summaryrefslogtreecommitdiffstats
path: root/Modules/_math.c
diff options
context:
space:
mode:
authorMark Dickinson <dickinsm@gmail.com>2010-07-05 20:14:26 (GMT)
committerMark Dickinson <dickinsm@gmail.com>2010-07-05 20:14:26 (GMT)
commit6c3bcb74b222f9a0cda9e5a6f21a8fe98567779f (patch)
tree2324ad327f4370117c4467398ddb58a339e9dc46 /Modules/_math.c
parent5ada7c7315f34eee5664f4daf44ff75eba414fe3 (diff)
downloadcpython-6c3bcb74b222f9a0cda9e5a6f21a8fe98567779f.zip
cpython-6c3bcb74b222f9a0cda9e5a6f21a8fe98567779f.tar.gz
cpython-6c3bcb74b222f9a0cda9e5a6f21a8fe98567779f.tar.bz2
Post-detabification cleanup.
Diffstat (limited to 'Modules/_math.c')
-rw-r--r--Modules/_math.c16
1 files changed, 8 insertions, 8 deletions
diff --git a/Modules/_math.c b/Modules/_math.c
index b5d8b45..d5974e3 100644
--- a/Modules/_math.c
+++ b/Modules/_math.c
@@ -56,13 +56,13 @@ _Py_acosh(double x)
if (Py_IS_INFINITY(x)) {
return x+x;
} else {
- return log(x)+ln2; /* acosh(huge)=log(2x) */
+ return log(x)+ln2; /* acosh(huge)=log(2x) */
}
}
else if (x == 1.) {
- return 0.0; /* acosh(1) = 0 */
+ return 0.0; /* acosh(1) = 0 */
}
- else if (x > 2.) { /* 2 < x < 2**28 */
+ else if (x > 2.) { /* 2 < x < 2**28 */
double t = x*x;
return log(2.0*x - 1.0 / (x + sqrt(t - 1.0)));
}
@@ -94,7 +94,7 @@ _Py_asinh(double x)
return x+x;
}
if (absx < two_pow_m28) { /* |x| < 2**-28 */
- return x; /* return x inexact except 0 */
+ return x; /* return x inexact except 0 */
}
if (absx > two_pow_p28) { /* |x| > 2**28 */
w = log(absx)+ln2;
@@ -114,9 +114,9 @@ _Py_asinh(double x)
* Method :
* 1.Reduced x to positive by atanh(-x) = -atanh(x)
* 2.For x>=0.5
- * 1 2x x
- * atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------)
- * 2 1 - x 1 - x
+ * 1 2x x
+ * atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * -------)
+ * 2 1 - x 1 - x
*
* For x<0.5
* atanh(x) = 0.5*log1p(2x+2x*x/(1-x))
@@ -194,7 +194,7 @@ _Py_log1p(double x)
/* For x small, we use the following approach. Let y be the nearest float
to 1+x, then
- 1+x = y * (1 - (y-1-x)/y)
+ 1+x = y * (1 - (y-1-x)/y)
so log(1+x) = log(y) + log(1-(y-1-x)/y). Since (y-1-x)/y is tiny, the
second term is well approximated by (y-1-x)/y. If abs(x) >=