diff options
author | Guido van Rossum <guido@python.org> | 1997-02-23 05:37:36 (GMT) |
---|---|---|
committer | Guido van Rossum <guido@python.org> | 1997-02-23 05:37:36 (GMT) |
commit | 2a0711d8db0cd169f904fb7eb96527cefebfdda3 (patch) | |
tree | bf4d2602a5910f898c39c3eecb292f5cc155cd4a /Lib | |
parent | 5680906cdbbd16c6ccbcbdd6656b721082ee295c (diff) | |
download | cpython-2a0711d8db0cd169f904fb7eb96527cefebfdda3.zip cpython-2a0711d8db0cd169f904fb7eb96527cefebfdda3.tar.gz cpython-2a0711d8db0cd169f904fb7eb96527cefebfdda3.tar.bz2 |
Removing this -- complex numbers are now builtin,
and there is already a similar demo in Demo/classes/Complex.py.
Diffstat (limited to 'Lib')
-rw-r--r-- | Lib/Complex.py | 275 |
1 files changed, 0 insertions, 275 deletions
diff --git a/Lib/Complex.py b/Lib/Complex.py deleted file mode 100644 index f4892f3..0000000 --- a/Lib/Complex.py +++ /dev/null @@ -1,275 +0,0 @@ -# Complex numbers -# --------------- - -# This module represents complex numbers as instances of the class Complex. -# A Complex instance z has two data attribues, z.re (the real part) and z.im -# (the imaginary part). In fact, z.re and z.im can have any value -- all -# arithmetic operators work regardless of the type of z.re and z.im (as long -# as they support numerical operations). -# -# The following functions exist (Complex is actually a class): -# Complex([re [,im]) -> creates a complex number from a real and an imaginary part -# IsComplex(z) -> true iff z is a complex number (== has .re and .im attributes) -# Polar([r [,phi [,fullcircle]]]) -> -# the complex number z for which r == z.radius() and phi == z.angle(fullcircle) -# (r and phi default to 0) -# -# Complex numbers have the following methods: -# z.abs() -> absolute value of z -# z.radius() == z.abs() -# z.angle([fullcircle]) -> angle from positive X axis; fullcircle gives units -# z.phi([fullcircle]) == z.angle(fullcircle) -# -# These standard functions and unary operators accept complex arguments: -# abs(z) -# -z -# +z -# not z -# repr(z) == `z` -# str(z) -# hash(z) -> a combination of hash(z.re) and hash(z.im) such that if z.im is zero -# the result equals hash(z.re) -# Note that hex(z) and oct(z) are not defined. -# -# These conversions accept complex arguments only if their imaginary part is zero: -# int(z) -# long(z) -# float(z) -# -# The following operators accept two complex numbers, or one complex number -# and one real number (int, long or float): -# z1 + z2 -# z1 - z2 -# z1 * z2 -# z1 / z2 -# pow(z1, z2) -# cmp(z1, z2) -# Note that z1 % z2 and divmod(z1, z2) are not defined, -# nor are shift and mask operations. -# -# The standard module math does not support complex numbers. -# (I suppose it would be easy to implement a cmath module.) -# -# Idea: -# add a class Polar(r, phi) and mixed-mode arithmetic which -# chooses the most appropriate type for the result: -# Complex for +,-,cmp -# Polar for *,/,pow - - -import types, math - -if not hasattr(math, 'hypot'): - def hypot(x, y): - # XXX I know there's a way to compute this without possibly causing - # overflow, but I can't remember what it is right now... - return math.sqrt(x*x + y*y) - math.hypot = hypot - -twopi = math.pi*2.0 -halfpi = math.pi/2.0 - -def IsComplex(obj): - return hasattr(obj, 're') and hasattr(obj, 'im') - -def Polar(r = 0, phi = 0, fullcircle = twopi): - phi = phi * (twopi / fullcircle) - return Complex(math.cos(phi)*r, math.sin(phi)*r) - -class Complex: - - def __init__(self, re=0, im=0): - if IsComplex(re): - im = im + re.im - re = re.re - if IsComplex(im): - re = re - im.im - im = im.re - self.re = re - self.im = im - - def __setattr__(self, name, value): - if hasattr(self, name): - raise TypeError, "Complex numbers have set-once attributes" - self.__dict__[name] = value - - def __repr__(self): - if not self.im: - return 'Complex(%s)' % `self.re` - else: - return 'Complex(%s, %s)' % (`self.re`, `self.im`) - - def __str__(self): - if not self.im: - return `self.re` - else: - return 'Complex(%s, %s)' % (`self.re`, `self.im`) - - def __coerce__(self, other): - if IsComplex(other): - return self, other - return self, Complex(other) # May fail - - def __cmp__(self, other): - return cmp(self.re, other.re) or cmp(self.im, other.im) - - def __hash__(self): - if not self.im: return hash(self.re) - mod = sys.maxint + 1L - return int((hash(self.re) + 2L*hash(self.im) + mod) % (2L*mod) - mod) - - def __neg__(self): - return Complex(-self.re, -self.im) - - def __pos__(self): - return self - - def __abs__(self): - return math.hypot(self.re, self.im) - ##return math.sqrt(self.re*self.re + self.im*self.im) - - - def __int__(self): - if self.im: - raise ValueError, "can't convert Complex with nonzero im to int" - return int(self.re) - - def __long__(self): - if self.im: - raise ValueError, "can't convert Complex with nonzero im to long" - return long(self.re) - - def __float__(self): - if self.im: - raise ValueError, "can't convert Complex with nonzero im to float" - return float(self.re) - - def __nonzero__(self): - return not (self.re == self.im == 0) - - abs = radius = __abs__ - - def angle(self, fullcircle = twopi): - return (fullcircle/twopi) * ((halfpi - math.atan2(self.re, self.im)) % twopi) - - phi = angle - - def __add__(self, other): - return Complex(self.re + other.re, self.im + other.im) - - __radd__ = __add__ - - def __sub__(self, other): - return Complex(self.re - other.re, self.im - other.im) - - def __rsub__(self, other): - return Complex(other.re - self.re, other.im - self.im) - - def __mul__(self, other): - return Complex(self.re*other.re - self.im*other.im, - self.re*other.im + self.im*other.re) - - __rmul__ = __mul__ - - def __div__(self, other): - # Deviating from the general principle of not forcing re or im - # to be floats, we cast to float here, otherwise division - # of Complex numbers with integer re and im parts would use - # the (truncating) integer division - d = float(other.re*other.re + other.im*other.im) - if not d: raise ZeroDivisionError, 'Complex division' - return Complex((self.re*other.re + self.im*other.im) / d, - (self.im*other.re - self.re*other.im) / d) - - def __rdiv__(self, other): - return other / self - - def __pow__(self, n, z=None): - if z is not None: - raise TypeError, 'Complex does not support ternary pow()' - if IsComplex(n): - if n.im: raise TypeError, 'Complex to the Complex power' - n = n.re - r = pow(self.abs(), n) - phi = n*self.angle() - return Complex(math.cos(phi)*r, math.sin(phi)*r) - - def __rpow__(self, base): - return pow(base, self) - - -# Everything below this point is part of the test suite - -def checkop(expr, a, b, value, fuzz = 1e-6): - import sys - print ' ', a, 'and', b, - try: - result = eval(expr) - except: - result = sys.exc_type - print '->', result - if (type(result) == type('') or type(value) == type('')): - ok = result == value - else: - ok = abs(result - value) <= fuzz - if not ok: - print '!!\t!!\t!! should be', value, 'diff', abs(result - value) - - -def test(): - testsuite = { - 'a+b': [ - (1, 10, 11), - (1, Complex(0,10), Complex(1,10)), - (Complex(0,10), 1, Complex(1,10)), - (Complex(0,10), Complex(1), Complex(1,10)), - (Complex(1), Complex(0,10), Complex(1,10)), - ], - 'a-b': [ - (1, 10, -9), - (1, Complex(0,10), Complex(1,-10)), - (Complex(0,10), 1, Complex(-1,10)), - (Complex(0,10), Complex(1), Complex(-1,10)), - (Complex(1), Complex(0,10), Complex(1,-10)), - ], - 'a*b': [ - (1, 10, 10), - (1, Complex(0,10), Complex(0, 10)), - (Complex(0,10), 1, Complex(0,10)), - (Complex(0,10), Complex(1), Complex(0,10)), - (Complex(1), Complex(0,10), Complex(0,10)), - ], - 'a/b': [ - (1., 10, 0.1), - (1, Complex(0,10), Complex(0, -0.1)), - (Complex(0, 10), 1, Complex(0, 10)), - (Complex(0, 10), Complex(1), Complex(0, 10)), - (Complex(1), Complex(0,10), Complex(0, -0.1)), - ], - 'pow(a,b)': [ - (1, 10, 1), - (1, Complex(0,10), 'TypeError'), - (Complex(0,10), 1, Complex(0,10)), - (Complex(0,10), Complex(1), Complex(0,10)), - (Complex(1), Complex(0,10), 'TypeError'), - (2, Complex(4,0), 16), - ], - 'cmp(a,b)': [ - (1, 10, -1), - (1, Complex(0,10), 1), - (Complex(0,10), 1, -1), - (Complex(0,10), Complex(1), -1), - (Complex(1), Complex(0,10), 1), - ], - } - exprs = testsuite.keys() - exprs.sort() - for expr in exprs: - print expr + ':' - t = (expr,) - for item in testsuite[expr]: - apply(checkop, t+item) - - -if __name__ == '__main__': - test() |