summaryrefslogtreecommitdiffstats
path: root/Lib
diff options
context:
space:
mode:
authorTim Peters <tim.peters@gmail.com>2004-09-23 08:06:40 (GMT)
committerTim Peters <tim.peters@gmail.com>2004-09-23 08:06:40 (GMT)
commit307fa78107c39ffda1eb4ad18201d25650354c4e (patch)
tree6b2daf6dc3169cfc2054ebc4162647b5c647d875 /Lib
parent4533f1fb7fbf1fa8a9cb264ff6f1f0aba043e80d (diff)
downloadcpython-307fa78107c39ffda1eb4ad18201d25650354c4e.zip
cpython-307fa78107c39ffda1eb4ad18201d25650354c4e.tar.gz
cpython-307fa78107c39ffda1eb4ad18201d25650354c4e.tar.bz2
SF bug #513866: Float/long comparison anomaly.
When an integer is compared to a float now, the int isn't coerced to float. This avoids spurious overflow exceptions and insane results. This should compute correct results, without raising spurious exceptions, in all cases now -- although I expect that what happens when an int/long is compared to a NaN is still a platform accident. Note that we had potential problems here even with "short" ints, on boxes where sizeof(long)==8. There's #ifdef'ed code here to handle that, but I can't test it as intended. I tested it by changing the #ifdef to trigger on my 32-bit box instead. I suppose this is a bugfix candidate, but I won't backport it. It's long-winded (for speed) and messy (because the problem is messy). Note that this also depends on a previous 2.4 patch that introduced _Py_SwappedOp[] as an extern.
Diffstat (limited to 'Lib')
-rw-r--r--Lib/test/test_long.py104
1 files changed, 102 insertions, 2 deletions
diff --git a/Lib/test/test_long.py b/Lib/test/test_long.py
index 1a04ce9..74ae7c6 100644
--- a/Lib/test/test_long.py
+++ b/Lib/test/test_long.py
@@ -387,8 +387,7 @@ def test_float_overflow():
"1. ** huge", "huge ** 1.", "1. ** mhuge", "mhuge ** 1.",
"math.sin(huge)", "math.sin(mhuge)",
"math.sqrt(huge)", "math.sqrt(mhuge)", # should do better
- "math.floor(huge)", "math.floor(mhuge)",
- "float(shuge) == int(shuge)"]:
+ "math.floor(huge)", "math.floor(mhuge)"]:
try:
eval(test, namespace)
@@ -397,6 +396,11 @@ def test_float_overflow():
else:
raise TestFailed("expected OverflowError from %s" % test)
+ # XXX Perhaps float(shuge) can raise OverflowError on some box?
+ # The comparison should not.
+ if float(shuge) == int(shuge):
+ raise TestFailed("float(shuge) should not equal int(shuge)")
+
# ---------------------------------------------- test huge log and log10
def test_logs():
@@ -431,6 +435,101 @@ def test_logs():
except ValueError:
pass
+# ----------------------------------------------- test mixed comparisons
+
+def test_mixed_compares():
+ import math
+ import sys
+
+ if verbose:
+ print "mixed comparisons"
+
+ # We're mostly concerned with that mixing floats and longs does the
+ # right stuff, even when longs are too large to fit in a float.
+ # The safest way to check the results is to use an entirely different
+ # method, which we do here via a skeletal rational class (which
+ # represents all Python ints, longs and floats exactly).
+ class Rat:
+ def __init__(self, value):
+ if isinstance(value, (int, long)):
+ self.n = value
+ self.d = 1
+
+ elif isinstance(value, float):
+ # Convert to exact rational equivalent.
+ f, e = math.frexp(abs(value))
+ assert f == 0 or 0.5 <= f < 1.0
+ # |value| = f * 2**e exactly
+
+ # Suck up CHUNK bits at a time; 28 is enough so that we suck
+ # up all bits in 2 iterations for all known binary double-
+ # precision formats, and small enough to fit in an int.
+ CHUNK = 28
+ top = 0
+ # invariant: |value| = (top + f) * 2**e exactly
+ while f:
+ f = math.ldexp(f, CHUNK)
+ digit = int(f)
+ assert digit >> CHUNK == 0
+ top = (top << CHUNK) | digit
+ f -= digit
+ assert 0.0 <= f < 1.0
+ e -= CHUNK
+
+ # Now |value| = top * 2**e exactly.
+ if e >= 0:
+ n = top << e
+ d = 1
+ else:
+ n = top
+ d = 1 << -e
+ if value < 0:
+ n = -n
+ self.n = n
+ self.d = d
+ assert float(n) / float(d) == value
+
+ else:
+ raise TypeError("can't deal with %r" % val)
+
+ def __cmp__(self, other):
+ if not isinstance(other, Rat):
+ other = Rat(other)
+ return cmp(self.n * other.d, self.d * other.n)
+
+ cases = [0, 0.001, 0.99, 1.0, 1.5, 1e20, 1e200]
+ # 2**48 is an important boundary in the internals. 2**53 is an
+ # important boundary for IEEE double precision.
+ for t in 2.0**48, 2.0**50, 2.0**53:
+ cases.extend([t - 1.0, t - 0.3, t, t + 0.3, t + 1.0,
+ long(t-1), long(t), long(t+1)])
+ cases.extend([0, 1, 2, sys.maxint, float(sys.maxint)])
+ # 1L<<20000 should exceed all double formats. long(1e200) is to
+ # check that we get equality with 1e200 above.
+ t = long(1e200)
+ cases.extend([0L, 1L, 2L, 1L << 20000, t-1, t, t+1])
+ cases.extend([-x for x in cases])
+ for x in cases:
+ Rx = Rat(x)
+ for y in cases:
+ Ry = Rat(y)
+ Rcmp = cmp(Rx, Ry)
+ xycmp = cmp(x, y)
+ if Rcmp != xycmp:
+ raise TestFailed('%r %r %d %d' % (x, y, Rcmp, xycmp))
+ if (x == y) != (Rcmp == 0):
+ raise TestFailed('%r == %r %d' % (x, y, Rcmp))
+ if (x != y) != (Rcmp != 0):
+ raise TestFailed('%r != %r %d' % (x, y, Rcmp))
+ if (x < y) != (Rcmp < 0):
+ raise TestFailed('%r < %r %d' % (x, y, Rcmp))
+ if (x <= y) != (Rcmp <= 0):
+ raise TestFailed('%r <= %r %d' % (x, y, Rcmp))
+ if (x > y) != (Rcmp > 0):
+ raise TestFailed('%r > %r %d' % (x, y, Rcmp))
+ if (x >= y) != (Rcmp >= 0):
+ raise TestFailed('%r >= %r %d' % (x, y, Rcmp))
+
# ---------------------------------------------------------------- do it
test_division()
@@ -441,3 +540,4 @@ test_misc()
test_auto_overflow()
test_float_overflow()
test_logs()
+test_mixed_compares()