summaryrefslogtreecommitdiffstats
path: root/Lib
diff options
context:
space:
mode:
authorRaymond Hettinger <python@rcn.com>2002-05-23 19:44:49 (GMT)
committerRaymond Hettinger <python@rcn.com>2002-05-23 19:44:49 (GMT)
commitc32f0336e062dd36f82fb236c66ac25e2bac217b (patch)
tree8a72125253a0e54dbce78eb7275160092527e659 /Lib
parentf070cce6afebd3ef9cefb127d4e4db93881f3ec1 (diff)
downloadcpython-c32f0336e062dd36f82fb236c66ac25e2bac217b.zip
cpython-c32f0336e062dd36f82fb236c66ac25e2bac217b.tar.gz
cpython-c32f0336e062dd36f82fb236c66ac25e2bac217b.tar.bz2
Deprecated Random.cunifvariate clearing bug 506647. Also, added docstrings.
Diffstat (limited to 'Lib')
-rw-r--r--Lib/random.py81
1 files changed, 81 insertions, 0 deletions
diff --git a/Lib/random.py b/Lib/random.py
index af788c6..424a905 100644
--- a/Lib/random.py
+++ b/Lib/random.py
@@ -106,6 +106,19 @@ del _verify
# Adrian Baddeley.
class Random:
+ """Random number generator base class used by bound module functions.
+
+ Used to instantiate instances of Random to get generators that don't
+ share state. Especially useful for multi-threaded programs, creating
+ a different instance of Random for each thread, and using the jumpahead()
+ method to ensure that the generated sequences seen by each thread don't
+ overlap.
+
+ Class Random can also be subclassed if you want to use a different basic
+ generator of your own devising: in that case, override the following
+ methods: random(), seed(), getstate(), setstate() and jumpahead().
+
+ """
VERSION = 1 # used by getstate/setstate
@@ -358,6 +371,11 @@ class Random:
## -------------------- normal distribution --------------------
def normalvariate(self, mu, sigma):
+ """Normal distribution.
+
+ mu is the mean, and sigma is the standard deviation.
+
+ """
# mu = mean, sigma = standard deviation
# Uses Kinderman and Monahan method. Reference: Kinderman,
@@ -378,19 +396,48 @@ class Random:
## -------------------- lognormal distribution --------------------
def lognormvariate(self, mu, sigma):
+ """Log normal distribution.
+
+ If you take the natural logarithm of this distribution, you'll get a
+ normal distribution with mean mu and standard deviation sigma.
+ mu can have any value, and sigma must be greater than zero.
+
+ """
return _exp(self.normalvariate(mu, sigma))
## -------------------- circular uniform --------------------
def cunifvariate(self, mean, arc):
+ """Circular uniform distribution.
+
+ mean is the mean angle, and arc is the range of the distribution,
+ centered around the mean angle. Both values must be expressed in
+ radians. Returned values range between mean - arc/2 and
+ mean + arc/2 and are normalized to between 0 and pi.
+
+ Deprecated in version 2.3. Use:
+ (mean + arc * (Random.random() - 0.5)) % Math.pi
+
+ """
# mean: mean angle (in radians between 0 and pi)
# arc: range of distribution (in radians between 0 and pi)
+ import warnings
+ warnings.warn("The cunifvariate function is deprecated; Use (mean "
+ "+ arc * (Random.random() - 0.5)) % Math.pi instead",
+ DeprecationWarning)
return (mean + arc * (self.random() - 0.5)) % _pi
## -------------------- exponential distribution --------------------
def expovariate(self, lambd):
+ """Exponential distribution.
+
+ lambd is 1.0 divided by the desired mean. (The parameter would be
+ called "lambda", but that is a reserved word in Python.) Returned
+ values range from 0 to positive infinity.
+
+ """
# lambd: rate lambd = 1/mean
# ('lambda' is a Python reserved word)
@@ -403,6 +450,14 @@ class Random:
## -------------------- von Mises distribution --------------------
def vonmisesvariate(self, mu, kappa):
+ """Circular data distribution.
+
+ mu is the mean angle, expressed in radians between 0 and 2*pi, and
+ kappa is the concentration parameter, which must be greater than or
+ equal to zero. If kappa is equal to zero, this distribution reduces
+ to a uniform random angle over the range 0 to 2*pi.
+
+ """
# mu: mean angle (in radians between 0 and 2*pi)
# kappa: concentration parameter kappa (>= 0)
# if kappa = 0 generate uniform random angle
@@ -445,6 +500,11 @@ class Random:
## -------------------- gamma distribution --------------------
def gammavariate(self, alpha, beta):
+ """Gamma distribution. Not the gamma function!
+
+ Conditions on the parameters are alpha > 0 and beta > 0.
+
+ """
# alpha > 0, beta > 0, mean is alpha*beta, variance is alpha*beta**2
@@ -524,6 +584,14 @@ class Random:
## -------------------- Gauss (faster alternative) --------------------
def gauss(self, mu, sigma):
+ """Gaussian distribution.
+
+ mu is the mean, and sigma is the standard deviation. This is
+ slightly faster than the normalvariate() function.
+
+ Not thread-safe without a lock around calls.
+
+ """
# When x and y are two variables from [0, 1), uniformly
# distributed, then
@@ -569,6 +637,13 @@ class Random:
## was dead wrong, and how it probably got that way.
def betavariate(self, alpha, beta):
+ """Beta distribution.
+
+ Conditions on the parameters are alpha > -1 and beta} > -1.
+ Returned values range between 0 and 1.
+
+ """
+
# This version due to Janne Sinkkonen, and matches all the std
# texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution").
y = self.gammavariate(alpha, 1.)
@@ -580,6 +655,7 @@ class Random:
## -------------------- Pareto --------------------
def paretovariate(self, alpha):
+ """Pareto distribution. alpha is the shape parameter."""
# Jain, pg. 495
u = self.random()
@@ -588,6 +664,11 @@ class Random:
## -------------------- Weibull --------------------
def weibullvariate(self, alpha, beta):
+ """Weibull distribution.
+
+ alpha is the scale parameter and beta is the shape parameter.
+
+ """
# Jain, pg. 499; bug fix courtesy Bill Arms
u = self.random()