diff options
author | Raymond Hettinger <rhettinger@users.noreply.github.com> | 2024-05-05 06:35:06 (GMT) |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-05-05 06:35:06 (GMT) |
commit | fd0ea63f82bf9b8f766ea40cfa5befa653461e8a (patch) | |
tree | 589d03d58a87da04710a36365831cc63b783d344 /Lib | |
parent | 3b32575ed6b0905f434f9395d26293c0ae928032 (diff) | |
download | cpython-fd0ea63f82bf9b8f766ea40cfa5befa653461e8a.zip cpython-fd0ea63f82bf9b8f766ea40cfa5befa653461e8a.tar.gz cpython-fd0ea63f82bf9b8f766ea40cfa5befa653461e8a.tar.bz2 |
Minor edit: Simplify and tighten the distribution test (gh-118585)
Simplify and tighten the distribution test
Diffstat (limited to 'Lib')
-rw-r--r-- | Lib/test/test_statistics.py | 21 |
1 files changed, 11 insertions, 10 deletions
diff --git a/Lib/test/test_statistics.py b/Lib/test/test_statistics.py index fe6c59c..a60791e 100644 --- a/Lib/test/test_statistics.py +++ b/Lib/test/test_statistics.py @@ -2482,29 +2482,30 @@ class TestKDE(unittest.TestCase): # Approximate distribution test: Compare a random sample to the expected distribution data = [-2.1, -1.3, -0.4, 1.9, 5.1, 6.2, 7.8, 14.3, 15.1, 15.3, 15.8, 17.0] + xarr = [x / 10 for x in range(-100, 250)] n = 1_000_000 h = 1.75 dx = 0.1 - def p_expected(x): - return F_hat(x + dx) - F_hat(x - dx) - def p_observed(x): - # P(x-dx <= X < x+dx) / (2*dx) - i = bisect.bisect_left(big_sample, x - dx) - j = bisect.bisect_right(big_sample, x + dx) + # P(x <= X < x+dx) + i = bisect.bisect_left(big_sample, x) + j = bisect.bisect_left(big_sample, x + dx) return (j - i) / len(big_sample) + def p_expected(x): + # P(x <= X < x+dx) + return F_hat(x + dx) - F_hat(x) + for kernel in kernels: with self.subTest(kernel=kernel): - F_hat = statistics.kde(data, h, kernel, cumulative=True) rand = kde_random(data, h, kernel, seed=8675309**2) big_sample = sorted([rand() for i in range(n)]) + F_hat = statistics.kde(data, h, kernel, cumulative=True) - for x in range(-40, 190): - x /= 10 - self.assertTrue(math.isclose(p_observed(x), p_expected(x), abs_tol=0.001)) + for x in xarr: + self.assertTrue(math.isclose(p_observed(x), p_expected(x), abs_tol=0.0005)) class TestQuantiles(unittest.TestCase): |