summaryrefslogtreecommitdiffstats
path: root/Lib
diff options
context:
space:
mode:
authorRaymond Hettinger <python@rcn.com>2014-04-10 01:53:45 (GMT)
committerRaymond Hettinger <python@rcn.com>2014-04-10 01:53:45 (GMT)
commit2aad6ef77419887f5875ba942e9369b4bdd34a5e (patch)
treebb0eef9e1fe96db4579259f5183c80e47b4e3285 /Lib
parent25d9040cb63359b3413e377ee1be29627a6a2b82 (diff)
downloadcpython-2aad6ef77419887f5875ba942e9369b4bdd34a5e.zip
cpython-2aad6ef77419887f5875ba942e9369b4bdd34a5e.tar.gz
cpython-2aad6ef77419887f5875ba942e9369b4bdd34a5e.tar.bz2
Add algorithmic notes for nsmallest() and nlargest().
Diffstat (limited to 'Lib')
-rw-r--r--Lib/heapq.py56
1 files changed, 56 insertions, 0 deletions
diff --git a/Lib/heapq.py b/Lib/heapq.py
index d52cd71..789b17a 100644
--- a/Lib/heapq.py
+++ b/Lib/heapq.py
@@ -192,6 +192,62 @@ def _heapify_max(x):
for i in reversed(range(n//2)):
_siftup_max(x, i)
+
+# Algorithm notes for nlargest() and nsmallest()
+# ==============================================
+#
+# Makes just one pass over the data while keeping the n most extreme values
+# in a heap. Memory consumption is limited to keeping n values in a list.
+#
+# Number of comparisons for n random inputs, keeping the k smallest values:
+# -----------------------------------------------------------
+# Step Comparisons Action
+# 1 2*k heapify the first k-inputs
+# 2 n-k compare new input elements to top of heap
+# 3 k*lg2(k)*(ln(n)-lg(k)) add new extreme values to the heap
+# 4 k*lg2(k) final sort of the k most extreme values
+#
+# n-random inputs k-extreme values number of comparisons % more than min()
+# --------------- ---------------- ------------------- -----------------
+# 10,000 100 13,634 36.3%
+# 100,000 100 105,163 5.2%
+# 1,000,000 100 1,006,694 0.7%
+#
+# Computing the number of comparisons for step 3:
+# -----------------------------------------------
+# * For the i-th new value from the iterable, the probability of being in the
+# k most extreme values is k/i. For example, the probability of the 101st
+# value seen being in the 100 most extreme values is 100/101.
+# * If the value is a new extreme value, the cost of inserting it into the
+# heap is log(k, 2).
+# * The probabilty times the cost gives:
+# (k/i) * log(k, 2)
+# * Summing across the remaining n-k elements gives:
+# sum((k/i) * log(k, 2) for xrange(k+1, n+1))
+# * This reduces to:
+# (H(n) - H(k)) * k * log(k, 2)
+# * Where H(n) is the n-th harmonic number estimated by:
+# H(n) = log(n, e) + gamma + 1.0 / (2.0 * n)
+# gamma = 0.5772156649
+# http://en.wikipedia.org/wiki/Harmonic_series_(mathematics)#Rate_of_divergence
+# * Substituting the H(n) formula and ignoring the (1/2*n) fraction gives:
+# comparisons = k * log(k, 2) * (log(n,e) - log(k, e))
+#
+# Worst-case for step 3:
+# ---------------------
+# In the worst case, the input data is reversed sorted so that every new element
+# must be inserted in the heap:
+# comparisons = log(k, 2) * (n - k)
+#
+# Alternative Algorithms
+# ----------------------
+# Other algorithms were not used because they:
+# 1) Took much more auxiliary memory,
+# 2) Made multiple passes over the data.
+# 3) Made more comparisons in common cases (small k, large n, semi-random input).
+# See detailed comparisons at:
+# http://code.activestate.com/recipes/577573-compare-algorithms-for-heapqsmallest
+
def nlargest(n, iterable):
"""Find the n largest elements in a dataset.