diff options
author | Stefan Krah <skrah@bytereef.org> | 2012-05-16 18:10:21 (GMT) |
---|---|---|
committer | Stefan Krah <skrah@bytereef.org> | 2012-05-16 18:10:21 (GMT) |
commit | 696d10f1bbc353cefea8048d67502e6a1663073f (patch) | |
tree | b0d502df609a0877e9e0a76c362043b0dc89e38d /Modules/_decimal/libmpdec | |
parent | 07542a0629755d4c425100f93beaaba73af86ebc (diff) | |
download | cpython-696d10f1bbc353cefea8048d67502e6a1663073f.zip cpython-696d10f1bbc353cefea8048d67502e6a1663073f.tar.gz cpython-696d10f1bbc353cefea8048d67502e6a1663073f.tar.bz2 |
Changes in _mpd_qexp():
-----------------------
1) Reduce the number of iterations in the Horner scheme for operands with
a negative adjusted exponent. Previously the number was overestimated
quite generously.
2) The function _mpd_get_exp_iterations() now has an ACL2 proof and
is rewritten accordingly.
3) The proof relies on abs(op) > 9 * 10**(-prec-1), so operands without
that property are now handled by the new function _mpd_qexp_check_one().
4) The error analysis for the evaluation of the truncated Taylor series
in Hull&Abrham's paper relies on the fact that the reduced operand
'r' has fewer than context.prec digits.
Since the operands may have more than context.prec digits, a new ACL2
proof covers the case that r.digits > context.prec. To facilitate the
proof, the Horner step now uses fma instead of rounding twice in
multiply/add.
Changes in mpd_qexp():
----------------------
1) Fix a bound in the correct rounding loop that was too optimistic. In
practice results were always correctly rounded, because it is unlikely
that the error in _mpd_qexp() ever reaches the theoretical maximum.
Diffstat (limited to 'Modules/_decimal/libmpdec')
-rw-r--r-- | Modules/_decimal/libmpdec/mpdecimal.c | 163 |
1 files changed, 117 insertions, 46 deletions
diff --git a/Modules/_decimal/libmpdec/mpdecimal.c b/Modules/_decimal/libmpdec/mpdecimal.c index 52df947..8d343c1 100644 --- a/Modules/_decimal/libmpdec/mpdecimal.c +++ b/Modules/_decimal/libmpdec/mpdecimal.c @@ -3878,53 +3878,97 @@ mpd_qdiv_u64(mpd_t *result, const mpd_t *a, uint64_t b, } #endif -#if defined(_MSC_VER) - /* conversion from 'double' to 'mpd_ssize_t', possible loss of data */ - #pragma warning(disable:4244) -#endif +/* Pad the result with trailing zeros if it has fewer digits than prec. */ +static void +_mpd_zeropad(mpd_t *result, const mpd_context_t *ctx, uint32_t *status) +{ + if (!mpd_isspecial(result) && !mpd_iszero(result) && + result->digits < ctx->prec) { + mpd_ssize_t shift = ctx->prec - result->digits; + mpd_qshiftl(result, result, shift, status); + result->exp -= shift; + } +} + +/* Check if the result is guaranteed to be one. */ +static int +_mpd_qexp_check_one(mpd_t *result, const mpd_t *a, const mpd_context_t *ctx, + uint32_t *status) +{ + MPD_NEW_CONST(lim,0,-(ctx->prec+1),1,1,1,9); + MPD_NEW_SHARED(aa, a); + + mpd_set_positive(&aa); + + /* abs(a) <= 9 * 10**(-prec-1) */ + if (_mpd_cmp(&aa, &lim) <= 0) { + _settriple(result, 0, 1, 0); + _mpd_zeropad(result, ctx, status); + *status = MPD_Rounded|MPD_Inexact; + return 1; + } + + return 0; +} + /* * Get the number of iterations for the Horner scheme in _mpd_qexp(). */ static inline mpd_ssize_t -_mpd_get_exp_iterations(const mpd_t *a, mpd_ssize_t prec) +_mpd_get_exp_iterations(const mpd_t *r, mpd_ssize_t p) { - mpd_uint_t dummy; - mpd_uint_t msdigits; - double f; + mpd_ssize_t log10pbyr; /* lower bound for log10(p / abs(r)) */ + mpd_ssize_t n; - /* 9 is MPD_RDIGITS for 32 bit platforms */ - _mpd_get_msdigits(&dummy, &msdigits, a, 9); - f = ((double)msdigits + 1) / mpd_pow10[mpd_word_digits(msdigits)]; + assert(p >= 10); + assert(!mpd_iszero(r)); + assert(-p < mpd_adjexp(r) && mpd_adjexp(r) <= -1); #ifdef CONFIG_64 - #ifdef USE_80BIT_LONG_DOUBLE - return ceill((1.435*(long double)prec - 1.182) - / log10l((long double)prec/f)); - #else - /* prec > floor((1ULL<<53) / 1.435) */ - if (prec > 6276793905742851LL) { + if (p > (mpd_ssize_t)(1ULL<<52)) { return MPD_SSIZE_MAX; } - return ceil((1.435*(double)prec - 1.182) / log10((double)prec/f)); - #endif -#else /* CONFIG_32 */ - return ceil((1.435*(double)prec - 1.182) / log10((double)prec/f)); - #if defined(_MSC_VER) - #pragma warning(default:4244) - #endif #endif + + /* + * Lower bound for log10(p / abs(r)): adjexp(p) - (adjexp(r) + 1) + * At this point (for CONFIG_64, CONFIG_32 is not problematic): + * 1) 10 <= p <= 2**52 + * 2) -p < adjexp(r) <= -1 + * 3) 1 <= log10pbyr <= 2**52 + 14 + */ + log10pbyr = (mpd_word_digits(p)-1) - (mpd_adjexp(r)+1); + + /* + * The numerator in the paper is 1.435 * p - 1.182, calculated + * exactly. We compensate for rounding errors by using 1.43503. + * ACL2 proofs: + * 1) exp-iter-approx-lower-bound: The term below evaluated + * in 53-bit floating point arithmetic is greater than or + * equal to the exact term used in the paper. + * 2) exp-iter-approx-upper-bound: The term below is less than + * or equal to 3/2 * p <= 3/2 * 2**52. + */ + n = (mpd_ssize_t)ceil((1.43503*(double)p - 1.182) / (double)log10pbyr); + return n >= 3 ? n : 3; } /* - * Internal function, specials have been dealt with. + * Internal function, specials have been dealt with. The result has a + * relative error of less than 0.5 * 10**(-ctx->prec). * * The algorithm is from Hull&Abrham, Variable Precision Exponential Function, * ACM Transactions on Mathematical Software, Vol. 12, No. 2, June 1986. * * Main differences: * - * - The number of iterations for the Horner scheme is calculated using the - * C log10() function. + * - The number of iterations for the Horner scheme is calculated using + * 53-bit floating point arithmetic. + * + * - In the error analysis for ER (relative error accumulated in the + * evaluation of the truncated series) the reduced operand r may + * have any number of digits. + * ACL2 proof: exponent-relative-error * * - The analysis for early abortion has been adapted for the mpd_t * ranges. @@ -3941,18 +3985,23 @@ _mpd_qexp(mpd_t *result, const mpd_t *a, const mpd_context_t *ctx, assert(!mpd_isspecial(a)); + if (mpd_iszerocoeff(a)) { + _settriple(result, MPD_POS, 1, 0); + return; + } + /* - * We are calculating e^x = e^(r*10^t) = (e^r)^(10^t), where r < 1 and t >= 0. + * We are calculating e^x = e^(r*10^t) = (e^r)^(10^t), where abs(r) < 1 and t >= 0. * * If t > 0, we have: * - * (1) 0.1 <= r < 1, so e^r >= e^0.1. Overflow in the final power operation - * will occur when (e^0.1)^(10^t) > 10^(emax+1). If we consider MAX_EMAX, - * this will happen for t > 10 (32 bit) or (t > 19) (64 bit). + * (1) 0.1 <= r < 1, so e^0.1 <= e^r. If t > MAX_T, overflow occurs: + * + * MAX-EMAX+1 < log10(e^(0.1*10*t)) <= log10(e^(r*10^t)) < adjexp(e^(r*10^t))+1 + * + * (2) -1 < r <= -0.1, so e^r <= e^-0.1. It t > MAX_T, underflow occurs: * - * (2) -1 < r <= -0.1, so e^r > e^-1. Underflow in the final power operation - * will occur when (e^-1)^(10^t) < 10^(etiny-1). If we consider MIN_ETINY, - * this will also happen for t > 10 (32 bit) or (t > 19) (64 bit). + * adjexp(e^(r*10^t)) <= log10(e^(r*10^t)) <= log10(e^(-0.1*10^t) < MIN-ETINY */ #if defined(CONFIG_64) #define MPD_EXP_MAX_T 19 @@ -3974,29 +4023,41 @@ _mpd_qexp(mpd_t *result, const mpd_t *a, const mpd_context_t *ctx, return; } + /* abs(a) <= 9 * 10**(-prec-1) */ + if (_mpd_qexp_check_one(result, a, ctx, status)) { + return; + } + mpd_maxcontext(&workctx); workctx.prec = ctx->prec + t + 2; - workctx.prec = (workctx.prec < 9) ? 9 : workctx.prec; + workctx.prec = (workctx.prec < 10) ? 10 : workctx.prec; workctx.round = MPD_ROUND_HALF_EVEN; - if ((n = _mpd_get_exp_iterations(a, workctx.prec)) == MPD_SSIZE_MAX) { - mpd_seterror(result, MPD_Invalid_operation, status); /* GCOV_UNLIKELY */ - goto finish; /* GCOV_UNLIKELY */ - } - if (!mpd_qcopy(result, a, status)) { - goto finish; + return; } result->exp -= t; + /* + * At this point: + * 1) 9 * 10**(-prec-1) < abs(a) + * 2) 9 * 10**(-prec-t-1) < abs(r) + * 3) log10(9) - prec - t - 1 < log10(abs(r)) < adjexp(abs(r)) + 1 + * 4) - prec - t - 2 < adjexp(abs(r)) <= -1 + */ + n = _mpd_get_exp_iterations(result, workctx.prec); + if (n == MPD_SSIZE_MAX) { + mpd_seterror(result, MPD_Invalid_operation, status); /* GCOV_UNLIKELY */ + return; /* GCOV_UNLIKELY */ + } + _settriple(&sum, MPD_POS, 1, 0); for (j = n-1; j >= 1; j--) { word.data[0] = j; mpd_setdigits(&word); mpd_qdiv(&tmp, result, &word, &workctx, &workctx.status); - mpd_qmul(&sum, &sum, &tmp, &workctx, &workctx.status); - mpd_qadd(&sum, &sum, &one, &workctx, &workctx.status); + mpd_qfma(&sum, &sum, &tmp, &one, &workctx, &workctx.status); } #ifdef CONFIG_64 @@ -4013,8 +4074,8 @@ _mpd_qexp(mpd_t *result, const mpd_t *a, const mpd_context_t *ctx, } #endif + _mpd_zeropad(result, ctx, status); -finish: mpd_del(&tmp); mpd_del(&sum); *status |= (workctx.status&MPD_Errors); @@ -4069,8 +4130,18 @@ mpd_qexp(mpd_t *result, const mpd_t *a, const mpd_context_t *ctx, workctx.prec = prec; _mpd_qexp(result, a, &workctx, status); _ssettriple(&ulp, MPD_POS, 1, - result->exp + result->digits-workctx.prec-1); - + result->exp + result->digits-workctx.prec); + + /* + * At this point: + * 1) abs(result - e**x) < 0.5 * 10**(-prec) * e**x + * 2) result - ulp < e**x < result + ulp + * 3) result - ulp < result < result + ulp + * + * If round(result-ulp)==round(result+ulp), then + * round(result)==round(e**x). Therefore the result + * is correctly rounded. + */ workctx.prec = ctx->prec; mpd_qadd(&t1, result, &ulp, &workctx, &workctx.status); mpd_qsub(&t2, result, &ulp, &workctx, &workctx.status); |