(key).__doc__ = docsdict[key] - except: - print("Bad docstring-entry: %s" % key) - -_LANGUAGE = _CFG["language"] - -try: - if _LANGUAGE != "english": - read_docstrings(_LANGUAGE) -except ImportError: - print("Cannot find docsdict for", _LANGUAGE) -except: - print ("Unknown Error when trying to import %s-docstring-dictionary" % - _LANGUAGE) - - -def getmethparlist(ob): - "Get strings describing the arguments for the given object" - argText1 = argText2 = "" - # bit of a hack for methods - turn it into a function - # but we drop the "self" param. -## if type(ob)==types.MethodType: -## fob = ob.im_func -## argOffset = 1 -## else: -## fob = ob -## argOffset = 0 - # Try and build one for Python defined functions - argOffset = 1 -## if type(fob) in [types.FunctionType, types.LambdaType]: -## try: - counter = ob.__code__.co_argcount - items2 = list(ob.__code__.co_varnames[argOffset:counter]) - realArgs = ob.__code__.co_varnames[argOffset:counter] - defaults = ob.__defaults__ or [] - defaults = list(map(lambda name: "=%s" % repr(name), defaults)) - defaults = [""] * (len(realArgs)-len(defaults)) + defaults - items1 = list(map(lambda arg, dflt: arg+dflt, realArgs, defaults)) - if ob.__code__.co_flags & 0x4: - items1.append("*"+ob.__code__.co_varnames[counter]) - items2.append("*"+ob.__code__.co_varnames[counter]) - counter += 1 - if ob.__code__.co_flags & 0x8: - items1.append("**"+ob.__code__.co_varnames[counter]) - items2.append("**"+ob.__code__.co_varnames[counter]) - argText1 = ", ".join(items1) - argText1 = "(%s)" % argText1 - argText2 = ", ".join(items2) - argText2 = "(%s)" % argText2 -## except: -## pass - return argText1, argText2 - -def _turtle_docrevise(docstr): - """To reduce docstrings from RawTurtle class for functions - """ - import re - if docstr is None: - return None - turtlename = _CFG["exampleturtle"] - newdocstr = docstr.replace("%s." % turtlename,"") - parexp = re.compile(r' \(.+ %s\):' % turtlename) - newdocstr = parexp.sub(":", newdocstr) - return newdocstr - -def _screen_docrevise(docstr): - """To reduce docstrings from TurtleScreen class for functions - """ - import re - if docstr is None: - return None - screenname = _CFG["examplescreen"] - newdocstr = docstr.replace("%s." % screenname,"") - parexp = re.compile(r' \(.+ %s\):' % screenname) - newdocstr = parexp.sub(":", newdocstr) - return newdocstr - -## The following mechanism makes all methods of RawTurtle and Turtle available -## as functions. So we can enhance, change, add, delete methods to these -## classes and do not need to change anything here. - - -for methodname in _tg_screen_functions: - pl1, pl2 = getmethparlist(eval('Screen.' + methodname)) - if pl1 == "": - print(">>>>>>", pl1, pl2) - continue - defstr = ("def %(key)s%(pl1)s: return _getscreen().%(key)s%(pl2)s" % - {'key':methodname, 'pl1':pl1, 'pl2':pl2}) -## print("Screen:", defstr) - exec(defstr) - eval(methodname).__doc__ = _screen_docrevise(eval('Screen.'+methodname).__doc__) - -for methodname in _tg_turtle_functions: - pl1, pl2 = getmethparlist(eval('Turtle.' + methodname)) - if pl1 == "": - print(">>>>>>", pl1, pl2) - continue - defstr = ("def %(key)s%(pl1)s: return _getpen().%(key)s%(pl2)s" % - {'key':methodname, 'pl1':pl1, 'pl2':pl2}) -## print("Turtle:", defstr) - exec(defstr) - eval(methodname).__doc__ = _turtle_docrevise(eval('Turtle.'+methodname).__doc__) - - -done = mainloop = TK.mainloop -#del pl1, pl2, defstr - -if __name__ == "__main__": - def switchpen(): - if isdown(): - pu() - else: - pd() - - def demo1(): - """Demo of old turtle.py - module""" - reset() - tracer(True) - up() - backward(100) - down() - # draw 3 squares; the last filled - width(3) - for i in range(3): - if i == 2: - begin_fill() - for _ in range(4): - forward(20) - left(90) - if i == 2: - color("maroon") - end_fill() - up() - forward(30) - down() - width(1) - color("black") - # move out of the way - tracer(False) - up() - right(90) - forward(100) - right(90) - forward(100) - right(180) - down() - # some text - write("startstart", 1) - write("start", 1) - color("red") - # staircase - for i in range(5): - forward(20) - left(90) - forward(20) - right(90) - # filled staircase - tracer(True) - begin_fill() - for i in range(5): - forward(20) - left(90) - forward(20) - right(90) - end_fill() - # more text - - def demo2(): - """Demo of some new features.""" - speed(1) - st() - pensize(3) - setheading(towards(0, 0)) - radius = distance(0, 0)/2.0 - rt(90) - for _ in range(18): - switchpen() - circle(radius, 10) - write("wait a moment...") - while undobufferentries(): - undo() - reset() - lt(90) - colormode(255) - laenge = 10 - pencolor("green") - pensize(3) - lt(180) - for i in range(-2, 16): - if i > 0: - begin_fill() - fillcolor(255-15*i, 0, 15*i) - for _ in range(3): - fd(laenge) - lt(120) - end_fill() - laenge += 10 - lt(15) - speed((speed()+1)%12) - #end_fill() - - lt(120) - pu() - fd(70) - rt(30) - pd() - color("red","yellow") - speed(0) - begin_fill() - for _ in range(4): - circle(50, 90) - rt(90) - fd(30) - rt(90) - end_fill() - lt(90) - pu() - fd(30) - pd() - shape("turtle") - - tri = getturtle() - tri.resizemode("auto") - turtle = Turtle() - turtle.resizemode("auto") - turtle.shape("turtle") - turtle.reset() - turtle.left(90) - turtle.speed(0) - turtle.up() - turtle.goto(280, 40) - turtle.lt(30) - turtle.down() - turtle.speed(6) - turtle.color("blue","orange") - turtle.pensize(2) - tri.speed(6) - setheading(towards(turtle)) - count = 1 - while tri.distance(turtle) > 4: - turtle.fd(3.5) - turtle.lt(0.6) - tri.setheading(tri.towards(turtle)) - tri.fd(4) - if count % 20 == 0: - turtle.stamp() - tri.stamp() - switchpen() - count += 1 - tri.write("CAUGHT! ", font=("Arial", 16, "bold"), align="right") - tri.pencolor("black") - tri.pencolor("red") - - def baba(xdummy, ydummy): - clearscreen() - bye() - - time.sleep(2) - - while undobufferentries(): - tri.undo() - turtle.undo() - tri.fd(50) - tri.write(" Click me!", font = ("Courier", 12, "bold") ) - tri.onclick(baba, 1) - - demo1() - demo2() - exitonclick() |