summaryrefslogtreecommitdiffstats
path: root/Lib
diff options
context:
space:
mode:
authorGuido van Rossum <guido@python.org>2015-05-22 17:14:11 (GMT)
committerGuido van Rossum <guido@python.org>2015-05-22 17:14:11 (GMT)
commit46dbb7d1032c19163f37785509b8f5b3004416e8 (patch)
tree85f29b8330b82cefcf01b50a12a2cd9f28ccf801 /Lib
parent569db2c9f6d1adc787c6f44a9b2f4e4d9bbde272 (diff)
downloadcpython-46dbb7d1032c19163f37785509b8f5b3004416e8.zip
cpython-46dbb7d1032c19163f37785509b8f5b3004416e8.tar.gz
cpython-46dbb7d1032c19163f37785509b8f5b3004416e8.tar.bz2
Preliminary typing.py, anticipating provisional acceptance of PEP 484.
There area bunch of TODOs here, but the biggest (not mentioned in the file) is that I'm going to take out __instancecheck__ and __subclasscheck__. However my personal schedule is such that I probably won't have time for these before Larry tags beta 1. But I will try -- this commit is mostly to make sure that typing.py doesn't completely miss the train. PS. I'm tracking issues at https://github.com/ambv/typehinting/issues.
Diffstat (limited to 'Lib')
-rw-r--r--Lib/test/test_typing.py1373
-rw-r--r--Lib/typing.py1714
2 files changed, 3087 insertions, 0 deletions
diff --git a/Lib/test/test_typing.py b/Lib/test/test_typing.py
new file mode 100644
index 0000000..c37e113
--- /dev/null
+++ b/Lib/test/test_typing.py
@@ -0,0 +1,1373 @@
+from collections import namedtuple
+import re
+import sys
+from unittest import TestCase, main
+try:
+ from unittest import mock
+except ImportError:
+ import mock # 3rd party install, for PY3.2.
+
+from typing import Any
+from typing import TypeVar, AnyStr
+from typing import T, KT, VT # Not in __all__.
+from typing import Union, Optional
+from typing import Tuple
+from typing import Callable
+from typing import Generic
+from typing import cast
+from typing import get_type_hints
+from typing import no_type_check, no_type_check_decorator
+from typing import NamedTuple
+from typing import IO, TextIO, BinaryIO
+from typing import Pattern, Match
+import typing
+
+
+class Employee:
+ pass
+
+
+class Manager(Employee):
+ pass
+
+
+class Founder(Employee):
+ pass
+
+
+class ManagingFounder(Manager, Founder):
+ pass
+
+
+class AnyTests(TestCase):
+
+ def test_any_instance(self):
+ self.assertIsInstance(Employee(), Any)
+ self.assertIsInstance(42, Any)
+ self.assertIsInstance(None, Any)
+ self.assertIsInstance(object(), Any)
+
+ def test_any_subclass(self):
+ self.assertTrue(issubclass(Employee, Any))
+ self.assertTrue(issubclass(int, Any))
+ self.assertTrue(issubclass(type(None), Any))
+ self.assertTrue(issubclass(object, Any))
+
+ def test_others_any(self):
+ self.assertFalse(issubclass(Any, Employee))
+ self.assertFalse(issubclass(Any, int))
+ self.assertFalse(issubclass(Any, type(None)))
+ # However, Any is a subclass of object (this can't be helped).
+ self.assertTrue(issubclass(Any, object))
+
+ def test_repr(self):
+ self.assertEqual(repr(Any), 'typing.Any')
+
+ def test_errors(self):
+ with self.assertRaises(TypeError):
+ issubclass(42, Any)
+ with self.assertRaises(TypeError):
+ Any[int] # Any is not a generic type.
+
+ def test_cannot_subclass(self):
+ with self.assertRaises(TypeError):
+ class A(Any):
+ pass
+
+ def test_cannot_instantiate(self):
+ with self.assertRaises(TypeError):
+ Any()
+
+ def test_cannot_subscript(self):
+ with self.assertRaises(TypeError):
+ Any[int]
+
+ def test_any_is_subclass(self):
+ # Any should be considered a subclass of everything.
+ assert issubclass(Any, Any)
+ assert issubclass(Any, typing.List)
+ assert issubclass(Any, typing.List[int])
+ assert issubclass(Any, typing.List[T])
+ assert issubclass(Any, typing.Mapping)
+ assert issubclass(Any, typing.Mapping[str, int])
+ assert issubclass(Any, typing.Mapping[KT, VT])
+ assert issubclass(Any, Generic)
+ assert issubclass(Any, Generic[T])
+ assert issubclass(Any, Generic[KT, VT])
+ assert issubclass(Any, AnyStr)
+ assert issubclass(Any, Union)
+ assert issubclass(Any, Union[int, str])
+ assert issubclass(Any, typing.Match)
+ assert issubclass(Any, typing.Match[str])
+ # These expressions must simply not fail.
+ typing.Match[Any]
+ typing.Pattern[Any]
+ typing.IO[Any]
+
+
+class TypeVarTests(TestCase):
+
+ def test_basic_plain(self):
+ T = TypeVar('T')
+ # Nothing is an instance if T.
+ with self.assertRaises(TypeError):
+ isinstance('', T)
+ # Every class is a subclass of T.
+ assert issubclass(int, T)
+ assert issubclass(str, T)
+ # T equals itself.
+ assert T == T
+ # T is a subclass of itself.
+ assert issubclass(T, T)
+
+ def test_basic_constrained(self):
+ A = TypeVar('A', str, bytes)
+ # Nothing is an instance of A.
+ with self.assertRaises(TypeError):
+ isinstance('', A)
+ # Only str and bytes are subclasses of A.
+ assert issubclass(str, A)
+ assert issubclass(bytes, A)
+ assert not issubclass(int, A)
+ # A equals itself.
+ assert A == A
+ # A is a subclass of itself.
+ assert issubclass(A, A)
+
+ def test_constrained_error(self):
+ with self.assertRaises(TypeError):
+ X = TypeVar('X', int)
+
+ def test_union_unique(self):
+ X = TypeVar('X')
+ Y = TypeVar('Y')
+ assert X != Y
+ assert Union[X] == X
+ assert Union[X] != Union[X, Y]
+ assert Union[X, X] == X
+ assert Union[X, int] != Union[X]
+ assert Union[X, int] != Union[int]
+ assert Union[X, int].__union_params__ == (X, int)
+ assert Union[X, int].__union_set_params__ == {X, int}
+
+ def test_union_constrained(self):
+ A = TypeVar('A', str, bytes)
+ assert Union[A, str] != Union[A]
+
+ def test_repr(self):
+ self.assertEqual(repr(T), '~T')
+ self.assertEqual(repr(KT), '~KT')
+ self.assertEqual(repr(VT), '~VT')
+ self.assertEqual(repr(AnyStr), '~AnyStr')
+ T_co = TypeVar('T_co', covariant=True)
+ self.assertEqual(repr(T_co), '+T_co')
+ T_contra = TypeVar('T_contra', contravariant=True)
+ self.assertEqual(repr(T_contra), '-T_contra')
+
+ def test_no_redefinition(self):
+ self.assertNotEqual(TypeVar('T'), TypeVar('T'))
+ self.assertNotEqual(TypeVar('T', int, str), TypeVar('T', int, str))
+
+ def test_subclass_as_unions(self):
+ # None of these are true -- each type var is its own world.
+ self.assertFalse(issubclass(TypeVar('T', int, str),
+ TypeVar('T', int, str)))
+ self.assertFalse(issubclass(TypeVar('T', int, float),
+ TypeVar('T', int, float, str)))
+ self.assertFalse(issubclass(TypeVar('T', int, str),
+ TypeVar('T', str, int)))
+ A = TypeVar('A', int, str)
+ B = TypeVar('B', int, str, float)
+ self.assertFalse(issubclass(A, B))
+ self.assertFalse(issubclass(B, A))
+
+ def test_cannot_subclass_vars(self):
+ with self.assertRaises(TypeError):
+ class V(TypeVar('T')):
+ pass
+
+ def test_cannot_subclass_var_itself(self):
+ with self.assertRaises(TypeError):
+ class V(TypeVar):
+ pass
+
+ def test_cannot_instantiate_vars(self):
+ with self.assertRaises(TypeError):
+ TypeVar('A')()
+
+ def test_bound(self):
+ X = TypeVar('X', bound=Employee)
+ assert issubclass(Employee, X)
+ assert issubclass(Manager, X)
+ assert not issubclass(int, X)
+
+ def test_bound_errors(self):
+ with self.assertRaises(TypeError):
+ TypeVar('X', bound=42)
+ with self.assertRaises(TypeError):
+ TypeVar('X', str, float, bound=Employee)
+
+
+class UnionTests(TestCase):
+
+ def test_basics(self):
+ u = Union[int, float]
+ self.assertNotEqual(u, Union)
+ self.assertIsInstance(42, u)
+ self.assertIsInstance(3.14, u)
+ self.assertTrue(issubclass(int, u))
+ self.assertTrue(issubclass(float, u))
+
+ def test_union_any(self):
+ u = Union[Any]
+ self.assertEqual(u, Any)
+ u = Union[int, Any]
+ self.assertEqual(u, Any)
+ u = Union[Any, int]
+ self.assertEqual(u, Any)
+
+ def test_union_object(self):
+ u = Union[object]
+ self.assertEqual(u, object)
+ u = Union[int, object]
+ self.assertEqual(u, object)
+ u = Union[object, int]
+ self.assertEqual(u, object)
+
+ def test_union_any_object(self):
+ u = Union[object, Any]
+ self.assertEqual(u, Any)
+ u = Union[Any, object]
+ self.assertEqual(u, Any)
+
+ def test_unordered(self):
+ u1 = Union[int, float]
+ u2 = Union[float, int]
+ self.assertEqual(u1, u2)
+
+ def test_subclass(self):
+ u = Union[int, Employee]
+ self.assertIsInstance(Manager(), u)
+ self.assertTrue(issubclass(Manager, u))
+
+ def test_self_subclass(self):
+ self.assertTrue(issubclass(Union[KT, VT], Union))
+ self.assertFalse(issubclass(Union, Union[KT, VT]))
+
+ def test_multiple_inheritance(self):
+ u = Union[int, Employee]
+ self.assertIsInstance(ManagingFounder(), u)
+ self.assertTrue(issubclass(ManagingFounder, u))
+
+ def test_single_class_disappears(self):
+ t = Union[Employee]
+ self.assertIs(t, Employee)
+
+ def test_base_class_disappears(self):
+ u = Union[Employee, Manager, int]
+ self.assertEqual(u, Union[int, Employee])
+ u = Union[Manager, int, Employee]
+ self.assertEqual(u, Union[int, Employee])
+ u = Union[Employee, Manager]
+ self.assertIs(u, Employee)
+
+ def test_weird_subclasses(self):
+ u = Union[Employee, int, float]
+ v = Union[int, float]
+ self.assertTrue(issubclass(v, u))
+ w = Union[int, Manager]
+ self.assertTrue(issubclass(w, u))
+
+ def test_union_union(self):
+ u = Union[int, float]
+ v = Union[u, Employee]
+ self.assertEqual(v, Union[int, float, Employee])
+
+ def test_repr(self):
+ self.assertEqual(repr(Union), 'typing.Union')
+ u = Union[Employee, int]
+ self.assertEqual(repr(u), 'typing.Union[%s.Employee, int]' % __name__)
+ u = Union[int, Employee]
+ self.assertEqual(repr(u), 'typing.Union[int, %s.Employee]' % __name__)
+
+ def test_cannot_subclass(self):
+ with self.assertRaises(TypeError):
+ class C(Union):
+ pass
+ with self.assertRaises(TypeError):
+ class C(Union[int, str]):
+ pass
+
+ def test_cannot_instantiate(self):
+ with self.assertRaises(TypeError):
+ Union()
+ u = Union[int, float]
+ with self.assertRaises(TypeError):
+ u()
+
+ def test_optional(self):
+ o = Optional[int]
+ u = Union[int, None]
+ self.assertEqual(o, u)
+ self.assertIsInstance(42, o)
+ self.assertIsInstance(None, o)
+ self.assertNotIsInstance(3.14, o)
+
+ def test_empty(self):
+ with self.assertRaises(TypeError):
+ Union[()]
+
+ def test_issubclass_union(self):
+ assert issubclass(Union[int, str], Union)
+ assert not issubclass(int, Union)
+
+ def test_isinstance_union(self):
+ # Nothing is an instance of bare Union.
+ assert not isinstance(42, Union)
+ assert not isinstance(int, Union)
+ assert not isinstance(Union[int, str], Union)
+
+
+class TypeVarUnionTests(TestCase):
+
+ def test_simpler(self):
+ A = TypeVar('A', int, str, float)
+ B = TypeVar('B', int, str)
+ assert issubclass(A, A)
+ assert issubclass(B, B)
+ assert not issubclass(B, A)
+ assert issubclass(A, Union[int, str, float])
+ assert not issubclass(Union[int, str, float], A)
+ assert not issubclass(Union[int, str], B)
+ assert issubclass(B, Union[int, str])
+ assert not issubclass(A, B)
+ assert not issubclass(Union[int, str, float], B)
+ assert not issubclass(A, Union[int, str])
+
+ def test_var_union_subclass(self):
+ self.assertTrue(issubclass(T, Union[int, T]))
+ self.assertTrue(issubclass(KT, Union[KT, VT]))
+
+ def test_var_union(self):
+ TU = TypeVar('TU', Union[int, float], None)
+ assert issubclass(int, TU)
+ assert issubclass(float, TU)
+ with self.assertRaises(TypeError):
+ isinstance(42, TU)
+ with self.assertRaises(TypeError):
+ isinstance('', TU)
+
+
+class TupleTests(TestCase):
+
+ def test_basics(self):
+ self.assertIsInstance((42, 3.14, ''), Tuple)
+ self.assertIsInstance((42, 3.14, ''), Tuple[int, float, str])
+ self.assertIsInstance((42,), Tuple[int])
+ self.assertNotIsInstance((3.14,), Tuple[int])
+ self.assertNotIsInstance((42, 3.14), Tuple[int, float, str])
+ self.assertNotIsInstance((42, 3.14, 100), Tuple[int, float, str])
+ self.assertNotIsInstance((42, 3.14, 100), Tuple[int, float])
+ self.assertTrue(issubclass(Tuple[int, str], Tuple))
+ self.assertTrue(issubclass(Tuple[int, str], Tuple[int, str]))
+ self.assertFalse(issubclass(int, Tuple))
+ self.assertFalse(issubclass(Tuple[float, str], Tuple[int, str]))
+ self.assertFalse(issubclass(Tuple[int, str, int], Tuple[int, str]))
+ self.assertFalse(issubclass(Tuple[int, str], Tuple[int, str, int]))
+ self.assertTrue(issubclass(tuple, Tuple))
+ self.assertFalse(issubclass(Tuple, tuple)) # Can't have it both ways.
+
+ def test_tuple_subclass(self):
+ class MyTuple(tuple):
+ pass
+ self.assertTrue(issubclass(MyTuple, Tuple))
+
+ def test_tuple_ellipsis(self):
+ t = Tuple[int, ...]
+ assert isinstance((), t)
+ assert isinstance((1,), t)
+ assert isinstance((1, 2), t)
+ assert isinstance((1, 2, 3), t)
+ assert not isinstance((3.14,), t)
+ assert not isinstance((1, 2, 3.14,), t)
+
+ def test_tuple_ellipsis_subclass(self):
+
+ class B:
+ pass
+
+ class C(B):
+ pass
+
+ assert not issubclass(Tuple[B], Tuple[B, ...])
+ assert issubclass(Tuple[C, ...], Tuple[B, ...])
+ assert not issubclass(Tuple[C, ...], Tuple[B])
+ assert not issubclass(Tuple[C], Tuple[B, ...])
+
+ def test_repr(self):
+ self.assertEqual(repr(Tuple), 'typing.Tuple')
+ self.assertEqual(repr(Tuple[()]), 'typing.Tuple[]')
+ self.assertEqual(repr(Tuple[int, float]), 'typing.Tuple[int, float]')
+ self.assertEqual(repr(Tuple[int, ...]), 'typing.Tuple[int, ...]')
+
+ def test_errors(self):
+ with self.assertRaises(TypeError):
+ issubclass(42, Tuple)
+ with self.assertRaises(TypeError):
+ issubclass(42, Tuple[int])
+
+
+class CallableTests(TestCase):
+
+ def test_basics(self):
+ c = Callable[[int, float], str]
+
+ def flub(a: int, b: float) -> str:
+ return str(a * b)
+
+ def flob(a: int, b: int) -> str:
+ return str(a * b)
+
+ self.assertIsInstance(flub, c)
+ self.assertNotIsInstance(flob, c)
+
+ def test_self_subclass(self):
+ self.assertTrue(issubclass(Callable[[int], int], Callable))
+ self.assertFalse(issubclass(Callable, Callable[[int], int]))
+ self.assertTrue(issubclass(Callable[[int], int], Callable[[int], int]))
+ self.assertFalse(issubclass(Callable[[Employee], int],
+ Callable[[Manager], int]))
+ self.assertFalse(issubclass(Callable[[Manager], int],
+ Callable[[Employee], int]))
+ self.assertFalse(issubclass(Callable[[int], Employee],
+ Callable[[int], Manager]))
+ self.assertFalse(issubclass(Callable[[int], Manager],
+ Callable[[int], Employee]))
+
+ def test_eq_hash(self):
+ self.assertEqual(Callable[[int], int], Callable[[int], int])
+ self.assertEqual(len({Callable[[int], int], Callable[[int], int]}), 1)
+ self.assertNotEqual(Callable[[int], int], Callable[[int], str])
+ self.assertNotEqual(Callable[[int], int], Callable[[str], int])
+ self.assertNotEqual(Callable[[int], int], Callable[[int, int], int])
+ self.assertNotEqual(Callable[[int], int], Callable[[], int])
+ self.assertNotEqual(Callable[[int], int], Callable)
+
+ def test_with_none(self):
+ c = Callable[[None], None]
+
+ def flub(self: None) -> None:
+ pass
+
+ def flab(self: Any) -> None:
+ pass
+
+ def flob(self: None) -> Any:
+ pass
+
+ self.assertIsInstance(flub, c)
+ self.assertIsInstance(flab, c)
+ self.assertNotIsInstance(flob, c) # Test contravariance.
+
+ def test_with_subclasses(self):
+ c = Callable[[Employee, Manager], Employee]
+
+ def flub(a: Employee, b: Employee) -> Manager:
+ return Manager()
+
+ def flob(a: Manager, b: Manager) -> Employee:
+ return Employee()
+
+ self.assertIsInstance(flub, c)
+ self.assertNotIsInstance(flob, c)
+
+ def test_with_default_args(self):
+ c = Callable[[int], int]
+
+ def flub(a: int, b: float = 3.14) -> int:
+ return a
+
+ def flab(a: int, *, b: float = 3.14) -> int:
+ return a
+
+ def flob(a: int = 42) -> int:
+ return a
+
+ self.assertIsInstance(flub, c)
+ self.assertIsInstance(flab, c)
+ self.assertIsInstance(flob, c)
+
+ def test_with_varargs(self):
+ c = Callable[[int], int]
+
+ def flub(*args) -> int:
+ return 42
+
+ def flab(*args: int) -> int:
+ return 42
+
+ def flob(*args: float) -> int:
+ return 42
+
+ self.assertIsInstance(flub, c)
+ self.assertIsInstance(flab, c)
+ self.assertNotIsInstance(flob, c)
+
+ def test_with_method(self):
+
+ class C:
+
+ def imethod(self, arg: int) -> int:
+ self.last_arg = arg
+ return arg + 1
+
+ @classmethod
+ def cmethod(cls, arg: int) -> int:
+ cls.last_cls_arg = arg
+ return arg + 1
+
+ @staticmethod
+ def smethod(arg: int) -> int:
+ return arg + 1
+
+ ct = Callable[[int], int]
+ self.assertIsInstance(C().imethod, ct)
+ self.assertIsInstance(C().cmethod, ct)
+ self.assertIsInstance(C.cmethod, ct)
+ self.assertIsInstance(C().smethod, ct)
+ self.assertIsInstance(C.smethod, ct)
+ self.assertIsInstance(C.imethod, Callable[[Any, int], int])
+
+ def test_cannot_subclass(self):
+ with self.assertRaises(TypeError):
+
+ class C(Callable):
+ pass
+
+ with self.assertRaises(TypeError):
+
+ class C(Callable[[int], int]):
+ pass
+
+ def test_cannot_instantiate(self):
+ with self.assertRaises(TypeError):
+ Callable()
+ c = Callable[[int], str]
+ with self.assertRaises(TypeError):
+ c()
+
+ def test_varargs(self):
+ ct = Callable[..., int]
+
+ def foo(a, b) -> int:
+ return 42
+
+ def bar(a=42) -> int:
+ return a
+
+ def baz(*, x, y, z) -> int:
+ return 100
+
+ self.assertIsInstance(foo, ct)
+ self.assertIsInstance(bar, ct)
+ self.assertIsInstance(baz, ct)
+
+ def test_repr(self):
+ ct0 = Callable[[], bool]
+ self.assertEqual(repr(ct0), 'typing.Callable[[], bool]')
+ ct2 = Callable[[str, float], int]
+ self.assertEqual(repr(ct2), 'typing.Callable[[str, float], int]')
+ ctv = Callable[..., str]
+ self.assertEqual(repr(ctv), 'typing.Callable[..., str]')
+
+
+XK = TypeVar('XK', str, bytes)
+XV = TypeVar('XV')
+
+
+class SimpleMapping(Generic[XK, XV]):
+
+ def __getitem__(self, key: XK) -> XV:
+ ...
+
+ def __setitem__(self, key: XK, value: XV):
+ ...
+
+ def get(self, key: XK, default: XV = None) -> XV:
+ ...
+
+
+class MySimpleMapping(SimpleMapping):
+
+ def __init__(self):
+ self.store = {}
+
+ def __getitem__(self, key: str):
+ return self.store[key]
+
+ def __setitem__(self, key: str, value):
+ self.store[key] = value
+
+ def get(self, key: str, default=None):
+ try:
+ return self.store[key]
+ except KeyError:
+ return default
+
+
+class ProtocolTests(TestCase):
+
+ def test_supports_int(self):
+ assert issubclass(int, typing.SupportsInt)
+ assert not issubclass(str, typing.SupportsInt)
+
+ def test_supports_float(self):
+ assert issubclass(float, typing.SupportsFloat)
+ assert not issubclass(str, typing.SupportsFloat)
+
+ def test_supports_complex(self):
+
+ # Note: complex itself doesn't have __complex__.
+ class C:
+ def __complex__(self):
+ return 0j
+
+ assert issubclass(C, typing.SupportsComplex)
+ assert not issubclass(str, typing.SupportsComplex)
+
+ def test_supports_bytes(self):
+
+ # Note: bytes itself doesn't have __bytes__.
+ class B:
+ def __bytes__(self):
+ return b''
+
+ assert issubclass(B, typing.SupportsBytes)
+ assert not issubclass(str, typing.SupportsBytes)
+
+ def test_supports_abs(self):
+ assert issubclass(float, typing.SupportsAbs)
+ assert issubclass(int, typing.SupportsAbs)
+ assert not issubclass(str, typing.SupportsAbs)
+
+ def test_supports_round(self):
+ assert issubclass(float, typing.SupportsRound)
+ assert issubclass(int, typing.SupportsRound)
+ assert not issubclass(str, typing.SupportsRound)
+
+ def test_reversible(self):
+ assert issubclass(list, typing.Reversible)
+ assert not issubclass(int, typing.Reversible)
+
+
+class GenericTests(TestCase):
+
+ def test_basics(self):
+ X = SimpleMapping[str, Any]
+ Y = SimpleMapping[XK, str]
+ X[str, str]
+ Y[str, str]
+ with self.assertRaises(TypeError):
+ X[int, str]
+ with self.assertRaises(TypeError):
+ Y[str, bytes]
+
+ def test_repr(self):
+ self.assertEqual(repr(SimpleMapping),
+ __name__ + '.' + 'SimpleMapping[~XK, ~XV]')
+ self.assertEqual(repr(MySimpleMapping),
+ __name__ + '.' + 'MySimpleMapping[~XK, ~XV]')
+
+ def test_errors(self):
+ with self.assertRaises(TypeError):
+ B = SimpleMapping[XK, Any]
+
+ class C(Generic[B]):
+ pass
+
+ def test_repr_2(self):
+ PY32 = sys.version_info[:2] < (3, 3)
+
+ class C(Generic[T]):
+ pass
+
+ assert C.__module__ == __name__
+ if not PY32:
+ assert C.__qualname__ == 'GenericTests.test_repr_2.<locals>.C'
+ assert repr(C).split('.')[-1] == 'C[~T]'
+ X = C[int]
+ assert X.__module__ == __name__
+ if not PY32:
+ assert X.__qualname__ == 'C'
+ assert repr(X).split('.')[-1] == 'C[int]'
+
+ class Y(C[int]):
+ pass
+
+ assert Y.__module__ == __name__
+ if not PY32:
+ assert Y.__qualname__ == 'GenericTests.test_repr_2.<locals>.Y'
+ assert repr(Y).split('.')[-1] == 'Y[int]'
+
+ def test_eq_1(self):
+ assert Generic == Generic
+ assert Generic[T] == Generic[T]
+ assert Generic[KT] != Generic[VT]
+
+ def test_eq_2(self):
+
+ class A(Generic[T]):
+ pass
+
+ class B(Generic[T]):
+ pass
+
+ assert A == A
+ assert A != B
+ assert A[T] == A[T]
+ assert A[T] != B[T]
+
+ def test_multiple_inheritance(self):
+
+ class A(Generic[T, VT]):
+ pass
+
+ class B(Generic[KT, T]):
+ pass
+
+ class C(A, Generic[KT, VT], B):
+ pass
+
+ assert C.__parameters__ == (T, VT, KT)
+
+ def test_nested(self):
+
+ class G(Generic):
+ pass
+
+ class Visitor(G[T]):
+
+ a = None
+
+ def set(self, a: T):
+ self.a = a
+
+ def get(self):
+ return self.a
+
+ def visit(self) -> T:
+ return self.a
+
+ V = Visitor[typing.List[int]]
+
+ class IntListVisitor(V):
+
+ def append(self, x: int):
+ self.a.append(x)
+
+ a = IntListVisitor()
+ a.set([])
+ a.append(1)
+ a.append(42)
+ assert a.get() == [1, 42]
+
+ def test_type_erasure(self):
+ T = TypeVar('T')
+
+ class Node(Generic[T]):
+ def __init__(self, label: T, left: 'Node[T]' = None, right: 'Node[T]' = None):
+ self.label = label # type: T
+ self.left = left # type: Optional[Node[T]]
+ self.right = right # type: Optional[Node[T]]
+
+ def foo(x: T):
+ a = Node(x)
+ b = Node[T](x)
+ c = Node[Any](x)
+ assert type(a) is Node
+ assert type(b) is Node
+ assert type(c) is Node
+
+ foo(42)
+
+
+class VarianceTests(TestCase):
+
+ def test_invariance(self):
+ # Because of invariance, List[subclass of X] is not a subclass
+ # of List[X], and ditto for MutableSequence.
+ assert not issubclass(typing.List[Manager], typing.List[Employee])
+ assert not issubclass(typing.MutableSequence[Manager],
+ typing.MutableSequence[Employee])
+ # It's still reflexive.
+ assert issubclass(typing.List[Employee], typing.List[Employee])
+ assert issubclass(typing.MutableSequence[Employee],
+ typing.MutableSequence[Employee])
+
+ def test_covariance_tuple(self):
+ # Check covariace for Tuple (which are really special cases).
+ assert issubclass(Tuple[Manager], Tuple[Employee])
+ assert not issubclass(Tuple[Employee], Tuple[Manager])
+ # And pairwise.
+ assert issubclass(Tuple[Manager, Manager], Tuple[Employee, Employee])
+ assert not issubclass(Tuple[Employee, Employee],
+ Tuple[Manager, Employee])
+ # And using ellipsis.
+ assert issubclass(Tuple[Manager, ...], Tuple[Employee, ...])
+ assert not issubclass(Tuple[Employee, ...], Tuple[Manager, ...])
+
+ def test_covariance_sequence(self):
+ # Check covariance for Sequence (which is just a generic class
+ # for this purpose, but using a covariant type variable).
+ assert issubclass(typing.Sequence[Manager], typing.Sequence[Employee])
+ assert not issubclass(typing.Sequence[Employee],
+ typing.Sequence[Manager])
+
+ def test_covariance_mapping(self):
+ # Ditto for Mapping (a generic class with two parameters).
+ assert issubclass(typing.Mapping[Employee, Manager],
+ typing.Mapping[Employee, Employee])
+ assert issubclass(typing.Mapping[Manager, Employee],
+ typing.Mapping[Employee, Employee])
+ assert not issubclass(typing.Mapping[Employee, Manager],
+ typing.Mapping[Manager, Manager])
+ assert not issubclass(typing.Mapping[Manager, Employee],
+ typing.Mapping[Manager, Manager])
+
+
+class CastTests(TestCase):
+
+ def test_basics(self):
+ assert cast(int, 42) == 42
+ assert cast(float, 42) == 42
+ assert type(cast(float, 42)) is int
+ assert cast(Any, 42) == 42
+ assert cast(list, 42) == 42
+ assert cast(Union[str, float], 42) == 42
+ assert cast(AnyStr, 42) == 42
+ assert cast(None, 42) == 42
+
+ def test_errors(self):
+ # Bogus calls are not expected to fail.
+ cast(42, 42)
+ cast('hello', 42)
+
+
+class ForwardRefTests(TestCase):
+
+ def test_basics(self):
+
+ class Node(Generic[T]):
+
+ def __init__(self, label: T):
+ self.label = label
+ self.left = self.right = None
+
+ def add_both(self,
+ left: 'Optional[Node[T]]',
+ right: 'Node[T]' = None,
+ stuff: int = None,
+ blah=None):
+ self.left = left
+ self.right = right
+
+ def add_left(self, node: Optional['Node[T]']):
+ self.add_both(node, None)
+
+ def add_right(self, node: 'Node[T]' = None):
+ self.add_both(None, node)
+
+ t = Node[int]
+ both_hints = get_type_hints(t.add_both, globals(), locals())
+ assert both_hints['left'] == both_hints['right'] == Optional[Node[T]]
+ assert both_hints['stuff'] == Optional[int]
+ assert 'blah' not in both_hints
+
+ left_hints = get_type_hints(t.add_left, globals(), locals())
+ assert left_hints['node'] == Optional[Node[T]]
+
+ right_hints = get_type_hints(t.add_right, globals(), locals())
+ assert right_hints['node'] == Optional[Node[T]]
+
+ def test_union_forward(self):
+
+ def foo(a: Union['T']):
+ pass
+
+ self.assertEqual(get_type_hints(foo, globals(), locals()),
+ {'a': Union[T]})
+
+ def test_tuple_forward(self):
+
+ def foo(a: Tuple['T']):
+ pass
+
+ self.assertEqual(get_type_hints(foo, globals(), locals()),
+ {'a': Tuple[T]})
+
+ def test_callable_forward(self):
+
+ def foo(a: Callable[['T'], 'T']):
+ pass
+
+ self.assertEqual(get_type_hints(foo, globals(), locals()),
+ {'a': Callable[[T], T]})
+
+ def test_syntax_error(self):
+
+ with self.assertRaises(SyntaxError):
+ Generic['/T']
+
+ def test_delayed_syntax_error(self):
+
+ def foo(a: 'Node[T'):
+ pass
+
+ with self.assertRaises(SyntaxError):
+ get_type_hints(foo)
+
+ def test_type_error(self):
+
+ def foo(a: Tuple['42']):
+ pass
+
+ with self.assertRaises(TypeError):
+ get_type_hints(foo)
+
+ def test_name_error(self):
+
+ def foo(a: 'Noode[T]'):
+ pass
+
+ with self.assertRaises(NameError):
+ get_type_hints(foo, locals())
+
+ def test_no_type_check(self):
+
+ @no_type_check
+ def foo(a: 'whatevers') -> {}:
+ pass
+
+ th = get_type_hints(foo)
+ self.assertEqual(th, {})
+
+ def test_no_type_check_class(self):
+
+ @no_type_check
+ class C:
+ def foo(a: 'whatevers') -> {}:
+ pass
+
+ cth = get_type_hints(C.foo)
+ self.assertEqual(cth, {})
+ ith = get_type_hints(C().foo)
+ self.assertEqual(ith, {})
+
+ def test_meta_no_type_check(self):
+
+ @no_type_check_decorator
+ def magic_decorator(deco):
+ return deco
+
+ self.assertEqual(magic_decorator.__name__, 'magic_decorator')
+
+ @magic_decorator
+ def foo(a: 'whatevers') -> {}:
+ pass
+
+ @magic_decorator
+ class C:
+ def foo(a: 'whatevers') -> {}:
+ pass
+
+ self.assertEqual(foo.__name__, 'foo')
+ th = get_type_hints(foo)
+ self.assertEqual(th, {})
+ cth = get_type_hints(C.foo)
+ self.assertEqual(cth, {})
+ ith = get_type_hints(C().foo)
+ self.assertEqual(ith, {})
+
+ def test_default_globals(self):
+ code = ("class C:\n"
+ " def foo(self, a: 'C') -> 'D': pass\n"
+ "class D:\n"
+ " def bar(self, b: 'D') -> C: pass\n"
+ )
+ ns = {}
+ exec(code, ns)
+ hints = get_type_hints(ns['C'].foo)
+ assert hints == {'a': ns['C'], 'return': ns['D']}
+
+
+class OverloadTests(TestCase):
+
+ def test_overload_exists(self):
+ from typing import overload
+
+ def test_overload_fails(self):
+ from typing import overload
+
+ with self.assertRaises(RuntimeError):
+ @overload
+ def blah():
+ pass
+
+
+class CollectionsAbcTests(TestCase):
+
+ def test_hashable(self):
+ assert isinstance(42, typing.Hashable)
+ assert not isinstance([], typing.Hashable)
+
+ def test_iterable(self):
+ assert isinstance([], typing.Iterable)
+ assert isinstance([], typing.Iterable[int])
+ assert not isinstance(42, typing.Iterable)
+
+ def test_iterator(self):
+ it = iter([])
+ assert isinstance(it, typing.Iterator)
+ assert isinstance(it, typing.Iterator[int])
+ assert not isinstance(42, typing.Iterator)
+
+ def test_sized(self):
+ assert isinstance([], typing.Sized)
+ assert not isinstance(42, typing.Sized)
+
+ def test_container(self):
+ assert isinstance([], typing.Container)
+ assert not isinstance(42, typing.Container)
+
+ def test_abstractset(self):
+ assert isinstance(set(), typing.AbstractSet)
+ assert not isinstance(42, typing.AbstractSet)
+
+ def test_mutableset(self):
+ assert isinstance(set(), typing.MutableSet)
+ assert not isinstance(frozenset(), typing.MutableSet)
+
+ def test_mapping(self):
+ assert isinstance({}, typing.Mapping)
+ assert not isinstance(42, typing.Mapping)
+
+ def test_mutablemapping(self):
+ assert isinstance({}, typing.MutableMapping)
+ assert not isinstance(42, typing.MutableMapping)
+
+ def test_sequence(self):
+ assert isinstance([], typing.Sequence)
+ assert not isinstance(42, typing.Sequence)
+
+ def test_mutablesequence(self):
+ assert isinstance([], typing.MutableSequence)
+ assert not isinstance((), typing.MutableSequence)
+
+ def test_bytestring(self):
+ assert isinstance(b'', typing.ByteString)
+ assert isinstance(bytearray(b''), typing.ByteString)
+
+ def test_list(self):
+ assert issubclass(list, typing.List)
+ assert isinstance([], typing.List)
+ assert not isinstance((), typing.List)
+ t = typing.List[int]
+ assert isinstance([], t)
+ assert isinstance([42], t)
+ assert not isinstance([''], t)
+
+ def test_set(self):
+ assert issubclass(set, typing.Set)
+ assert not issubclass(frozenset, typing.Set)
+ assert isinstance(set(), typing.Set)
+ assert not isinstance({}, typing.Set)
+ t = typing.Set[int]
+ assert isinstance(set(), t)
+ assert isinstance({42}, t)
+ assert not isinstance({''}, t)
+
+ def test_frozenset(self):
+ assert issubclass(frozenset, typing.FrozenSet)
+ assert not issubclass(set, typing.FrozenSet)
+ assert isinstance(frozenset(), typing.FrozenSet)
+ assert not isinstance({}, typing.FrozenSet)
+ t = typing.FrozenSet[int]
+ assert isinstance(frozenset(), t)
+ assert isinstance(frozenset({42}), t)
+ assert not isinstance(frozenset({''}), t)
+ assert not isinstance({42}, t)
+
+ def test_mapping_views(self):
+ # TODO: These tests are kind of lame.
+ assert isinstance({}.keys(), typing.KeysView)
+ assert isinstance({}.items(), typing.ItemsView)
+ assert isinstance({}.values(), typing.ValuesView)
+
+ def test_dict(self):
+ assert issubclass(dict, typing.Dict)
+ assert isinstance({}, typing.Dict)
+ assert not isinstance([], typing.Dict)
+ t = typing.Dict[int, str]
+ assert isinstance({}, t)
+ assert isinstance({42: ''}, t)
+ assert not isinstance({42: 42}, t)
+ assert not isinstance({'': 42}, t)
+ assert not isinstance({'': ''}, t)
+
+ def test_no_list_instantiation(self):
+ with self.assertRaises(TypeError):
+ typing.List()
+ with self.assertRaises(TypeError):
+ typing.List[T]()
+ with self.assertRaises(TypeError):
+ typing.List[int]()
+
+ def test_list_subclass_instantiation(self):
+
+ class MyList(typing.List[int]):
+ pass
+
+ a = MyList()
+ assert isinstance(a, MyList)
+
+ def test_no_dict_instantiation(self):
+ with self.assertRaises(TypeError):
+ typing.Dict()
+ with self.assertRaises(TypeError):
+ typing.Dict[KT, VT]()
+ with self.assertRaises(TypeError):
+ typing.Dict[str, int]()
+
+ def test_dict_subclass_instantiation(self):
+
+ class MyDict(typing.Dict[str, int]):
+ pass
+
+ d = MyDict()
+ assert isinstance(d, MyDict)
+
+ def test_no_set_instantiation(self):
+ with self.assertRaises(TypeError):
+ typing.Set()
+ with self.assertRaises(TypeError):
+ typing.Set[T]()
+ with self.assertRaises(TypeError):
+ typing.Set[int]()
+
+ def test_set_subclass_instantiation(self):
+
+ class MySet(typing.Set[int]):
+ pass
+
+ d = MySet()
+ assert isinstance(d, MySet)
+
+ def test_no_frozenset_instantiation(self):
+ with self.assertRaises(TypeError):
+ typing.FrozenSet()
+ with self.assertRaises(TypeError):
+ typing.FrozenSet[T]()
+ with self.assertRaises(TypeError):
+ typing.FrozenSet[int]()
+
+ def test_frozenset_subclass_instantiation(self):
+
+ class MyFrozenSet(typing.FrozenSet[int]):
+ pass
+
+ d = MyFrozenSet()
+ assert isinstance(d, MyFrozenSet)
+
+ def test_no_tuple_instantiation(self):
+ with self.assertRaises(TypeError):
+ Tuple()
+ with self.assertRaises(TypeError):
+ Tuple[T]()
+ with self.assertRaises(TypeError):
+ Tuple[int]()
+
+ def test_generator(self):
+ def foo():
+ yield 42
+ g = foo()
+ assert issubclass(type(g), typing.Generator)
+ assert isinstance(g, typing.Generator)
+ assert not isinstance(foo, typing.Generator)
+ assert issubclass(typing.Generator[Manager, Employee, Manager],
+ typing.Generator[Employee, Manager, Employee])
+ assert not issubclass(typing.Generator[Manager, Manager, Manager],
+ typing.Generator[Employee, Employee, Employee])
+
+ def test_no_generator_instantiation(self):
+ with self.assertRaises(TypeError):
+ typing.Generator()
+ with self.assertRaises(TypeError):
+ typing.Generator[T, T, T]()
+ with self.assertRaises(TypeError):
+ typing.Generator[int, int, int]()
+
+ def test_subclassing(self):
+
+ class MMA(typing.MutableMapping):
+ pass
+
+ with self.assertRaises(TypeError): # It's abstract
+ MMA()
+
+ class MMC(MMA):
+ def __len__(self):
+ return 0
+
+ assert len(MMC()) == 0
+
+ class MMB(typing.MutableMapping[KT, VT]):
+ def __len__(self):
+ return 0
+
+ assert len(MMB()) == 0
+ assert len(MMB[str, str]()) == 0
+ assert len(MMB[KT, VT]()) == 0
+
+ def test_recursive_dict(self):
+ D = typing.Dict[int, 'D'] # Uses a _ForwardRef
+ assert isinstance({}, D) # Easy
+ assert isinstance({0: {}}, D) # Touches _ForwardRef
+ assert isinstance({0: {0: {}}}, D) # Etc...
+
+
+class NamedTupleTests(TestCase):
+
+ def test_basics(self):
+ Emp = NamedTuple('Emp', [('name', str), ('id', int)])
+ assert issubclass(Emp, tuple)
+ joe = Emp('Joe', 42)
+ jim = Emp(name='Jim', id=1)
+ assert isinstance(joe, Emp)
+ assert isinstance(joe, tuple)
+ assert joe.name == 'Joe'
+ assert joe.id == 42
+ assert jim.name == 'Jim'
+ assert jim.id == 1
+ assert Emp.__name__ == 'Emp'
+ assert Emp._fields == ('name', 'id')
+ assert Emp._field_types == dict(name=str, id=int)
+
+
+class IOTests(TestCase):
+
+ def test_io(self):
+
+ def stuff(a: IO) -> AnyStr:
+ return a.readline()
+
+ a = stuff.__annotations__['a']
+ assert a.__parameters__ == (AnyStr,)
+
+ def test_textio(self):
+
+ def stuff(a: TextIO) -> str:
+ return a.readline()
+
+ a = stuff.__annotations__['a']
+ assert a.__parameters__ == (str,)
+
+ def test_binaryio(self):
+
+ def stuff(a: BinaryIO) -> bytes:
+ return a.readline()
+
+ a = stuff.__annotations__['a']
+ assert a.__parameters__ == (bytes,)
+
+ def test_io_submodule(self):
+ from typing.io import IO, TextIO, BinaryIO, __all__, __name__
+ assert IO is typing.IO
+ assert TextIO is typing.TextIO
+ assert BinaryIO is typing.BinaryIO
+ assert set(__all__) == set(['IO', 'TextIO', 'BinaryIO'])
+ assert __name__ == 'typing.io'
+
+
+class RETests(TestCase):
+ # Much of this is really testing _TypeAlias.
+
+ def test_basics(self):
+ pat = re.compile('[a-z]+', re.I)
+ assert issubclass(pat.__class__, Pattern)
+ assert isinstance(pat, Pattern[str])
+ assert not isinstance(pat, Pattern[bytes])
+ assert issubclass(type(pat), Pattern)
+ assert issubclass(type(pat), Pattern[str])
+
+ mat = pat.search('12345abcde.....')
+ assert issubclass(mat.__class__, Match)
+ assert issubclass(mat.__class__, Match[str])
+ assert issubclass(mat.__class__, Match[bytes]) # Sad but true.
+ assert issubclass(type(mat), Match)
+ assert issubclass(type(mat), Match[str])
+
+ p = Pattern[Union[str, bytes]]
+ assert isinstance(pat, p)
+ assert issubclass(Pattern[str], Pattern)
+ assert issubclass(Pattern[str], p)
+
+ m = Match[Union[bytes, str]]
+ assert isinstance(mat, m)
+ assert issubclass(Match[bytes], Match)
+ assert issubclass(Match[bytes], m)
+
+ def test_errors(self):
+ with self.assertRaises(TypeError):
+ # Doesn't fit AnyStr.
+ Pattern[int]
+ with self.assertRaises(TypeError):
+ # Can't change type vars?
+ Match[T]
+ m = Match[Union[str, bytes]]
+ with self.assertRaises(TypeError):
+ # Too complicated?
+ m[str]
+
+ def test_repr(self):
+ assert repr(Pattern) == 'Pattern[~AnyStr]'
+ assert repr(Pattern[str]) == 'Pattern[str]'
+ assert repr(Pattern[bytes]) == 'Pattern[bytes]'
+ assert repr(Match) == 'Match[~AnyStr]'
+ assert repr(Match[str]) == 'Match[str]'
+ assert repr(Match[bytes]) == 'Match[bytes]'
+
+ def test_re_submodule(self):
+ from typing.re import Match, Pattern, __all__, __name__
+ assert Match is typing.Match
+ assert Pattern is typing.Pattern
+ assert set(__all__) == set(['Match', 'Pattern'])
+ assert __name__ == 'typing.re'
+
+ def test_cannot_subclass(self):
+ with self.assertRaises(TypeError) as ex:
+
+ class A(typing.Match):
+ pass
+
+ assert str(ex.exception) == "A type alias cannot be subclassed"
+
+
+class AllTests(TestCase):
+ """Tests for __all__."""
+
+ def test_all(self):
+ from typing import __all__ as a
+ # Just spot-check the first and last of every category.
+ assert 'AbstractSet' in a
+ assert 'ValuesView' in a
+ assert 'cast' in a
+ assert 'overload' in a
+ assert 'io' in a
+ assert 're' in a
+ # Spot-check that stdlib modules aren't exported.
+ assert 'os' not in a
+ assert 'sys' not in a
+
+
+if __name__ == '__main__':
+ main()
diff --git a/Lib/typing.py b/Lib/typing.py
new file mode 100644
index 0000000..38e07ad
--- /dev/null
+++ b/Lib/typing.py
@@ -0,0 +1,1714 @@
+# TODO:
+# - Generic[T, T] is invalid
+# - Look for TODO below
+
+# TODO nits:
+# Get rid of asserts that are the caller's fault.
+# Docstrings (e.g. ABCs).
+
+import abc
+from abc import abstractmethod, abstractproperty
+import collections
+import functools
+import re as stdlib_re # Avoid confusion with the re we export.
+import sys
+import types
+try:
+ import collections.abc as collections_abc
+except ImportError:
+ import collections as collections_abc # Fallback for PY3.2.
+
+
+# Please keep __all__ alphabetized within each category.
+__all__ = [
+ # Super-special typing primitives.
+ 'Any',
+ 'Callable',
+ 'Generic',
+ 'Optional',
+ 'TypeVar',
+ 'Union',
+ 'Tuple',
+
+ # ABCs (from collections.abc).
+ 'AbstractSet', # collections.abc.Set.
+ 'ByteString',
+ 'Container',
+ 'Hashable',
+ 'ItemsView',
+ 'Iterable',
+ 'Iterator',
+ 'KeysView',
+ 'Mapping',
+ 'MappingView',
+ 'MutableMapping',
+ 'MutableSequence',
+ 'MutableSet',
+ 'Sequence',
+ 'Sized',
+ 'ValuesView',
+
+ # Structural checks, a.k.a. protocols.
+ 'Reversible',
+ 'SupportsAbs',
+ 'SupportsFloat',
+ 'SupportsInt',
+ 'SupportsRound',
+
+ # Concrete collection types.
+ 'Dict',
+ 'List',
+ 'Set',
+ 'NamedTuple', # Not really a type.
+ 'Generator',
+
+ # One-off things.
+ 'AnyStr',
+ 'cast',
+ 'get_type_hints',
+ 'no_type_check',
+ 'no_type_check_decorator',
+ 'overload',
+
+ # Submodules.
+ 'io',
+ 're',
+]
+
+
+def _qualname(x):
+ if sys.version_info[:2] >= (3, 3):
+ return x.__qualname__
+ else:
+ # Fall back to just name.
+ return x.__name__
+
+
+class TypingMeta(type):
+ """Metaclass for every type defined below.
+
+ This overrides __new__() to require an extra keyword parameter
+ '_root', which serves as a guard against naive subclassing of the
+ typing classes. Any legitimate class defined using a metaclass
+ derived from TypingMeta (including internal subclasses created by
+ e.g. Union[X, Y]) must pass _root=True.
+
+ This also defines a dummy constructor (all the work is done in
+ __new__) and a nicer repr().
+ """
+
+ _is_protocol = False
+
+ def __new__(cls, name, bases, namespace, *, _root=False):
+ if not _root:
+ raise TypeError("Cannot subclass %s" %
+ (', '.join(map(_type_repr, bases)) or '()'))
+ return super().__new__(cls, name, bases, namespace)
+
+ def __init__(self, *args, **kwds):
+ pass
+
+ def _eval_type(self, globalns, localns):
+ """Override this in subclasses to interpret forward references.
+
+ For example, Union['C'] is internally stored as
+ Union[_ForwardRef('C')], which should evaluate to _Union[C],
+ where C is an object found in globalns or localns (searching
+ localns first, of course).
+ """
+ return self
+
+ def _has_type_var(self):
+ return False
+
+ def __repr__(self):
+ return '%s.%s' % (self.__module__, _qualname(self))
+
+
+class Final:
+ """Mix-in class to prevent instantiation."""
+
+ def __new__(self, *args, **kwds):
+ raise TypeError("Cannot instantiate %r" % self.__class__)
+
+
+class _ForwardRef(TypingMeta):
+ """Wrapper to hold a forward reference."""
+
+ def __new__(cls, arg):
+ if not isinstance(arg, str):
+ raise TypeError('ForwardRef must be a string -- got %r' % (arg,))
+ try:
+ code = compile(arg, '<string>', 'eval')
+ except SyntaxError:
+ raise SyntaxError('ForwardRef must be an expression -- got %r' %
+ (arg,))
+ self = super().__new__(cls, arg, (), {}, _root=True)
+ self.__forward_arg__ = arg
+ self.__forward_code__ = code
+ self.__forward_evaluated__ = False
+ self.__forward_value__ = None
+ typing_globals = globals()
+ frame = sys._getframe(1)
+ while frame is not None and frame.f_globals is typing_globals:
+ frame = frame.f_back
+ assert frame is not None
+ self.__forward_frame__ = frame
+ return self
+
+ def _eval_type(self, globalns, localns):
+ if not isinstance(localns, dict):
+ raise TypeError('ForwardRef localns must be a dict -- got %r' %
+ (localns,))
+ if not isinstance(globalns, dict):
+ raise TypeError('ForwardRef globalns must be a dict -- got %r' %
+ (globalns,))
+ if not self.__forward_evaluated__:
+ if globalns is None and localns is None:
+ globalns = localns = {}
+ elif globalns is None:
+ globalns = localns
+ elif localns is None:
+ localns = globalns
+ self.__forward_value__ = _type_check(
+ eval(self.__forward_code__, globalns, localns),
+ "Forward references must evaluate to types.")
+ self.__forward_evaluated__ = True
+ return self.__forward_value__
+
+ def __subclasscheck__(self, cls):
+ if not self.__forward_evaluated__:
+ globalns = self.__forward_frame__.f_globals
+ localns = self.__forward_frame__.f_locals
+ try:
+ self._eval_type(globalns, localns)
+ except NameError:
+ return False # Too early.
+ return issubclass(cls, self.__forward_value__)
+
+ def __instancecheck__(self, obj):
+ if not self.__forward_evaluated__:
+ globalns = self.__forward_frame__.f_globals
+ localns = self.__forward_frame__.f_locals
+ try:
+ self._eval_type(globalns, localns)
+ except NameError:
+ return False # Too early.
+ return isinstance(obj, self.__forward_value__)
+
+ def __repr__(self):
+ return '_ForwardRef(%r)' % (self.__forward_arg__,)
+
+
+class _TypeAlias:
+ """Internal helper class for defining generic variants of concrete types.
+
+ Note that this is not a type; let's call it a pseudo-type. It can
+ be used in instance and subclass checks, e.g. isinstance(m, Match)
+ or issubclass(type(m), Match). However, it cannot be itself the
+ target of an issubclass() call; e.g. issubclass(Match, C) (for
+ some arbitrary class C) raises TypeError rather than returning
+ False.
+ """
+
+ def __new__(cls, *args, **kwds):
+ """Constructor.
+
+ This only exists to give a better error message in case
+ someone tries to subclass a type alias (not a good idea).
+ """
+ if (len(args) == 3 and
+ isinstance(args[0], str) and
+ isinstance(args[1], tuple)):
+ # Close enough.
+ raise TypeError("A type alias cannot be subclassed")
+ return object.__new__(cls)
+
+ def __init__(self, name, type_var, impl_type, type_checker):
+ """Initializer.
+
+ Args:
+ name: The name, e.g. 'Pattern'.
+ type_var: The type parameter, e.g. AnyStr, or the
+ specific type, e.g. str.
+ impl_type: The implementation type.
+ type_checker: Function that takes an impl_type instance.
+ and returns a value that should be a type_var instance.
+ """
+ assert isinstance(name, str), repr(name)
+ assert isinstance(type_var, type), repr(type_var)
+ assert isinstance(impl_type, type), repr(impl_type)
+ assert not isinstance(impl_type, TypingMeta), repr(impl_type)
+ self.name = name
+ self.type_var = type_var
+ self.impl_type = impl_type
+ self.type_checker = type_checker
+
+ def __repr__(self):
+ return "%s[%s]" % (self.name, _type_repr(self.type_var))
+
+ def __getitem__(self, parameter):
+ assert isinstance(parameter, type), repr(parameter)
+ if not isinstance(self.type_var, TypeVar):
+ raise TypeError("%s cannot be further parameterized." % self)
+ if self.type_var.__constraints__:
+ if not issubclass(parameter, Union[self.type_var.__constraints__]):
+ raise TypeError("%s is not a valid substitution for %s." %
+ (parameter, self.type_var))
+ return self.__class__(self.name, parameter,
+ self.impl_type, self.type_checker)
+
+ def __instancecheck__(self, obj):
+ return (isinstance(obj, self.impl_type) and
+ isinstance(self.type_checker(obj), self.type_var))
+
+ def __subclasscheck__(self, cls):
+ if cls is Any:
+ return True
+ if isinstance(cls, _TypeAlias):
+ # Covariance. For now, we compare by name.
+ return (cls.name == self.name and
+ issubclass(cls.type_var, self.type_var))
+ else:
+ # Note that this is too lenient, because the
+ # implementation type doesn't carry information about
+ # whether it is about bytes or str (for example).
+ return issubclass(cls, self.impl_type)
+
+
+def _has_type_var(t):
+ return t is not None and isinstance(t, TypingMeta) and t._has_type_var()
+
+
+def _eval_type(t, globalns, localns):
+ if isinstance(t, TypingMeta):
+ return t._eval_type(globalns, localns)
+ else:
+ return t
+
+
+def _type_check(arg, msg):
+ """Check that the argument is a type, and return it.
+
+ As a special case, accept None and return type(None) instead.
+ Also, _TypeAlias instances (e.g. Match, Pattern) are acceptable.
+
+ The msg argument is a human-readable error message, e.g.
+
+ "Union[arg, ...]: arg should be a type."
+
+ We append the repr() of the actual value (truncated to 100 chars).
+ """
+ if arg is None:
+ return type(None)
+ if isinstance(arg, str):
+ arg = _ForwardRef(arg)
+ if not isinstance(arg, (type, _TypeAlias)):
+ raise TypeError(msg + " Got %.100r." % (arg,))
+ return arg
+
+
+def _type_repr(obj):
+ """Return the repr() of an object, special-casing types.
+
+ If obj is a type, we return a shorter version than the default
+ type.__repr__, based on the module and qualified name, which is
+ typically enough to uniquely identify a type. For everything
+ else, we fall back on repr(obj).
+ """
+ if isinstance(obj, type) and not isinstance(obj, TypingMeta):
+ if obj.__module__ == 'builtins':
+ return _qualname(obj)
+ else:
+ return '%s.%s' % (obj.__module__, _qualname(obj))
+ else:
+ return repr(obj)
+
+
+class AnyMeta(TypingMeta):
+ """Metaclass for Any."""
+
+ def __new__(cls, name, bases, namespace, _root=False):
+ self = super().__new__(cls, name, bases, namespace, _root=_root)
+ return self
+
+ def __instancecheck__(self, instance):
+ return True
+
+ def __subclasscheck__(self, cls):
+ if not isinstance(cls, type):
+ return super().__subclasscheck__(cls) # To TypeError.
+ return True
+
+
+class Any(Final, metaclass=AnyMeta, _root=True):
+ """Special type indicating an unconstrained type.
+
+ - Any object is an instance of Any.
+ - Any class is a subclass of Any.
+ - As a special case, Any and object are subclasses of each other.
+ """
+
+
+class TypeVar(TypingMeta, metaclass=TypingMeta, _root=True):
+ """Type variable.
+
+ Usage::
+
+ T = TypeVar('T') # Can be anything
+ A = TypeVar('A', str, bytes) # Must be str or bytes
+
+ Type variables exist primarily for the benefit of static type
+ checkers. They serve as the parameters for generic types as well
+ as for generic function definitions. See class Generic for more
+ information on generic types. Generic functions work as follows:
+
+ def repeat(x: T, n: int) -> Sequence[T]:
+ '''Return a list containing n references to x.'''
+ return [x]*n
+
+ def longest(x: A, y: A) -> A:
+ '''Return the longest of two strings.'''
+ return x if len(x) >= len(y) else y
+
+ The latter example's signature is essentially the overloading
+ of (str, str) -> str and (bytes, bytes) -> bytes. Also note
+ that if the arguments are instances of some subclass of str,
+ the return type is still plain str.
+
+ At runtime, isinstance(x, T) will raise TypeError. However,
+ issubclass(C, T) is true for any class C, and issubclass(str, A)
+ and issubclass(bytes, A) are true, and issubclass(int, A) is
+ false.
+
+ Type variables may be marked covariant or contravariant by passing
+ covariant=True or contravariant=True. See PEP 484 for more
+ details. By default type variables are invariant.
+
+ Type variables can be introspected. e.g.:
+
+ T.__name__ == 'T'
+ T.__constraints__ == ()
+ T.__covariant__ == False
+ T.__contravariant__ = False
+ A.__constraints__ == (str, bytes)
+ """
+
+ def __new__(cls, name, *constraints, bound=None,
+ covariant=False, contravariant=False):
+ self = super().__new__(cls, name, (Final,), {}, _root=True)
+ if covariant and contravariant:
+ raise ValueError("Bivariant type variables are not supported.")
+ self.__covariant__ = bool(covariant)
+ self.__contravariant__ = bool(contravariant)
+ if constraints and bound is not None:
+ raise TypeError("Constraints cannot be combined with bound=...")
+ if constraints and len(constraints) == 1:
+ raise TypeError("A single constraint is not allowed")
+ msg = "TypeVar(name, constraint, ...): constraints must be types."
+ self.__constraints__ = tuple(_type_check(t, msg) for t in constraints)
+ if bound:
+ self.__bound__ = _type_check(bound, "Bound must be a type.")
+ else:
+ self.__bound__ = None
+ return self
+
+ def _has_type_var(self):
+ return True
+
+ def __repr__(self):
+ if self.__covariant__:
+ prefix = '+'
+ elif self.__contravariant__:
+ prefix = '-'
+ else:
+ prefix = '~'
+ return prefix + self.__name__
+
+ def __instancecheck__(self, instance):
+ raise TypeError("Type variables cannot be used with isinstance().")
+
+ def __subclasscheck__(self, cls):
+ # TODO: Make this raise TypeError too?
+ if cls is self:
+ return True
+ if cls is Any:
+ return True
+ if self.__bound__ is not None:
+ return issubclass(cls, self.__bound__)
+ if self.__constraints__:
+ return any(issubclass(cls, c) for c in self.__constraints__)
+ return True
+
+
+# Some unconstrained type variables. These are used by the container types.
+T = TypeVar('T') # Any type.
+KT = TypeVar('KT') # Key type.
+VT = TypeVar('VT') # Value type.
+T_co = TypeVar('T_co', covariant=True) # Any type covariant containers.
+V_co = TypeVar('V_co', covariant=True) # Any type covariant containers.
+KT_co = TypeVar('KT_co', covariant=True) # Key type covariant containers.
+VT_co = TypeVar('VT_co', covariant=True) # Value type covariant containers.
+T_contra = TypeVar('T_contra', contravariant=True) # Ditto contravariant.
+
+# A useful type variable with constraints. This represents string types.
+# TODO: What about bytearray, memoryview?
+AnyStr = TypeVar('AnyStr', bytes, str)
+
+
+class UnionMeta(TypingMeta):
+ """Metaclass for Union."""
+
+ def __new__(cls, name, bases, namespace, parameters=None, _root=False):
+ if parameters is None:
+ return super().__new__(cls, name, bases, namespace, _root=_root)
+ if not isinstance(parameters, tuple):
+ raise TypeError("Expected parameters=<tuple>")
+ # Flatten out Union[Union[...], ...] and type-check non-Union args.
+ params = []
+ msg = "Union[arg, ...]: each arg must be a type."
+ for p in parameters:
+ if isinstance(p, UnionMeta):
+ params.extend(p.__union_params__)
+ else:
+ params.append(_type_check(p, msg))
+ # Weed out strict duplicates, preserving the first of each occurrence.
+ all_params = set(params)
+ if len(all_params) < len(params):
+ new_params = []
+ for t in params:
+ if t in all_params:
+ new_params.append(t)
+ all_params.remove(t)
+ params = new_params
+ assert not all_params, all_params
+ # Weed out subclasses.
+ # E.g. Union[int, Employee, Manager] == Union[int, Employee].
+ # If Any or object is present it will be the sole survivor.
+ # If both Any and object are present, Any wins.
+ # Never discard type variables, except against Any.
+ # (In particular, Union[str, AnyStr] != AnyStr.)
+ all_params = set(params)
+ for t1 in params:
+ if t1 is Any:
+ return Any
+ if isinstance(t1, TypeVar):
+ continue
+ if any(issubclass(t1, t2)
+ for t2 in all_params - {t1} if not isinstance(t2, TypeVar)):
+ all_params.remove(t1)
+ # It's not a union if there's only one type left.
+ if len(all_params) == 1:
+ return all_params.pop()
+ # Create a new class with these params.
+ self = super().__new__(cls, name, bases, {}, _root=True)
+ self.__union_params__ = tuple(t for t in params if t in all_params)
+ self.__union_set_params__ = frozenset(self.__union_params__)
+ return self
+
+ def _eval_type(self, globalns, localns):
+ p = tuple(_eval_type(t, globalns, localns)
+ for t in self.__union_params__)
+ if p == self.__union_params__:
+ return self
+ else:
+ return self.__class__(self.__name__, self.__bases__, {},
+ p, _root=True)
+
+ def _has_type_var(self):
+ if self.__union_params__:
+ for t in self.__union_params__:
+ if _has_type_var(t):
+ return True
+ return False
+
+ def __repr__(self):
+ r = super().__repr__()
+ if self.__union_params__:
+ r += '[%s]' % (', '.join(_type_repr(t)
+ for t in self.__union_params__))
+ return r
+
+ def __getitem__(self, parameters):
+ if self.__union_params__ is not None:
+ raise TypeError(
+ "Cannot subscript an existing Union. Use Union[u, t] instead.")
+ if parameters == ():
+ raise TypeError("Cannot take a Union of no types.")
+ if not isinstance(parameters, tuple):
+ parameters = (parameters,)
+ return self.__class__(self.__name__, self.__bases__,
+ dict(self.__dict__), parameters, _root=True)
+
+ def __eq__(self, other):
+ if not isinstance(other, UnionMeta):
+ return NotImplemented
+ return self.__union_set_params__ == other.__union_set_params__
+
+ def __hash__(self):
+ return hash(self.__union_set_params__)
+
+ def __instancecheck__(self, instance):
+ return (self.__union_set_params__ is not None and
+ any(isinstance(instance, t) for t in self.__union_params__))
+
+ def __subclasscheck__(self, cls):
+ if cls is Any:
+ return True
+ if self.__union_params__ is None:
+ return isinstance(cls, UnionMeta)
+ elif isinstance(cls, UnionMeta):
+ if cls.__union_params__ is None:
+ return False
+ return all(issubclass(c, self) for c in (cls.__union_params__))
+ elif isinstance(cls, TypeVar):
+ if cls in self.__union_params__:
+ return True
+ if cls.__constraints__:
+ return issubclass(Union[cls.__constraints__], self)
+ return False
+ else:
+ return any(issubclass(cls, t) for t in self.__union_params__)
+
+
+class Union(Final, metaclass=UnionMeta, _root=True):
+ """Union type; Union[X, Y] means either X or Y.
+
+ To define a union, use e.g. Union[int, str]. Details:
+
+ - The arguments must be types and there must be at least one.
+
+ - None as an argument is a special case and is replaced by
+ type(None).
+
+ - Unions of unions are flattened, e.g.::
+
+ Union[Union[int, str], float] == Union[int, str, float]
+
+ - Unions of a single argument vanish, e.g.::
+
+ Union[int] == int # The constructor actually returns int
+
+ - Redundant arguments are skipped, e.g.::
+
+ Union[int, str, int] == Union[int, str]
+
+ - When comparing unions, the argument order is ignored, e.g.::
+
+ Union[int, str] == Union[str, int]
+
+ - When two arguments have a subclass relationship, the least
+ derived argument is kept, e.g.::
+
+ class Employee: pass
+ class Manager(Employee): pass
+ Union[int, Employee, Manager] == Union[int, Employee]
+ Union[Manager, int, Employee] == Union[int, Employee]
+ Union[Employee, Manager] == Employee
+
+ - Corollary: if Any is present it is the sole survivor, e.g.::
+
+ Union[int, Any] == Any
+
+ - Similar for object::
+
+ Union[int, object] == object
+
+ - To cut a tie: Union[object, Any] == Union[Any, object] == Any.
+
+ - You cannot subclass or instantiate a union.
+
+ - You cannot write Union[X][Y] (what would it mean?).
+
+ - You can use Optional[X] as a shorthand for Union[X, None].
+ """
+
+ # Unsubscripted Union type has params set to None.
+ __union_params__ = None
+ __union_set_params__ = None
+
+
+class OptionalMeta(TypingMeta):
+ """Metaclass for Optional."""
+
+ def __new__(cls, name, bases, namespace, _root=False):
+ return super().__new__(cls, name, bases, namespace, _root=_root)
+
+ def __getitem__(self, arg):
+ arg = _type_check(arg, "Optional[t] requires a single type.")
+ return Union[arg, type(None)]
+
+
+class Optional(Final, metaclass=OptionalMeta, _root=True):
+ """Optional type.
+
+ Optional[X] is equivalent to Union[X, type(None)].
+ """
+
+
+class TupleMeta(TypingMeta):
+ """Metaclass for Tuple."""
+
+ def __new__(cls, name, bases, namespace, parameters=None,
+ use_ellipsis=False, _root=False):
+ self = super().__new__(cls, name, bases, namespace, _root=_root)
+ self.__tuple_params__ = parameters
+ self.__tuple_use_ellipsis__ = use_ellipsis
+ return self
+
+ def _has_type_var(self):
+ if self.__tuple_params__:
+ for t in self.__tuple_params__:
+ if _has_type_var(t):
+ return True
+ return False
+
+ def _eval_type(self, globalns, localns):
+ tp = self.__tuple_params__
+ if tp is None:
+ return self
+ p = tuple(_eval_type(t, globalns, localns) for t in tp)
+ if p == self.__tuple_params__:
+ return self
+ else:
+ return self.__class__(self.__name__, self.__bases__, {},
+ p, _root=True)
+
+ def __repr__(self):
+ r = super().__repr__()
+ if self.__tuple_params__ is not None:
+ params = [_type_repr(p) for p in self.__tuple_params__]
+ if self.__tuple_use_ellipsis__:
+ params.append('...')
+ r += '[%s]' % (
+ ', '.join(params))
+ return r
+
+ def __getitem__(self, parameters):
+ if self.__tuple_params__ is not None:
+ raise TypeError("Cannot re-parameterize %r" % (self,))
+ if not isinstance(parameters, tuple):
+ parameters = (parameters,)
+ if len(parameters) == 2 and parameters[1] == Ellipsis:
+ parameters = parameters[:1]
+ use_ellipsis = True
+ msg = "Tuple[t, ...]: t must be a type."
+ else:
+ use_ellipsis = False
+ msg = "Tuple[t0, t1, ...]: each t must be a type."
+ parameters = tuple(_type_check(p, msg) for p in parameters)
+ return self.__class__(self.__name__, self.__bases__,
+ dict(self.__dict__), parameters,
+ use_ellipsis=use_ellipsis, _root=True)
+
+ def __eq__(self, other):
+ if not isinstance(other, TupleMeta):
+ return NotImplemented
+ return self.__tuple_params__ == other.__tuple_params__
+
+ def __hash__(self):
+ return hash(self.__tuple_params__)
+
+ def __instancecheck__(self, t):
+ if not isinstance(t, tuple):
+ return False
+ if self.__tuple_params__ is None:
+ return True
+ if self.__tuple_use_ellipsis__:
+ p = self.__tuple_params__[0]
+ return all(isinstance(x, p) for x in t)
+ else:
+ return (len(t) == len(self.__tuple_params__) and
+ all(isinstance(x, p)
+ for x, p in zip(t, self.__tuple_params__)))
+
+ def __subclasscheck__(self, cls):
+ if cls is Any:
+ return True
+ if not isinstance(cls, type):
+ return super().__subclasscheck__(cls) # To TypeError.
+ if issubclass(cls, tuple):
+ return True # Special case.
+ if not isinstance(cls, TupleMeta):
+ return super().__subclasscheck__(cls) # False.
+ if self.__tuple_params__ is None:
+ return True
+ if cls.__tuple_params__ is None:
+ return False # ???
+ if cls.__tuple_use_ellipsis__ != self.__tuple_use_ellipsis__:
+ return False
+ # Covariance.
+ return (len(self.__tuple_params__) == len(cls.__tuple_params__) and
+ all(issubclass(x, p)
+ for x, p in zip(cls.__tuple_params__,
+ self.__tuple_params__)))
+
+
+class Tuple(Final, metaclass=TupleMeta, _root=True):
+ """Tuple type; Tuple[X, Y] is the cross-product type of X and Y.
+
+ Example: Tuple[T1, T2] is a tuple of two elements corresponding
+ to type variables T1 and T2. Tuple[int, float, str] is a tuple
+ of an int, a float and a string.
+
+ To specify a variable-length tuple of homogeneous type, use Sequence[T].
+ """
+
+
+class CallableMeta(TypingMeta):
+ """Metaclass for Callable."""
+
+ def __new__(cls, name, bases, namespace, _root=False,
+ args=None, result=None):
+ if args is None and result is None:
+ pass # Must be 'class Callable'.
+ else:
+ if args is not Ellipsis:
+ if not isinstance(args, list):
+ raise TypeError("Callable[args, result]: "
+ "args must be a list."
+ " Got %.100r." % (args,))
+ msg = "Callable[[arg, ...], result]: each arg must be a type."
+ args = tuple(_type_check(arg, msg) for arg in args)
+ msg = "Callable[args, result]: result must be a type."
+ result = _type_check(result, msg)
+ self = super().__new__(cls, name, bases, namespace, _root=_root)
+ self.__args__ = args
+ self.__result__ = result
+ return self
+
+ def _has_type_var(self):
+ if self.__args__:
+ for t in self.__args__:
+ if _has_type_var(t):
+ return True
+ return _has_type_var(self.__result__)
+
+ def _eval_type(self, globalns, localns):
+ if self.__args__ is None and self.__result__ is None:
+ return self
+ args = [_eval_type(t, globalns, localns) for t in self.__args__]
+ result = _eval_type(self.__result__, globalns, localns)
+ if args == self.__args__ and result == self.__result__:
+ return self
+ else:
+ return self.__class__(self.__name__, self.__bases__, {},
+ args=args, result=result, _root=True)
+
+ def __repr__(self):
+ r = super().__repr__()
+ if self.__args__ is not None or self.__result__ is not None:
+ if self.__args__ is Ellipsis:
+ args_r = '...'
+ else:
+ args_r = '[%s]' % ', '.join(_type_repr(t)
+ for t in self.__args__)
+ r += '[%s, %s]' % (args_r, _type_repr(self.__result__))
+ return r
+
+ def __getitem__(self, parameters):
+ if self.__args__ is not None or self.__result__ is not None:
+ raise TypeError("This Callable type is already parameterized.")
+ if not isinstance(parameters, tuple) or len(parameters) != 2:
+ raise TypeError(
+ "Callable must be used as Callable[[arg, ...], result].")
+ args, result = parameters
+ return self.__class__(self.__name__, self.__bases__,
+ dict(self.__dict__), _root=True,
+ args=args, result=result)
+
+ def __eq__(self, other):
+ if not isinstance(other, CallableMeta):
+ return NotImplemented
+ return (self.__args__ == other.__args__ and
+ self.__result__ == other.__result__)
+
+ def __hash__(self):
+ return hash(self.__args__) ^ hash(self.__result__)
+
+ def __instancecheck__(self, instance):
+ if not callable(instance):
+ return False
+ if self.__args__ is None and self.__result__ is None:
+ return True
+ assert self.__args__ is not None
+ assert self.__result__ is not None
+ my_args, my_result = self.__args__, self.__result__
+ import inspect # TODO: Avoid this import.
+ # Would it be better to use Signature objects?
+ try:
+ (args, varargs, varkw, defaults, kwonlyargs, kwonlydefaults,
+ annotations) = inspect.getfullargspec(instance)
+ except TypeError:
+ return False # We can't find the signature. Give up.
+ msg = ("When testing isinstance(<callable>, Callable[...], "
+ "<calleble>'s annotations must be types.")
+ if my_args is not Ellipsis:
+ if kwonlyargs and (not kwonlydefaults or
+ len(kwonlydefaults) < len(kwonlyargs)):
+ return False
+ if isinstance(instance, types.MethodType):
+ # For methods, getfullargspec() includes self/cls,
+ # but it's not part of the call signature, so drop it.
+ del args[0]
+ min_call_args = len(args)
+ if defaults:
+ min_call_args -= len(defaults)
+ if varargs:
+ max_call_args = 999999999
+ if len(args) < len(my_args):
+ args += [varargs] * (len(my_args) - len(args))
+ else:
+ max_call_args = len(args)
+ if not min_call_args <= len(my_args) <= max_call_args:
+ return False
+ for my_arg_type, name in zip(my_args, args):
+ if name in annotations:
+ annot_type = _type_check(annotations[name], msg)
+ else:
+ annot_type = Any
+ if not issubclass(my_arg_type, annot_type):
+ return False
+ # TODO: If mutable type, check invariance?
+ if 'return' in annotations:
+ annot_return_type = _type_check(annotations['return'], msg)
+ # Note contravariance here!
+ if not issubclass(annot_return_type, my_result):
+ return False
+ # Can't find anything wrong...
+ return True
+
+ def __subclasscheck__(self, cls):
+ if cls is Any:
+ return True
+ if not isinstance(cls, CallableMeta):
+ return super().__subclasscheck__(cls)
+ if self.__args__ is None and self.__result__ is None:
+ return True
+ # We're not doing covariance or contravariance -- this is *invariance*.
+ return self == cls
+
+
+class Callable(Final, metaclass=CallableMeta, _root=True):
+ """Callable type; Callable[[int], str] is a function of (int) -> str.
+
+ The subscription syntax must always be used with exactly two
+ values: the argument list and the return type. The argument list
+ must be a list of types; the return type must be a single type.
+
+ There is no syntax to indicate optional or keyword arguments,
+ such function types are rarely used as callback types.
+ """
+
+
+def _gorg(a):
+ """Return the farthest origin of a generic class."""
+ assert isinstance(a, GenericMeta)
+ while a.__origin__ is not None:
+ a = a.__origin__
+ return a
+
+
+def _geqv(a, b):
+ """Return whether two generic classes are equivalent.
+
+ The intention is to consider generic class X and any of its
+ parameterized forms (X[T], X[int], etc.) as equivalent.
+
+ However, X is not equivalent to a subclass of X.
+
+ The relation is reflexive, symmetric and transitive.
+ """
+ assert isinstance(a, GenericMeta) and isinstance(b, GenericMeta)
+ # Reduce each to its origin.
+ return _gorg(a) is _gorg(b)
+
+
+class GenericMeta(TypingMeta, abc.ABCMeta):
+ """Metaclass for generic types."""
+
+ # TODO: Constrain more how Generic is used; only a few
+ # standard patterns should be allowed.
+
+ # TODO: Use a more precise rule than matching __name__ to decide
+ # whether two classes are the same. Also, save the formal
+ # parameters. (These things are related! A solution lies in
+ # using origin.)
+
+ __extra__ = None
+
+ def __new__(cls, name, bases, namespace,
+ parameters=None, origin=None, extra=None):
+ if parameters is None:
+ # Extract parameters from direct base classes. Only
+ # direct bases are considered and only those that are
+ # themselves generic, and parameterized with type
+ # variables. Don't use bases like Any, Union, Tuple,
+ # Callable or type variables.
+ params = None
+ for base in bases:
+ if isinstance(base, TypingMeta):
+ if not isinstance(base, GenericMeta):
+ raise TypeError(
+ "You cannot inherit from magic class %s" %
+ repr(base))
+ if base.__parameters__ is None:
+ continue # The base is unparameterized.
+ for bp in base.__parameters__:
+ if _has_type_var(bp) and not isinstance(bp, TypeVar):
+ raise TypeError(
+ "Cannot inherit from a generic class "
+ "parameterized with "
+ "non-type-variable %s" % bp)
+ if params is None:
+ params = []
+ if bp not in params:
+ params.append(bp)
+ if params is not None:
+ parameters = tuple(params)
+ self = super().__new__(cls, name, bases, namespace, _root=True)
+ self.__parameters__ = parameters
+ if extra is not None:
+ self.__extra__ = extra
+ # Else __extra__ is inherited, eventually from the
+ # (meta-)class default above.
+ self.__origin__ = origin
+ return self
+
+ def _has_type_var(self):
+ if self.__parameters__:
+ for t in self.__parameters__:
+ if _has_type_var(t):
+ return True
+ return False
+
+ def __repr__(self):
+ r = super().__repr__()
+ if self.__parameters__ is not None:
+ r += '[%s]' % (
+ ', '.join(_type_repr(p) for p in self.__parameters__))
+ return r
+
+ def __eq__(self, other):
+ if not isinstance(other, GenericMeta):
+ return NotImplemented
+ return (_geqv(self, other) and
+ self.__parameters__ == other.__parameters__)
+
+ def __hash__(self):
+ return hash((self.__name__, self.__parameters__))
+
+ def __getitem__(self, params):
+ if not isinstance(params, tuple):
+ params = (params,)
+ if not params:
+ raise TypeError("Cannot have empty parameter list")
+ msg = "Parameters to generic types must be types."
+ params = tuple(_type_check(p, msg) for p in params)
+ if self.__parameters__ is None:
+ for p in params:
+ if not isinstance(p, TypeVar):
+ raise TypeError("Initial parameters must be "
+ "type variables; got %s" % p)
+ else:
+ if len(params) != len(self.__parameters__):
+ raise TypeError("Cannot change parameter count from %d to %d" %
+ (len(self.__parameters__), len(params)))
+ for new, old in zip(params, self.__parameters__):
+ if isinstance(old, TypeVar):
+ if not old.__constraints__:
+ # Substituting for an unconstrained TypeVar is OK.
+ continue
+ if issubclass(new, Union[old.__constraints__]):
+ # Specializing a constrained type variable is OK.
+ continue
+ if not issubclass(new, old):
+ raise TypeError(
+ "Cannot substitute %s for %s in %s" %
+ (_type_repr(new), _type_repr(old), self))
+
+ return self.__class__(self.__name__, self.__bases__,
+ dict(self.__dict__),
+ parameters=params,
+ origin=self,
+ extra=self.__extra__)
+
+ def __subclasscheck__(self, cls):
+ if cls is Any:
+ return True
+ if isinstance(cls, GenericMeta):
+ # For a class C(Generic[T]) where T is co-variant,
+ # C[X] is a subclass of C[Y] iff X is a subclass of Y.
+ origin = self.__origin__
+ if origin is not None and origin is cls.__origin__:
+ assert len(self.__parameters__) == len(origin.__parameters__)
+ assert len(cls.__parameters__) == len(origin.__parameters__)
+ for p_self, p_cls, p_origin in zip(self.__parameters__,
+ cls.__parameters__,
+ origin.__parameters__):
+ if isinstance(p_origin, TypeVar):
+ if p_origin.__covariant__:
+ # Covariant -- p_cls must be a subclass of p_self.
+ if not issubclass(p_cls, p_self):
+ break
+ elif p_origin.__contravariant__:
+ # Contravariant. I think it's the opposite. :-)
+ if not issubclass(p_self, p_cls):
+ break
+ else:
+ # Invariant -- p_cls and p_self must equal.
+ if p_self != p_cls:
+ break
+ else:
+ # If the origin's parameter is not a typevar,
+ # insist on invariance.
+ if p_self != p_cls:
+ break
+ else:
+ return True
+ # If we break out of the loop, the superclass gets a chance.
+ if super().__subclasscheck__(cls):
+ return True
+ if self.__extra__ is None or isinstance(cls, GenericMeta):
+ return False
+ return issubclass(cls, self.__extra__)
+
+ def __instancecheck__(self, obj):
+ if super().__instancecheck__(obj):
+ return True
+ if self.__extra__ is None:
+ return False
+ return isinstance(obj, self.__extra__)
+
+
+class Generic(metaclass=GenericMeta):
+ """Abstract base class for generic types.
+
+ A generic type is typically declared by inheriting from an
+ instantiation of this class with one or more type variables.
+ For example, a generic mapping type might be defined as::
+
+ class Mapping(Generic[KT, VT]):
+ def __getitem__(self, key: KT) -> VT:
+ ...
+ # Etc.
+
+ This class can then be used as follows::
+
+ def lookup_name(mapping: Mapping, key: KT, default: VT) -> VT:
+ try:
+ return mapping[key]
+ except KeyError:
+ return default
+
+ For clarity the type variables may be redefined, e.g.::
+
+ X = TypeVar('X')
+ Y = TypeVar('Y')
+ def lookup_name(mapping: Mapping[X, Y], key: X, default: Y) -> Y:
+ # Same body as above.
+ """
+
+ def __new__(cls, *args, **kwds):
+ next_in_mro = object
+ # Look for the last occurrence of Generic or Generic[...].
+ for i, c in enumerate(cls.__mro__[:-1]):
+ if isinstance(c, GenericMeta) and _gorg(c) is Generic:
+ next_in_mro = cls.__mro__[i+1]
+ return next_in_mro.__new__(_gorg(cls))
+
+
+def cast(typ, val):
+ """Cast a value to a type.
+
+ This returns the value unchanged. To the type checker this
+ signals that the return value has the designated type, but at
+ runtime we intentionally don't check anything (we want this
+ to be as fast as possible).
+ """
+ return val
+
+
+def _get_defaults(func):
+ """Internal helper to extract the default arguments, by name."""
+ code = func.__code__
+ pos_count = code.co_argcount
+ kw_count = code.co_kwonlyargcount
+ arg_names = code.co_varnames
+ kwarg_names = arg_names[pos_count:pos_count + kw_count]
+ arg_names = arg_names[:pos_count]
+ defaults = func.__defaults__ or ()
+ kwdefaults = func.__kwdefaults__
+ res = dict(kwdefaults) if kwdefaults else {}
+ pos_offset = pos_count - len(defaults)
+ for name, value in zip(arg_names[pos_offset:], defaults):
+ assert name not in res
+ res[name] = value
+ return res
+
+
+def get_type_hints(obj, globalns=None, localns=None):
+ """Return type hints for a function or method object.
+
+ This is often the same as obj.__annotations__, but it handles
+ forward references encoded as string literals, and if necessary
+ adds Optional[t] if a default value equal to None is set.
+
+ BEWARE -- the behavior of globalns and localns is counterintuitive
+ (unless you are familiar with how eval() and exec() work). The
+ search order is locals first, then globals.
+
+ - If no dict arguments are passed, an attempt is made to use the
+ globals from obj, and these are also used as the locals. If the
+ object does not appear to have globals, an exception is raised.
+
+ - If one dict argument is passed, it is used for both globals and
+ locals.
+
+ - If two dict arguments are passed, they specify globals and
+ locals, respectively.
+ """
+ if getattr(obj, '__no_type_check__', None):
+ return {}
+ if globalns is None:
+ globalns = getattr(obj, '__globals__', {})
+ if localns is None:
+ localns = globalns
+ elif localns is None:
+ localns = globalns
+ defaults = _get_defaults(obj)
+ hints = dict(obj.__annotations__)
+ for name, value in hints.items():
+ if isinstance(value, str):
+ value = _ForwardRef(value)
+ value = _eval_type(value, globalns, localns)
+ if name in defaults and defaults[name] is None:
+ value = Optional[value]
+ hints[name] = value
+ return hints
+
+
+# TODO: Also support this as a class decorator.
+def no_type_check(arg):
+ """Decorator to indicate that annotations are not type hints.
+
+ The argument must be a class or function; if it is a class, it
+ applies recursively to all methods defined in that class (but not
+ to methods defined in its superclasses or subclasses).
+
+ This mutates the function(s) in place.
+ """
+ if isinstance(arg, type):
+ for obj in arg.__dict__.values():
+ if isinstance(obj, types.FunctionType):
+ obj.__no_type_check__ = True
+ else:
+ arg.__no_type_check__ = True
+ return arg
+
+
+def no_type_check_decorator(decorator):
+ """Decorator to give another decorator the @no_type_check effect.
+
+ This wraps the decorator with something that wraps the decorated
+ function in @no_type_check.
+ """
+
+ @functools.wraps(decorator)
+ def wrapped_decorator(*args, **kwds):
+ func = decorator(*args, **kwds)
+ func = no_type_check(func)
+ return func
+
+ return wrapped_decorator
+
+
+def overload(func):
+ raise RuntimeError("Overloading is only supported in library stubs")
+
+
+class _ProtocolMeta(GenericMeta):
+ """Internal metaclass for _Protocol.
+
+ This exists so _Protocol classes can be generic without deriving
+ from Generic.
+ """
+
+ def __subclasscheck__(self, cls):
+ if not self._is_protocol:
+ # No structural checks since this isn't a protocol.
+ return NotImplemented
+
+ if self is _Protocol:
+ # Every class is a subclass of the empty protocol.
+ return True
+
+ # Find all attributes defined in the protocol.
+ attrs = self._get_protocol_attrs()
+
+ for attr in attrs:
+ if not any(attr in d.__dict__ for d in cls.__mro__):
+ return False
+ return True
+
+ def _get_protocol_attrs(self):
+ # Get all Protocol base classes.
+ protocol_bases = []
+ for c in self.__mro__:
+ if getattr(c, '_is_protocol', False) and c.__name__ != '_Protocol':
+ protocol_bases.append(c)
+
+ # Get attributes included in protocol.
+ attrs = set()
+ for base in protocol_bases:
+ for attr in base.__dict__.keys():
+ # Include attributes not defined in any non-protocol bases.
+ for c in self.__mro__:
+ if (c is not base and attr in c.__dict__ and
+ not getattr(c, '_is_protocol', False)):
+ break
+ else:
+ if (not attr.startswith('_abc_') and
+ attr != '__abstractmethods__' and
+ attr != '_is_protocol' and
+ attr != '__dict__' and
+ attr != '_get_protocol_attrs' and
+ attr != '__parameters__' and
+ attr != '__origin__' and
+ attr != '__module__'):
+ attrs.add(attr)
+
+ return attrs
+
+
+class _Protocol(metaclass=_ProtocolMeta):
+ """Internal base class for protocol classes.
+
+ This implements a simple-minded structural isinstance check
+ (similar but more general than the one-offs in collections.abc
+ such as Hashable).
+ """
+
+ _is_protocol = True
+
+
+# Various ABCs mimicking those in collections.abc.
+# A few are simply re-exported for completeness.
+
+Hashable = collections_abc.Hashable # Not generic.
+
+
+class Iterable(Generic[T_co], extra=collections_abc.Iterable):
+ pass
+
+
+class Iterator(Iterable[T_co], extra=collections_abc.Iterator):
+ pass
+
+
+class SupportsInt(_Protocol):
+
+ @abstractmethod
+ def __int__(self) -> int:
+ pass
+
+
+class SupportsFloat(_Protocol):
+
+ @abstractmethod
+ def __float__(self) -> float:
+ pass
+
+
+class SupportsComplex(_Protocol):
+
+ @abstractmethod
+ def __complex__(self) -> complex:
+ pass
+
+
+class SupportsBytes(_Protocol):
+
+ @abstractmethod
+ def __bytes__(self) -> bytes:
+ pass
+
+
+class SupportsAbs(_Protocol[T]):
+
+ @abstractmethod
+ def __abs__(self) -> T:
+ pass
+
+
+class SupportsRound(_Protocol[T]):
+
+ @abstractmethod
+ def __round__(self, ndigits: int = 0) -> T:
+ pass
+
+
+class Reversible(_Protocol[T]):
+
+ @abstractmethod
+ def __reversed__(self) -> 'Iterator[T]':
+ pass
+
+
+Sized = collections_abc.Sized # Not generic.
+
+
+class Container(Generic[T_co], extra=collections_abc.Container):
+ pass
+
+
+# Callable was defined earlier.
+
+
+class AbstractSet(Sized, Iterable[T_co], Container[T_co],
+ extra=collections_abc.Set):
+ pass
+
+
+class MutableSet(AbstractSet[T], extra=collections_abc.MutableSet):
+ pass
+
+
+class Mapping(Sized, Iterable[KT_co], Container[KT_co], Generic[KT_co, VT_co],
+ extra=collections_abc.Mapping):
+ pass
+
+
+class MutableMapping(Mapping[KT, VT], extra=collections_abc.MutableMapping):
+ pass
+
+
+class Sequence(Sized, Iterable[T_co], Container[T_co],
+ extra=collections_abc.Sequence):
+ pass
+
+
+class MutableSequence(Sequence[T], extra=collections_abc.MutableSequence):
+ pass
+
+
+class ByteString(Sequence[int], extra=collections_abc.ByteString):
+ pass
+
+
+ByteString.register(type(memoryview(b'')))
+
+
+class _ListMeta(GenericMeta):
+
+ def __instancecheck__(self, obj):
+ if not super().__instancecheck__(obj):
+ return False
+ itemtype = self.__parameters__[0]
+ for x in obj:
+ if not isinstance(x, itemtype):
+ return False
+ return True
+
+
+class List(list, MutableSequence[T], metaclass=_ListMeta):
+
+ def __new__(cls, *args, **kwds):
+ if _geqv(cls, List):
+ raise TypeError("Type List cannot be instantiated; "
+ "use list() instead")
+ return list.__new__(cls, *args, **kwds)
+
+
+class _SetMeta(GenericMeta):
+
+ def __instancecheck__(self, obj):
+ if not super().__instancecheck__(obj):
+ return False
+ itemtype = self.__parameters__[0]
+ for x in obj:
+ if not isinstance(x, itemtype):
+ return False
+ return True
+
+
+class Set(set, MutableSet[T], metaclass=_SetMeta):
+
+ def __new__(cls, *args, **kwds):
+ if _geqv(cls, Set):
+ raise TypeError("Type Set cannot be instantiated; "
+ "use set() instead")
+ return set.__new__(cls, *args, **kwds)
+
+
+class _FrozenSetMeta(_SetMeta):
+ """This metaclass ensures set is not a subclass of FrozenSet.
+
+ Without this metaclass, set would be considered a subclass of
+ FrozenSet, because FrozenSet.__extra__ is collections.abc.Set, and
+ set is a subclass of that.
+ """
+
+ def __subclasscheck__(self, cls):
+ if issubclass(cls, Set):
+ return False
+ return super().__subclasscheck__(cls)
+
+ def __instancecheck__(self, obj):
+ if issubclass(obj.__class__, Set):
+ return False
+ return super().__instancecheck__(obj)
+
+
+class FrozenSet(frozenset, AbstractSet[T_co], metaclass=_FrozenSetMeta):
+
+ def __new__(cls, *args, **kwds):
+ if _geqv(cls, FrozenSet):
+ raise TypeError("Type FrozenSet cannot be instantiated; "
+ "use frozenset() instead")
+ return frozenset.__new__(cls, *args, **kwds)
+
+
+class MappingView(Sized, Iterable[T_co], extra=collections_abc.MappingView):
+ pass
+
+
+class KeysView(MappingView[KT_co], AbstractSet[KT_co],
+ extra=collections_abc.KeysView):
+ pass
+
+
+# TODO: Enable Set[Tuple[KT_co, VT_co]] instead of Generic[KT_co, VT_co].
+class ItemsView(MappingView, Generic[KT_co, VT_co],
+ extra=collections_abc.ItemsView):
+ pass
+
+
+class ValuesView(MappingView[VT_co], extra=collections_abc.ValuesView):
+ pass
+
+
+class _DictMeta(GenericMeta):
+
+ def __instancecheck__(self, obj):
+ if not super().__instancecheck__(obj):
+ return False
+ keytype, valuetype = self.__parameters__
+ for key, value in obj.items():
+ if not (isinstance(key, keytype) and
+ isinstance(value, valuetype)):
+ return False
+ return True
+
+
+class Dict(dict, MutableMapping[KT, VT], metaclass=_DictMeta):
+
+ def __new__(cls, *args, **kwds):
+ if _geqv(cls, Dict):
+ raise TypeError("Type Dict cannot be instantiated; "
+ "use dict() instead")
+ return dict.__new__(cls, *args, **kwds)
+
+
+# Determine what base class to use for Generator.
+if hasattr(collections_abc, 'Generator'):
+ # Sufficiently recent versions of 3.5 have a Generator ABC.
+ _G_base = collections_abc.Generator
+else:
+ # Fall back on the exact type.
+ _G_base = types.GeneratorType
+
+
+class Generator(Iterator[T_co], Generic[T_co, T_contra, V_co],
+ extra=_G_base):
+
+ def __new__(cls, *args, **kwds):
+ if _geqv(cls, Generator):
+ raise TypeError("Type Generator cannot be instantiated; "
+ "create a subclass instead")
+ return super().__new__(cls, *args, **kwds)
+
+
+def NamedTuple(typename, fields):
+ """Typed version of namedtuple.
+
+ Usage::
+
+ Employee = typing.NamedTuple('Employee', [('name', str), 'id', int)])
+
+ This is equivalent to::
+
+ Employee = collections.namedtuple('Employee', ['name', 'id'])
+
+ The resulting class has one extra attribute: _field_types,
+ giving a dict mapping field names to types. (The field names
+ are in the _fields attribute, which is part of the namedtuple
+ API.)
+ """
+ fields = [(n, t) for n, t in fields]
+ cls = collections.namedtuple(typename, [n for n, t in fields])
+ cls._field_types = dict(fields)
+ return cls
+
+
+class IO(Generic[AnyStr]):
+ """Generic base class for TextIO and BinaryIO.
+
+ This is an abstract, generic version of the return of open().
+
+ NOTE: This does not distinguish between the different possible
+ classes (text vs. binary, read vs. write vs. read/write,
+ append-only, unbuffered). The TextIO and BinaryIO subclasses
+ below capture the distinctions between text vs. binary, which is
+ pervasive in the interface; however we currently do not offer a
+ way to track the other distinctions in the type system.
+ """
+
+ @abstractproperty
+ def mode(self) -> str:
+ pass
+
+ @abstractproperty
+ def name(self) -> str:
+ pass
+
+ @abstractmethod
+ def close(self) -> None:
+ pass
+
+ @abstractmethod
+ def closed(self) -> bool:
+ pass
+
+ @abstractmethod
+ def fileno(self) -> int:
+ pass
+
+ @abstractmethod
+ def flush(self) -> None:
+ pass
+
+ @abstractmethod
+ def isatty(self) -> bool:
+ pass
+
+ @abstractmethod
+ def read(self, n: int = -1) -> AnyStr:
+ pass
+
+ @abstractmethod
+ def readable(self) -> bool:
+ pass
+
+ @abstractmethod
+ def readline(self, limit: int = -1) -> AnyStr:
+ pass
+
+ @abstractmethod
+ def readlines(self, hint: int = -1) -> List[AnyStr]:
+ pass
+
+ @abstractmethod
+ def seek(self, offset: int, whence: int = 0) -> int:
+ pass
+
+ @abstractmethod
+ def seekable(self) -> bool:
+ pass
+
+ @abstractmethod
+ def tell(self) -> int:
+ pass
+
+ @abstractmethod
+ def truncate(self, size: int = None) -> int:
+ pass
+
+ @abstractmethod
+ def writable(self) -> bool:
+ pass
+
+ @abstractmethod
+ def write(self, s: AnyStr) -> int:
+ pass
+
+ @abstractmethod
+ def writelines(self, lines: List[AnyStr]) -> None:
+ pass
+
+ @abstractmethod
+ def __enter__(self) -> 'IO[AnyStr]':
+ pass
+
+ @abstractmethod
+ def __exit__(self, type, value, traceback) -> None:
+ pass
+
+
+class BinaryIO(IO[bytes]):
+ """Typed version of the return of open() in binary mode."""
+
+ @abstractmethod
+ def write(self, s: Union[bytes, bytearray]) -> int:
+ pass
+
+ @abstractmethod
+ def __enter__(self) -> 'BinaryIO':
+ pass
+
+
+class TextIO(IO[str]):
+ """Typed version of the return of open() in text mode."""
+
+ @abstractproperty
+ def buffer(self) -> BinaryIO:
+ pass
+
+ @abstractproperty
+ def encoding(self) -> str:
+ pass
+
+ @abstractproperty
+ def errors(self) -> str:
+ pass
+
+ @abstractproperty
+ def line_buffering(self) -> bool:
+ pass
+
+ @abstractproperty
+ def newlines(self) -> Any:
+ pass
+
+ @abstractmethod
+ def __enter__(self) -> 'TextIO':
+ pass
+
+
+class io:
+ """Wrapper namespace for IO generic classes."""
+
+ __all__ = ['IO', 'TextIO', 'BinaryIO']
+ IO = IO
+ TextIO = TextIO
+ BinaryIO = BinaryIO
+
+io.__name__ = __name__ + '.io'
+sys.modules[io.__name__] = io
+
+
+Pattern = _TypeAlias('Pattern', AnyStr, type(stdlib_re.compile('')),
+ lambda p: p.pattern)
+Match = _TypeAlias('Match', AnyStr, type(stdlib_re.match('', '')),
+ lambda m: m.re.pattern)
+
+
+class re:
+ """Wrapper namespace for re type aliases."""
+
+ __all__ = ['Pattern', 'Match']
+ Pattern = Pattern
+ Match = Match
+
+re.__name__ = __name__ + '.re'
+sys.modules[re.__name__] = re