diff options
author | Stefan Krah <skrah@bytereef.org> | 2012-03-21 17:25:23 (GMT) |
---|---|---|
committer | Stefan Krah <skrah@bytereef.org> | 2012-03-21 17:25:23 (GMT) |
commit | 1919b7e72bc43315b32f38a6f5f01e8c717907f4 (patch) | |
tree | ef7490b66425fd2c622740ef9adfb03d806b7517 /Modules/_decimal/docstrings.h | |
parent | 8bfccd852e2bceb04664b4832fc80eb3b7584918 (diff) | |
download | cpython-1919b7e72bc43315b32f38a6f5f01e8c717907f4.zip cpython-1919b7e72bc43315b32f38a6f5f01e8c717907f4.tar.gz cpython-1919b7e72bc43315b32f38a6f5f01e8c717907f4.tar.bz2 |
Issue #7652: Integrate the decimal floating point libmpdec library to speed
up the decimal module. Performance gains of the new C implementation are
between 12x and 80x, depending on the application.
Diffstat (limited to 'Modules/_decimal/docstrings.h')
-rw-r--r-- | Modules/_decimal/docstrings.h | 753 |
1 files changed, 753 insertions, 0 deletions
diff --git a/Modules/_decimal/docstrings.h b/Modules/_decimal/docstrings.h new file mode 100644 index 0000000..cf150c7 --- /dev/null +++ b/Modules/_decimal/docstrings.h @@ -0,0 +1,753 @@ +/* + * Copyright (c) 2001-2012 Python Software Foundation. All Rights Reserved. + * Modified and extended by Stefan Krah. + */ + + +#ifndef DOCSTRINGS_H +#define DOCSTRINGS_H + + +#include "pymacro.h" + + +/******************************************************************************/ +/* Module */ +/******************************************************************************/ + + +PyDoc_STRVAR(doc__decimal, +"C decimal arithmetic module"); + +PyDoc_STRVAR(doc_getcontext,"\n\ +getcontext() - Get the current default context.\n\ +\n"); + +PyDoc_STRVAR(doc_setcontext,"\n\ +setcontext(c) - Set a new default context.\n\ +\n"); + +PyDoc_STRVAR(doc_localcontext,"\n\ +localcontext(c) - Return a context manager that will set the default context\n\ +to a copy of c on entry to the with-statement and restore the previous default\n\ +context when exiting the with-statement. If no context is specified, a copy of\n\ +the current default context is used.\n\ +\n"); + +#ifdef EXTRA_FUNCTIONALITY +PyDoc_STRVAR(doc_ieee_context,"\n\ +IEEEContext(bits) - Return a context object initialized to the proper values for\n\ +one of the IEEE interchange formats. The argument must be a multiple of 32 and\n\ +less than IEEE_CONTEXT_MAX_BITS. For the most common values, the constants\n\ +DECIMAL32, DECIMAL64 and DECIMAL128 are provided.\n\ +\n"); +#endif + + +/******************************************************************************/ +/* Decimal Object and Methods */ +/******************************************************************************/ + +PyDoc_STRVAR(doc_decimal,"\n\ +Decimal([value[, context]]): Construct a new Decimal object from value.\n\ +\n\ +value can be an integer, string, tuple, or another Decimal object.\n\ +If no value is given, return Decimal('0'). The context does not affect\n\ +the conversion and is only passed to determine if the InvalidOperation\n\ +trap is active.\n\ +\n"); + +PyDoc_STRVAR(doc_adjusted,"\n\ +adjusted() - Return the adjusted exponent of the number.\n\ +\n\ +Defined as exp + digits - 1.\n\ +\n"); + +PyDoc_STRVAR(doc_as_tuple,"\n\ +as_tuple() - Return a tuple representation of the number.\n\ +\n"); + +PyDoc_STRVAR(doc_canonical,"\n\ +canonical() - Return the canonical encoding of the argument. Currently,\n\ +the encoding of a Decimal instance is always canonical, so this operation\n\ +returns its argument unchanged.\n\ +\n"); + +PyDoc_STRVAR(doc_compare,"\n\ +compare(other[, context]) - Compare self to other. Return a decimal value:\n\ +\n\ + a or b is a NaN ==> Decimal('NaN')\n\ + a < b ==> Decimal('-1')\n\ + a == b ==> Decimal('0')\n\ + a > b ==> Decimal('1')\n\ +\n"); + +PyDoc_STRVAR(doc_compare_signal,"\n\ +compare_signal(other[, context]) - Identical to compare, except that\n\ +all NaNs signal.\n\ +\n"); + +PyDoc_STRVAR(doc_compare_total,"\n\ +compare_total(other) - Compare two operands using their abstract representation\n\ +rather than their numerical value. Similar to the compare() method, but the\n\ +result gives a total ordering on Decimal instances. Two Decimal instances with\n\ +the same numeric value but different representations compare unequal in this\n\ +ordering:\n\ +\n\ + >>> Decimal('12.0').compare_total(Decimal('12'))\n\ + Decimal('-1')\n\ +\n\ +Quiet and signaling NaNs are also included in the total ordering. The result\n\ +of this function is Decimal('0') if both operands have the same representation,\n\ +Decimal('-1') if the first operand is lower in the total order than the second,\n\ +and Decimal('1') if the first operand is higher in the total order than the\n\ +second operand. See the specification for details of the total order.\n\ +\n"); + +PyDoc_STRVAR(doc_compare_total_mag,"\n\ +compare_total_mag(other) - Compare two operands using their abstract\n\ +representation rather than their value as in compare_total(), but\n\ +ignoring the sign of each operand. x.compare_total_mag(y) is\n\ +equivalent to x.copy_abs().compare_total(y.copy_abs()).\n\ +\n"); + +PyDoc_STRVAR(doc_conjugate,"\n\ +conjugate() - Return self.\n\ +\n"); + +PyDoc_STRVAR(doc_copy_abs,"\n\ +copy_abs() - Return the absolute value of the argument. This operation\n\ +is unaffected by the context and is quiet: no flags are changed and no\n\ +rounding is performed.\n\ +\n"); + +PyDoc_STRVAR(doc_copy_negate,"\n\ +copy_negate() - Return the negation of the argument. This operation is\n\ +unaffected by the context and is quiet: no flags are changed and no\n\ +rounding is performed.\n\ +\n"); + +PyDoc_STRVAR(doc_copy_sign,"\n\ +copy_sign(other) - Return a copy of the first operand with the sign set\n\ +to be the same as the sign of the second operand. For example:\n\ +\n\ + >>> Decimal('2.3').copy_sign(Decimal('-1.5'))\n\ + Decimal('-2.3')\n\ +\n\ +This operation is unaffected by the context and is quiet: no flags are\n\ +changed and no rounding is performed.\n\ +\n"); + +PyDoc_STRVAR(doc_exp,"\n\ +exp([context]) - Return the value of the (natural) exponential function e**x\n\ +at the given number. The function always uses the ROUND_HALF_EVEN mode and\n\ +the result is correctly rounded.\n\ +\n"); + +PyDoc_STRVAR(doc_from_float,"\n\ +from_float(f) - Class method that converts a float to a decimal number, exactly.\n\ +Since 0.1 is not exactly representable in binary floating point,\n\ +Decimal.from_float(0.1) is not the same as Decimal('0.1').\n\ +\n\ + >>> Decimal.from_float(0.1)\n\ + Decimal('0.1000000000000000055511151231257827021181583404541015625')\n\ + >>> Decimal.from_float(float('nan'))\n\ + Decimal('NaN')\n\ + >>> Decimal.from_float(float('inf'))\n\ + Decimal('Infinity')\n\ + >>> Decimal.from_float(float('-inf'))\n\ + Decimal('-Infinity')\n\ +\n\ +\n"); + +PyDoc_STRVAR(doc_fma,"\n\ +fma(other, third[, context]) - Fused multiply-add. Return self*other+third\n\ +with no rounding of the intermediate product self*other.\n\ +\n\ + >>> Decimal(2).fma(3, 5)\n\ + Decimal('11')\n\ +\n\ +\n"); + +PyDoc_STRVAR(doc_is_canonical,"\n\ +is_canonical() - Return True if the argument is canonical and False otherwise.\n\ +Currently, a Decimal instance is always canonical, so this operation always\n\ +returns True.\n\ +\n"); + +PyDoc_STRVAR(doc_is_finite,"\n\ +is_finite() - Return True if the argument is a finite number, and False if the\n\ +argument is infinite or a NaN.\n\ +\n"); + +PyDoc_STRVAR(doc_is_infinite,"\n\ +is_infinite() - Return True if the argument is either positive or negative\n\ +infinity and False otherwise.\n\ +\n"); + +PyDoc_STRVAR(doc_is_nan,"\n\ +is_nan() - Return True if the argument is a (quiet or signaling) NaN and\n\ +False otherwise.\n\ +\n"); + +PyDoc_STRVAR(doc_is_normal,"\n\ +is_normal([context]) - Return True if the argument is a normal finite non-zero\n\ +number with an adjusted exponent greater than or equal to Emin. Return False\n\ +if the argument is zero, subnormal, infinite or a NaN.\n\ +\n"); + +PyDoc_STRVAR(doc_is_qnan,"\n\ +is_qnan() - Return True if the argument is a quiet NaN, and False otherwise.\n\ +\n"); + +PyDoc_STRVAR(doc_is_signed,"\n\ +is_signed() - Return True if the argument has a negative sign and\n\ +False otherwise. Note that both zeros and NaNs can carry signs.\n\ +\n"); + +PyDoc_STRVAR(doc_is_snan,"\n\ +is_snan() - Return True if the argument is a signaling NaN and False otherwise.\n\ +\n"); + +PyDoc_STRVAR(doc_is_subnormal,"\n\ +is_subnormal([context]) - Return True if the argument is subnormal, and False\n\ +otherwise. A number is subnormal if it is non-zero, finite, and has an\n\ +adjusted exponent less than Emin.\n\ +\n"); + +PyDoc_STRVAR(doc_is_zero,"\n\ +is_zero() - Return True if the argument is a (positive or negative) zero and\n\ +False otherwise.\n\ +\n"); + +PyDoc_STRVAR(doc_ln,"\n\ +ln([context]) - Return the natural (base e) logarithm of the operand.\n\ +The function always uses the ROUND_HALF_EVEN mode and the result is\n\ +correctly rounded.\n\ +\n"); + +PyDoc_STRVAR(doc_log10,"\n\ +log10([context]) - Return the base ten logarithm of the operand.\n\ +The function always uses the ROUND_HALF_EVEN mode and the result is\n\ +correctly rounded.\n\ +\n"); + +PyDoc_STRVAR(doc_logb,"\n\ +logb([context]) - For a non-zero number, return the adjusted exponent\n\ +of the operand as a Decimal instance. If the operand is a zero, then\n\ +Decimal('-Infinity') is returned and the DivisionByZero condition is\n\ +raised. If the operand is an infinity then Decimal('Infinity') is returned.\n\ +\n"); + +PyDoc_STRVAR(doc_logical_and,"\n\ +logical_and(other[, context]) - Return the digit-wise and of the two\n\ +(logical) operands.\n\ +\n"); + +PyDoc_STRVAR(doc_logical_invert,"\n\ +logical_invert([context]) - Return the digit-wise inversion of the\n\ +(logical) operand.\n\ +\n"); + +PyDoc_STRVAR(doc_logical_or,"\n\ +logical_or(other[, context]) - Return the digit-wise or of the two\n\ +(logical) operands.\n\ +\n"); + +PyDoc_STRVAR(doc_logical_xor,"\n\ +logical_xor(other[, context]) - Return the digit-wise exclusive or of the\n\ +two (logical) operands.\n\ +\n"); + +PyDoc_STRVAR(doc_max,"\n\ +max(other[, context]) - Maximum of self and other. If one operand is a quiet\n\ +NaN and the other is numeric, the numeric operand is returned.\n\ +\n"); + +PyDoc_STRVAR(doc_max_mag,"\n\ +max_mag(other[, context]) - Similar to the max() method, but the comparison is\n\ +done using the absolute values of the operands.\n\ +\n"); + +PyDoc_STRVAR(doc_min,"\n\ +min(other[, context]) - Minimum of self and other. If one operand is a quiet\n\ +NaN and the other is numeric, the numeric operand is returned.\n\ +\n"); + +PyDoc_STRVAR(doc_min_mag,"\n\ +min_mag(other[, context]) - Similar to the min() method, but the comparison is\n\ +done using the absolute values of the operands.\n\ +\n"); + +PyDoc_STRVAR(doc_next_minus,"\n\ +next_minus([context]) - Return the largest number representable in the given\n\ +context (or in the current default context if no context is given) that is\n\ +smaller than the given operand.\n\ +\n"); + +PyDoc_STRVAR(doc_next_plus,"\n\ +next_plus([context]) - Return the smallest number representable in the given\n\ +context (or in the current default context if no context is given) that is\n\ +larger than the given operand.\n\ +\n"); + +PyDoc_STRVAR(doc_next_toward,"\n\ +next_toward(other[, context]) - If the two operands are unequal, return the\n\ +number closest to the first operand in the direction of the second operand.\n\ +If both operands are numerically equal, return a copy of the first operand\n\ +with the sign set to be the same as the sign of the second operand.\n\ +\n"); + +PyDoc_STRVAR(doc_normalize,"\n\ +normalize([context]) - Normalize the number by stripping the rightmost trailing\n\ +zeros and converting any result equal to Decimal('0') to Decimal('0e0'). Used\n\ +for producing canonical values for members of an equivalence class. For example,\n\ +Decimal('32.100') and Decimal('0.321000e+2') both normalize to the equivalent\n\ +value Decimal('32.1').\n\ +\n"); + +PyDoc_STRVAR(doc_number_class,"\n\ +number_class([context]) - Return a string describing the class of the operand.\n\ +The returned value is one of the following ten strings:\n\ +\n\ + * '-Infinity', indicating that the operand is negative infinity.\n\ + * '-Normal', indicating that the operand is a negative normal number.\n\ + * '-Subnormal', indicating that the operand is negative and subnormal.\n\ + * '-Zero', indicating that the operand is a negative zero.\n\ + * '+Zero', indicating that the operand is a positive zero.\n\ + * '+Subnormal', indicating that the operand is positive and subnormal.\n\ + * '+Normal', indicating that the operand is a positive normal number.\n\ + * '+Infinity', indicating that the operand is positive infinity.\n\ + * 'NaN', indicating that the operand is a quiet NaN (Not a Number).\n\ + * 'sNaN', indicating that the operand is a signaling NaN.\n\ +\n\ +\n"); + +PyDoc_STRVAR(doc_quantize,"\n\ +quantize(exp[, rounding[, context]]) - Return a value equal to the first\n\ +operand after rounding and having the exponent of the second operand.\n\ +\n\ + >>> Decimal('1.41421356').quantize(Decimal('1.000'))\n\ + Decimal('1.414')\n\ +\n\ +Unlike other operations, if the length of the coefficient after the quantize\n\ +operation would be greater than precision, then an InvalidOperation is signaled.\n\ +This guarantees that, unless there is an error condition, the quantized exponent\n\ +is always equal to that of the right-hand operand.\n\ +\n\ +Also unlike other operations, quantize never signals Underflow, even if the\n\ +result is subnormal and inexact.\n\ +\n\ +If the exponent of the second operand is larger than that of the first, then\n\ +rounding may be necessary. In this case, the rounding mode is determined by the\n\ +rounding argument if given, else by the given context argument; if neither\n\ +argument is given, the rounding mode of the current thread's context is used.\n\ +\n"); + +PyDoc_STRVAR(doc_radix,"\n\ +radix() - Return Decimal(10), the radix (base) in which the Decimal class does\n\ +all its arithmetic. Included for compatibility with the specification.\n\ +\n"); + +PyDoc_STRVAR(doc_remainder_near,"\n\ +remainder_near(other[, context]) - Compute the modulo as either a positive\n\ +or negative value depending on which is closest to zero. For instance,\n\ +Decimal(10).remainder_near(6) returns Decimal('-2'), which is closer to zero\n\ +than Decimal('4').\n\ +\n\ +If both are equally close, the one chosen will have the same sign as self.\n\ +\n"); + +PyDoc_STRVAR(doc_rotate,"\n\ +rotate(other[, context]) - Return the result of rotating the digits of the\n\ +first operand by an amount specified by the second operand. The second operand\n\ +must be an integer in the range -precision through precision. The absolute\n\ +value of the second operand gives the number of places to rotate. If the second\n\ +operand is positive then rotation is to the left; otherwise rotation is to the\n\ +right. The coefficient of the first operand is padded on the left with zeros to\n\ +length precision if necessary. The sign and exponent of the first operand are\n\ +unchanged.\n\ +\n"); + +PyDoc_STRVAR(doc_same_quantum,"\n\ +same_quantum(other[, context]) - Test whether self and other have the\n\ +same exponent or whether both are NaN.\n\ +\n"); + +PyDoc_STRVAR(doc_scaleb,"\n\ +scaleb(other[, context]) - Return the first operand with the exponent adjusted\n\ +the second. Equivalently, return the first operand multiplied by 10**other.\n\ +The second operand must be an integer.\n\ +\n"); + +PyDoc_STRVAR(doc_shift,"\n\ +shift(other[, context]) - Return the result of shifting the digits of\n\ +the first operand by an amount specified by the second operand. The second\n\ +operand must be an integer in the range -precision through precision. The\n\ +absolute value of the second operand gives the number of places to shift.\n\ +If the second operand is positive, then the shift is to the left; otherwise\n\ +the shift is to the right. Digits shifted into the coefficient are zeros.\n\ +The sign and exponent of the first operand are unchanged.\n\ +\n"); + +PyDoc_STRVAR(doc_sqrt,"\n\ +sqrt([context]) - Return the square root of the argument to full precision.\n\ +The result is correctly rounded using the ROUND_HALF_EVEN rounding mode.\n\ +\n"); + +PyDoc_STRVAR(doc_to_eng_string,"\n\ +to_eng_string([context]) - Convert to an engineering-type string.\n\ +Engineering notation has an exponent which is a multiple of 3, so\n\ +there are up to 3 digits left of the decimal place. For example,\n\ +Decimal('123E+1') is converted to Decimal('1.23E+3')\n\ +\n"); + +PyDoc_STRVAR(doc_to_integral,"\n\ +to_integral([rounding[, context]]) - Identical to the to_integral_value()\n\ +method. The to_integral name has been kept for compatibility with older\n\ +versions.\n\ +\n"); + +PyDoc_STRVAR(doc_to_integral_exact,"\n\ +to_integral_exact([rounding[, context]]) - Round to the nearest integer,\n\ +signaling Inexact or Rounded as appropriate if rounding occurs. The rounding\n\ +mode is determined by the rounding parameter if given, else by the given\n\ +context. If neither parameter is given, then the rounding mode of the current\n\ +default context is used.\n\ +\n"); + +PyDoc_STRVAR(doc_to_integral_value,"\n\ +to_integral_value([rounding[, context]]) - Round to the nearest integer without\n\ +signaling Inexact or Rounded. The rounding mode is determined by the rounding\n\ +parameter if given, else by the given context. If neither parameter is given,\n\ +then the rounding mode of the current default context is used.\n\ +\n"); + + +/******************************************************************************/ +/* Context Object and Methods */ +/******************************************************************************/ + +PyDoc_STRVAR(doc_context,"\n\ +The context affects almost all operations and controls rounding,\n\ +Over/Underflow, raising of exceptions and much more. A new context\n\ +can be constructed as follows:\n\ +\n\ + >>> c = Context(prec=28, Emin=-425000000, Emax=425000000,\n\ + ... rounding=ROUND_HALF_EVEN, capitals=1, clamp=1,\n\ + ... traps=[InvalidOperation, DivisionByZero, Overflow],\n\ + ... flags=[])\n\ + >>>\n\ +\n\ +\n"); + +#ifdef EXTRA_FUNCTIONALITY +PyDoc_STRVAR(doc_ctx_apply,"\n\ +apply(x) - Apply self to Decimal x.\n\ +\n"); +#endif + +PyDoc_STRVAR(doc_ctx_clear_flags,"\n\ +clear_flags() - Reset all flags to False.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_clear_traps,"\n\ +clear_traps() - Set all traps to False.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_copy,"\n\ +copy() - Return a duplicate of the context with all flags cleared.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_copy_decimal,"\n\ +copy_decimal(x) - Return a copy of Decimal x.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_create_decimal,"\n\ +create_decimal(x) - Create a new Decimal instance from x, using self as the\n\ +context. Unlike the Decimal constructor, this function observes the context\n\ +limits.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_create_decimal_from_float,"\n\ +create_decimal_from_float(f) - Create a new Decimal instance from float f.\n\ +Unlike the Decimal.from_float() class method, this function observes the\n\ +context limits.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_Etiny,"\n\ +Etiny() - Return a value equal to Emin - prec + 1, which is the minimum\n\ +exponent value for subnormal results. When underflow occurs, the exponent\n\ +is set to Etiny.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_Etop,"\n\ +Etop() - Return a value equal to Emax - prec + 1. This is the maximum exponent\n\ +if the _clamp field of the context is set to 1 (IEEE clamp mode). Etop() must\n\ +not be negative.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_abs,"\n\ +abs(x) - Return the absolute value of x.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_add,"\n\ +add(x, y) - Return the sum of x and y.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_canonical,"\n\ +canonical(x) - Return a new instance of x.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_compare,"\n\ +compare(x, y) - Compare x and y numerically.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_compare_signal,"\n\ +compare_signal(x, y) - Compare x and y numerically. All NaNs signal.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_compare_total,"\n\ +compare_total(x, y) - Compare x and y using their abstract representation.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_compare_total_mag,"\n\ +compare_total_mag(x, y) - Compare x and y using their abstract representation,\n\ +ignoring sign.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_copy_abs,"\n\ +copy_abs(x) - Return a copy of x with the sign set to 0.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_copy_negate,"\n\ +copy_negate(x) - Return a copy of x with the sign inverted.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_copy_sign,"\n\ +copy_sign(x, y) - Copy the sign from y to x.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_divide,"\n\ +divide(x, y) - Return x divided by y.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_divide_int,"\n\ +divide_int(x, y) - Return x divided by y, truncated to an integer.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_divmod,"\n\ +divmod(x, y) - Return quotient and remainder of the division x / y.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_exp,"\n\ +exp(x) - Return e ** x.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_fma,"\n\ +fma(x, y, z) - Return x multiplied by y, plus z.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_is_canonical,"\n\ +is_canonical(x) - Return True if x is canonical, False otherwise.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_is_finite,"\n\ +is_finite(x) - Return True if x is finite, False otherwise.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_is_infinite,"\n\ +is_infinite(x) - Return True if x is infinite, False otherwise.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_is_nan,"\n\ +is_nan(x) - Return True if x is a qNaN or sNaN, False otherwise.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_is_normal,"\n\ +is_normal(x) - Return True if x is a normal number, False otherwise.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_is_qnan,"\n\ +is_qnan(x) - Return True if x is a quiet NaN, False otherwise.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_is_signed,"\n\ +is_signed(x) - Return True if x is negative, False otherwise.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_is_snan,"\n\ +is_snan() - Return True if x is a signaling NaN, False otherwise.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_is_subnormal,"\n\ +is_subnormal(x) - Return True if x is subnormal, False otherwise.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_is_zero,"\n\ +is_zero(x) - Return True if x is a zero, False otherwise.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_ln,"\n\ +ln(x) - Return the natural (base e) logarithm of x.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_log10,"\n\ +log10(x) - Return the base 10 logarithm of x.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_logb,"\n\ +logb(x) - Return the exponent of the magnitude of the operand's MSD.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_logical_and,"\n\ +logical_and(x, y) - Digit-wise and of x and y.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_logical_invert,"\n\ +logical_invert(x) - Invert all digits of x.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_logical_or,"\n\ +logical_or(x, y) - Digit-wise or of x and y.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_logical_xor,"\n\ +logical_xor(x, y) - Digit-wise xor of x and y.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_max,"\n\ +max(x, y) - Compare the values numerically and return the maximum.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_max_mag,"\n\ +max_mag(x, y) - Compare the values numerically with their sign ignored.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_min,"\n\ +min(x, y) - Compare the values numerically and return the minimum.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_min_mag,"\n\ +min_mag(x, y) - Compare the values numerically with their sign ignored.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_minus,"\n\ +minus(x) - Minus corresponds to the unary prefix minus operator in Python,\n\ +but applies the context to the result.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_multiply,"\n\ +multiply(x, y) - Return the product of x and y.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_next_minus,"\n\ +next_minus(x) - Return the largest representable number smaller than x.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_next_plus,"\n\ +next_plus(x) - Return the smallest representable number larger than x.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_next_toward,"\n\ +next_toward(x) - Return the number closest to x, in the direction towards y.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_normalize,"\n\ +normalize(x) - Reduce x to its simplest form. Alias for reduce(x).\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_number_class,"\n\ +number_class(x) - Return an indication of the class of x.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_plus,"\n\ +plus(x) - Plus corresponds to the unary prefix plus operator in Python,\n\ +but applies the context to the result.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_power,"\n\ +power(x, y) - Compute x**y. If x is negative, then y must be integral.\n\ +The result will be inexact unless y is integral and the result is finite\n\ +and can be expressed exactly in 'precision' digits. In the Python version\n\ +the result is always correctly rounded, in the C version the result is\n\ +almost always correctly rounded.\n\ +\n\ +power(x, y, m) - Compute (x**y) % m. The following restrictions hold:\n\ +\n\ + * all three arguments must be integral\n\ + * y must be nonnegative\n\ + * at least one of x or y must be nonzero\n\ + * m must be nonzero and less than 10**prec in absolute value\n\ +\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_quantize,"\n\ +quantize(x, y) - Return a value equal to x (rounded), having the exponent of y.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_radix,"\n\ +radix() - Return 10.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_remainder,"\n\ +remainder(x, y) - Return the remainder from integer division. The sign of\n\ +the result, if non-zero, is the same as that of the original dividend.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_remainder_near,"\n\ +remainder_near(x, y) - Return x - y * n, where n is the integer nearest the\n\ +exact value of x / y (if the result is 0 then its sign will be the sign of x).\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_rotate,"\n\ +rotate(x, y) - Return a copy of x, rotated by y places.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_same_quantum,"\n\ +same_quantum(x, y) - Return True if the two operands have the same exponent.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_scaleb,"\n\ +scaleb(x, y) - Return the first operand after adding the second value\n\ +to its exp.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_shift,"\n\ +shift(x, y) - Return a copy of x, shifted by y places.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_sqrt,"\n\ +sqrt(x) - Square root of a non-negative number to context precision.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_subtract,"\n\ +subtract(x, y) - Return the difference between x and y.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_to_eng_string,"\n\ +to_eng_string(x) - Convert a number to a string, using engineering notation.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_to_integral,"\n\ +to_integral(x) - Identical to to_integral_value(x).\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_to_integral_exact,"\n\ +to_integral_exact(x) - Round to an integer. Signal if the result is\n\ +rounded or inexact.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_to_integral_value,"\n\ +to_integral_value(x) - Round to an integer.\n\ +\n"); + +PyDoc_STRVAR(doc_ctx_to_sci_string,"\n\ +to_sci_string(x) - Convert a number to a string using scientific notation.\n\ +\n"); + + +#endif /* DOCSTRINGS_H */ + + + |