summaryrefslogtreecommitdiffstats
path: root/Lib
diff options
context:
space:
mode:
authorRaymond Hettinger <rhettinger@users.noreply.github.com>2019-05-18 17:18:29 (GMT)
committerGitHub <noreply@github.com>2019-05-18 17:18:29 (GMT)
commite917f2ed9af044fe808fc9b4ddc6c5eb99003500 (patch)
tree78553de7c75dfe5166f6b593027fd4315f743226 /Lib
parent73934b9da07daefb203e7d26089e7486a1ce4fdf (diff)
downloadcpython-e917f2ed9af044fe808fc9b4ddc6c5eb99003500.zip
cpython-e917f2ed9af044fe808fc9b4ddc6c5eb99003500.tar.gz
cpython-e917f2ed9af044fe808fc9b4ddc6c5eb99003500.tar.bz2
bpo-36546: Add more tests and expand docs (#13406)
Diffstat (limited to 'Lib')
-rw-r--r--Lib/test/test_statistics.py38
1 files changed, 27 insertions, 11 deletions
diff --git a/Lib/test/test_statistics.py b/Lib/test/test_statistics.py
index 1922de5..946c742 100644
--- a/Lib/test/test_statistics.py
+++ b/Lib/test/test_statistics.py
@@ -2161,17 +2161,18 @@ class TestQuantiles(unittest.TestCase):
# Quantiles should be idempotent
if len(expected) >= 2:
self.assertEqual(quantiles(expected, n=n), expected)
- # Cross-check against other methods
- if len(data) >= n:
- # After end caps are added, method='inclusive' should
- # give the same result as method='exclusive' whenever
- # there are more data points than desired cut points.
- padded_data = [min(data) - 1000] + data + [max(data) + 1000]
- self.assertEqual(
- quantiles(data, n=n),
- quantiles(padded_data, n=n, method='inclusive'),
- (n, data),
- )
+ # Cross-check against method='inclusive' which should give
+ # the same result after adding in minimum and maximum values
+ # extrapolated from the two lowest and two highest points.
+ sdata = sorted(data)
+ lo = 2 * sdata[0] - sdata[1]
+ hi = 2 * sdata[-1] - sdata[-2]
+ padded_data = data + [lo, hi]
+ self.assertEqual(
+ quantiles(data, n=n),
+ quantiles(padded_data, n=n, method='inclusive'),
+ (n, data),
+ )
# Invariant under tranlation and scaling
def f(x):
return 3.5 * x - 1234.675
@@ -2188,6 +2189,11 @@ class TestQuantiles(unittest.TestCase):
actual = quantiles(statistics.NormalDist(), n=n)
self.assertTrue(all(math.isclose(e, a, abs_tol=0.0001)
for e, a in zip(expected, actual)))
+ # Q2 agrees with median()
+ for k in range(2, 60):
+ data = random.choices(range(100), k=k)
+ q1, q2, q3 = quantiles(data)
+ self.assertEqual(q2, statistics.median(data))
def test_specific_cases_inclusive(self):
# Match results computed by hand and cross-checked
@@ -2233,6 +2239,11 @@ class TestQuantiles(unittest.TestCase):
actual = quantiles(statistics.NormalDist(), n=n, method="inclusive")
self.assertTrue(all(math.isclose(e, a, abs_tol=0.0001)
for e, a in zip(expected, actual)))
+ # Natural deciles
+ self.assertEqual(quantiles([0, 100], n=10, method='inclusive'),
+ [10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0])
+ self.assertEqual(quantiles(range(0, 101), n=10, method='inclusive'),
+ [10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0])
# Whenever n is smaller than the number of data points, running
# method='inclusive' should give the same result as method='exclusive'
# after the two included extreme points are removed.
@@ -2242,6 +2253,11 @@ class TestQuantiles(unittest.TestCase):
data.remove(max(data))
expected = quantiles(data, n=32)
self.assertEqual(expected, actual)
+ # Q2 agrees with median()
+ for k in range(2, 60):
+ data = random.choices(range(100), k=k)
+ q1, q2, q3 = quantiles(data, method='inclusive')
+ self.assertEqual(q2, statistics.median(data))
def test_equal_inputs(self):
quantiles = statistics.quantiles