summaryrefslogtreecommitdiffstats
path: root/Lib
diff options
context:
space:
mode:
authorRaymond Hettinger <rhettinger@users.noreply.github.com>2021-05-21 03:22:26 (GMT)
committerGitHub <noreply@github.com>2021-05-21 03:22:26 (GMT)
commitbe4dd7fcd93ed29d362c4bbcc48151bc619d6595 (patch)
treefca75e6315657f7d7fc8ad1355a31e774e1ee4bf /Lib
parent18f41c04ff4161531f4d08631059fd3ed37c0218 (diff)
downloadcpython-be4dd7fcd93ed29d362c4bbcc48151bc619d6595.zip
cpython-be4dd7fcd93ed29d362c4bbcc48151bc619d6595.tar.gz
cpython-be4dd7fcd93ed29d362c4bbcc48151bc619d6595.tar.bz2
bpo-44150: Support optional weights parameter for fmean() (GH-26175)
Diffstat (limited to 'Lib')
-rw-r--r--Lib/statistics.py25
-rw-r--r--Lib/test/test_statistics.py21
2 files changed, 39 insertions, 7 deletions
diff --git a/Lib/statistics.py b/Lib/statistics.py
index 5d38f85..bd3813c 100644
--- a/Lib/statistics.py
+++ b/Lib/statistics.py
@@ -136,7 +136,7 @@ from decimal import Decimal
from itertools import groupby, repeat
from bisect import bisect_left, bisect_right
from math import hypot, sqrt, fabs, exp, erf, tau, log, fsum
-from operator import itemgetter
+from operator import itemgetter, mul
from collections import Counter, namedtuple
# === Exceptions ===
@@ -345,7 +345,7 @@ def mean(data):
return _convert(total / n, T)
-def fmean(data):
+def fmean(data, weights=None):
"""Convert data to floats and compute the arithmetic mean.
This runs faster than the mean() function and it always returns a float.
@@ -363,13 +363,24 @@ def fmean(data):
nonlocal n
for n, x in enumerate(iterable, start=1):
yield x
- total = fsum(count(data))
- else:
+ data = count(data)
+ if weights is None:
total = fsum(data)
- try:
+ if not n:
+ raise StatisticsError('fmean requires at least one data point')
return total / n
- except ZeroDivisionError:
- raise StatisticsError('fmean requires at least one data point') from None
+ try:
+ num_weights = len(weights)
+ except TypeError:
+ weights = list(weights)
+ num_weights = len(weights)
+ num = fsum(map(mul, data, weights))
+ if n != num_weights:
+ raise StatisticsError('data and weights must be the same length')
+ den = fsum(weights)
+ if not den:
+ raise StatisticsError('sum of weights must be non-zero')
+ return num / den
def geometric_mean(data):
diff --git a/Lib/test/test_statistics.py b/Lib/test/test_statistics.py
index 70d269d..3e6e17a 100644
--- a/Lib/test/test_statistics.py
+++ b/Lib/test/test_statistics.py
@@ -1972,6 +1972,27 @@ class TestFMean(unittest.TestCase):
with self.assertRaises(ValueError):
fmean([Inf, -Inf])
+ def test_weights(self):
+ fmean = statistics.fmean
+ StatisticsError = statistics.StatisticsError
+ self.assertEqual(
+ fmean([10, 10, 10, 50], [0.25] * 4),
+ fmean([10, 10, 10, 50]))
+ self.assertEqual(
+ fmean([10, 10, 20], [0.25, 0.25, 0.50]),
+ fmean([10, 10, 20, 20]))
+ self.assertEqual( # inputs are iterators
+ fmean(iter([10, 10, 20]), iter([0.25, 0.25, 0.50])),
+ fmean([10, 10, 20, 20]))
+ with self.assertRaises(StatisticsError):
+ fmean([10, 20, 30], [1, 2]) # unequal lengths
+ with self.assertRaises(StatisticsError):
+ fmean(iter([10, 20, 30]), iter([1, 2])) # unequal lengths
+ with self.assertRaises(StatisticsError):
+ fmean([10, 20], [-1, 1]) # sum of weights is zero
+ with self.assertRaises(StatisticsError):
+ fmean(iter([10, 20]), iter([-1, 1])) # sum of weights is zero
+
# === Tests for variances and standard deviations ===