summaryrefslogtreecommitdiffstats
path: root/Modules/cmathmodule.c
diff options
context:
space:
mode:
authorAntoine Pitrou <solipsis@pitrou.net>2010-05-09 15:52:27 (GMT)
committerAntoine Pitrou <solipsis@pitrou.net>2010-05-09 15:52:27 (GMT)
commitf95a1b3c53bdd678b64aa608d4375660033460c3 (patch)
treea8bee40b1b14e28ff5978ea519f3035a3c399912 /Modules/cmathmodule.c
parentbd250300191133d276a71b395b6428081bf825b8 (diff)
downloadcpython-f95a1b3c53bdd678b64aa608d4375660033460c3.zip
cpython-f95a1b3c53bdd678b64aa608d4375660033460c3.tar.gz
cpython-f95a1b3c53bdd678b64aa608d4375660033460c3.tar.bz2
Recorded merge of revisions 81029 via svnmerge from
svn+ssh://pythondev@svn.python.org/python/trunk ........ r81029 | antoine.pitrou | 2010-05-09 16:46:46 +0200 (dim., 09 mai 2010) | 3 lines Untabify C files. Will watch buildbots. ........
Diffstat (limited to 'Modules/cmathmodule.c')
-rw-r--r--Modules/cmathmodule.c1620
1 files changed, 810 insertions, 810 deletions
diff --git a/Modules/cmathmodule.c b/Modules/cmathmodule.c
index 4d13e58..2af2e53 100644
--- a/Modules/cmathmodule.c
+++ b/Modules/cmathmodule.c
@@ -32,7 +32,7 @@
#define CM_LOG_LARGE_DOUBLE (log(CM_LARGE_DOUBLE))
#define CM_SQRT_DBL_MIN (sqrt(DBL_MIN))
-/*
+/*
CM_SCALE_UP is an odd integer chosen such that multiplication by
2**CM_SCALE_UP is sufficient to turn a subnormal into a normal.
CM_SCALE_DOWN is (-(CM_SCALE_UP+1)/2). These scalings are used to compute
@@ -63,46 +63,46 @@ static PyObject * math_error(void);
*/
enum special_types {
- ST_NINF, /* 0, negative infinity */
- ST_NEG, /* 1, negative finite number (nonzero) */
- ST_NZERO, /* 2, -0. */
- ST_PZERO, /* 3, +0. */
- ST_POS, /* 4, positive finite number (nonzero) */
- ST_PINF, /* 5, positive infinity */
- ST_NAN /* 6, Not a Number */
+ ST_NINF, /* 0, negative infinity */
+ ST_NEG, /* 1, negative finite number (nonzero) */
+ ST_NZERO, /* 2, -0. */
+ ST_PZERO, /* 3, +0. */
+ ST_POS, /* 4, positive finite number (nonzero) */
+ ST_PINF, /* 5, positive infinity */
+ ST_NAN /* 6, Not a Number */
};
static enum special_types
special_type(double d)
{
- if (Py_IS_FINITE(d)) {
- if (d != 0) {
- if (copysign(1., d) == 1.)
- return ST_POS;
- else
- return ST_NEG;
- }
- else {
- if (copysign(1., d) == 1.)
- return ST_PZERO;
- else
- return ST_NZERO;
- }
- }
- if (Py_IS_NAN(d))
- return ST_NAN;
- if (copysign(1., d) == 1.)
- return ST_PINF;
- else
- return ST_NINF;
+ if (Py_IS_FINITE(d)) {
+ if (d != 0) {
+ if (copysign(1., d) == 1.)
+ return ST_POS;
+ else
+ return ST_NEG;
+ }
+ else {
+ if (copysign(1., d) == 1.)
+ return ST_PZERO;
+ else
+ return ST_NZERO;
+ }
+ }
+ if (Py_IS_NAN(d))
+ return ST_NAN;
+ if (copysign(1., d) == 1.)
+ return ST_PINF;
+ else
+ return ST_NINF;
}
-#define SPECIAL_VALUE(z, table) \
- if (!Py_IS_FINITE((z).real) || !Py_IS_FINITE((z).imag)) { \
- errno = 0; \
- return table[special_type((z).real)] \
- [special_type((z).imag)]; \
- }
+#define SPECIAL_VALUE(z, table) \
+ if (!Py_IS_FINITE((z).real) || !Py_IS_FINITE((z).imag)) { \
+ errno = 0; \
+ return table[special_type((z).real)] \
+ [special_type((z).imag)]; \
+ }
#define P Py_MATH_PI
#define P14 0.25*Py_MATH_PI
@@ -126,34 +126,34 @@ static Py_complex acos_special_values[7][7];
static Py_complex
c_acos(Py_complex z)
{
- Py_complex s1, s2, r;
-
- SPECIAL_VALUE(z, acos_special_values);
-
- if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) {
- /* avoid unnecessary overflow for large arguments */
- r.real = atan2(fabs(z.imag), z.real);
- /* split into cases to make sure that the branch cut has the
- correct continuity on systems with unsigned zeros */
- if (z.real < 0.) {
- r.imag = -copysign(log(hypot(z.real/2., z.imag/2.)) +
- M_LN2*2., z.imag);
- } else {
- r.imag = copysign(log(hypot(z.real/2., z.imag/2.)) +
- M_LN2*2., -z.imag);
- }
- } else {
- s1.real = 1.-z.real;
- s1.imag = -z.imag;
- s1 = c_sqrt(s1);
- s2.real = 1.+z.real;
- s2.imag = z.imag;
- s2 = c_sqrt(s2);
- r.real = 2.*atan2(s1.real, s2.real);
- r.imag = m_asinh(s2.real*s1.imag - s2.imag*s1.real);
- }
- errno = 0;
- return r;
+ Py_complex s1, s2, r;
+
+ SPECIAL_VALUE(z, acos_special_values);
+
+ if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) {
+ /* avoid unnecessary overflow for large arguments */
+ r.real = atan2(fabs(z.imag), z.real);
+ /* split into cases to make sure that the branch cut has the
+ correct continuity on systems with unsigned zeros */
+ if (z.real < 0.) {
+ r.imag = -copysign(log(hypot(z.real/2., z.imag/2.)) +
+ M_LN2*2., z.imag);
+ } else {
+ r.imag = copysign(log(hypot(z.real/2., z.imag/2.)) +
+ M_LN2*2., -z.imag);
+ }
+ } else {
+ s1.real = 1.-z.real;
+ s1.imag = -z.imag;
+ s1 = c_sqrt(s1);
+ s2.real = 1.+z.real;
+ s2.imag = z.imag;
+ s2 = c_sqrt(s2);
+ r.real = 2.*atan2(s1.real, s2.real);
+ r.imag = m_asinh(s2.real*s1.imag - s2.imag*s1.real);
+ }
+ errno = 0;
+ return r;
}
PyDoc_STRVAR(c_acos_doc,
@@ -167,26 +167,26 @@ static Py_complex acosh_special_values[7][7];
static Py_complex
c_acosh(Py_complex z)
{
- Py_complex s1, s2, r;
-
- SPECIAL_VALUE(z, acosh_special_values);
-
- if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) {
- /* avoid unnecessary overflow for large arguments */
- r.real = log(hypot(z.real/2., z.imag/2.)) + M_LN2*2.;
- r.imag = atan2(z.imag, z.real);
- } else {
- s1.real = z.real - 1.;
- s1.imag = z.imag;
- s1 = c_sqrt(s1);
- s2.real = z.real + 1.;
- s2.imag = z.imag;
- s2 = c_sqrt(s2);
- r.real = m_asinh(s1.real*s2.real + s1.imag*s2.imag);
- r.imag = 2.*atan2(s1.imag, s2.real);
- }
- errno = 0;
- return r;
+ Py_complex s1, s2, r;
+
+ SPECIAL_VALUE(z, acosh_special_values);
+
+ if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) {
+ /* avoid unnecessary overflow for large arguments */
+ r.real = log(hypot(z.real/2., z.imag/2.)) + M_LN2*2.;
+ r.imag = atan2(z.imag, z.real);
+ } else {
+ s1.real = z.real - 1.;
+ s1.imag = z.imag;
+ s1 = c_sqrt(s1);
+ s2.real = z.real + 1.;
+ s2.imag = z.imag;
+ s2 = c_sqrt(s2);
+ r.real = m_asinh(s1.real*s2.real + s1.imag*s2.imag);
+ r.imag = 2.*atan2(s1.imag, s2.real);
+ }
+ errno = 0;
+ return r;
}
PyDoc_STRVAR(c_acosh_doc,
@@ -198,14 +198,14 @@ PyDoc_STRVAR(c_acosh_doc,
static Py_complex
c_asin(Py_complex z)
{
- /* asin(z) = -i asinh(iz) */
- Py_complex s, r;
- s.real = -z.imag;
- s.imag = z.real;
- s = c_asinh(s);
- r.real = s.imag;
- r.imag = -s.real;
- return r;
+ /* asin(z) = -i asinh(iz) */
+ Py_complex s, r;
+ s.real = -z.imag;
+ s.imag = z.real;
+ s = c_asinh(s);
+ r.real = s.imag;
+ r.imag = -s.real;
+ return r;
}
PyDoc_STRVAR(c_asin_doc,
@@ -219,31 +219,31 @@ static Py_complex asinh_special_values[7][7];
static Py_complex
c_asinh(Py_complex z)
{
- Py_complex s1, s2, r;
-
- SPECIAL_VALUE(z, asinh_special_values);
-
- if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) {
- if (z.imag >= 0.) {
- r.real = copysign(log(hypot(z.real/2., z.imag/2.)) +
- M_LN2*2., z.real);
- } else {
- r.real = -copysign(log(hypot(z.real/2., z.imag/2.)) +
- M_LN2*2., -z.real);
- }
- r.imag = atan2(z.imag, fabs(z.real));
- } else {
- s1.real = 1.+z.imag;
- s1.imag = -z.real;
- s1 = c_sqrt(s1);
- s2.real = 1.-z.imag;
- s2.imag = z.real;
- s2 = c_sqrt(s2);
- r.real = m_asinh(s1.real*s2.imag-s2.real*s1.imag);
- r.imag = atan2(z.imag, s1.real*s2.real-s1.imag*s2.imag);
- }
- errno = 0;
- return r;
+ Py_complex s1, s2, r;
+
+ SPECIAL_VALUE(z, asinh_special_values);
+
+ if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) {
+ if (z.imag >= 0.) {
+ r.real = copysign(log(hypot(z.real/2., z.imag/2.)) +
+ M_LN2*2., z.real);
+ } else {
+ r.real = -copysign(log(hypot(z.real/2., z.imag/2.)) +
+ M_LN2*2., -z.real);
+ }
+ r.imag = atan2(z.imag, fabs(z.real));
+ } else {
+ s1.real = 1.+z.imag;
+ s1.imag = -z.real;
+ s1 = c_sqrt(s1);
+ s2.real = 1.-z.imag;
+ s2.imag = z.real;
+ s2 = c_sqrt(s2);
+ r.real = m_asinh(s1.real*s2.imag-s2.real*s1.imag);
+ r.imag = atan2(z.imag, s1.real*s2.real-s1.imag*s2.imag);
+ }
+ errno = 0;
+ return r;
}
PyDoc_STRVAR(c_asinh_doc,
@@ -255,14 +255,14 @@ PyDoc_STRVAR(c_asinh_doc,
static Py_complex
c_atan(Py_complex z)
{
- /* atan(z) = -i atanh(iz) */
- Py_complex s, r;
- s.real = -z.imag;
- s.imag = z.real;
- s = c_atanh(s);
- r.real = s.imag;
- r.imag = -s.real;
- return r;
+ /* atan(z) = -i atanh(iz) */
+ Py_complex s, r;
+ s.real = -z.imag;
+ s.imag = z.real;
+ s = c_atanh(s);
+ r.real = s.imag;
+ r.imag = -s.real;
+ return r;
}
/* Windows screws up atan2 for inf and nan, and alpha Tru64 5.1 doesn't follow
@@ -270,29 +270,29 @@ c_atan(Py_complex z)
static double
c_atan2(Py_complex z)
{
- if (Py_IS_NAN(z.real) || Py_IS_NAN(z.imag))
- return Py_NAN;
- if (Py_IS_INFINITY(z.imag)) {
- if (Py_IS_INFINITY(z.real)) {
- if (copysign(1., z.real) == 1.)
- /* atan2(+-inf, +inf) == +-pi/4 */
- return copysign(0.25*Py_MATH_PI, z.imag);
- else
- /* atan2(+-inf, -inf) == +-pi*3/4 */
- return copysign(0.75*Py_MATH_PI, z.imag);
- }
- /* atan2(+-inf, x) == +-pi/2 for finite x */
- return copysign(0.5*Py_MATH_PI, z.imag);
- }
- if (Py_IS_INFINITY(z.real) || z.imag == 0.) {
- if (copysign(1., z.real) == 1.)
- /* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */
- return copysign(0., z.imag);
- else
- /* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */
- return copysign(Py_MATH_PI, z.imag);
- }
- return atan2(z.imag, z.real);
+ if (Py_IS_NAN(z.real) || Py_IS_NAN(z.imag))
+ return Py_NAN;
+ if (Py_IS_INFINITY(z.imag)) {
+ if (Py_IS_INFINITY(z.real)) {
+ if (copysign(1., z.real) == 1.)
+ /* atan2(+-inf, +inf) == +-pi/4 */
+ return copysign(0.25*Py_MATH_PI, z.imag);
+ else
+ /* atan2(+-inf, -inf) == +-pi*3/4 */
+ return copysign(0.75*Py_MATH_PI, z.imag);
+ }
+ /* atan2(+-inf, x) == +-pi/2 for finite x */
+ return copysign(0.5*Py_MATH_PI, z.imag);
+ }
+ if (Py_IS_INFINITY(z.real) || z.imag == 0.) {
+ if (copysign(1., z.real) == 1.)
+ /* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */
+ return copysign(0., z.imag);
+ else
+ /* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */
+ return copysign(Py_MATH_PI, z.imag);
+ }
+ return atan2(z.imag, z.real);
}
PyDoc_STRVAR(c_atan_doc,
@@ -306,48 +306,48 @@ static Py_complex atanh_special_values[7][7];
static Py_complex
c_atanh(Py_complex z)
{
- Py_complex r;
- double ay, h;
-
- SPECIAL_VALUE(z, atanh_special_values);
-
- /* Reduce to case where z.real >= 0., using atanh(z) = -atanh(-z). */
- if (z.real < 0.) {
- return c_neg(c_atanh(c_neg(z)));
- }
-
- ay = fabs(z.imag);
- if (z.real > CM_SQRT_LARGE_DOUBLE || ay > CM_SQRT_LARGE_DOUBLE) {
- /*
- if abs(z) is large then we use the approximation
- atanh(z) ~ 1/z +/- i*pi/2 (+/- depending on the sign
- of z.imag)
- */
- h = hypot(z.real/2., z.imag/2.); /* safe from overflow */
- r.real = z.real/4./h/h;
- /* the two negations in the next line cancel each other out
- except when working with unsigned zeros: they're there to
- ensure that the branch cut has the correct continuity on
- systems that don't support signed zeros */
- r.imag = -copysign(Py_MATH_PI/2., -z.imag);
- errno = 0;
- } else if (z.real == 1. && ay < CM_SQRT_DBL_MIN) {
- /* C99 standard says: atanh(1+/-0.) should be inf +/- 0i */
- if (ay == 0.) {
- r.real = INF;
- r.imag = z.imag;
- errno = EDOM;
- } else {
- r.real = -log(sqrt(ay)/sqrt(hypot(ay, 2.)));
- r.imag = copysign(atan2(2., -ay)/2, z.imag);
- errno = 0;
- }
- } else {
- r.real = m_log1p(4.*z.real/((1-z.real)*(1-z.real) + ay*ay))/4.;
- r.imag = -atan2(-2.*z.imag, (1-z.real)*(1+z.real) - ay*ay)/2.;
- errno = 0;
- }
- return r;
+ Py_complex r;
+ double ay, h;
+
+ SPECIAL_VALUE(z, atanh_special_values);
+
+ /* Reduce to case where z.real >= 0., using atanh(z) = -atanh(-z). */
+ if (z.real < 0.) {
+ return c_neg(c_atanh(c_neg(z)));
+ }
+
+ ay = fabs(z.imag);
+ if (z.real > CM_SQRT_LARGE_DOUBLE || ay > CM_SQRT_LARGE_DOUBLE) {
+ /*
+ if abs(z) is large then we use the approximation
+ atanh(z) ~ 1/z +/- i*pi/2 (+/- depending on the sign
+ of z.imag)
+ */
+ h = hypot(z.real/2., z.imag/2.); /* safe from overflow */
+ r.real = z.real/4./h/h;
+ /* the two negations in the next line cancel each other out
+ except when working with unsigned zeros: they're there to
+ ensure that the branch cut has the correct continuity on
+ systems that don't support signed zeros */
+ r.imag = -copysign(Py_MATH_PI/2., -z.imag);
+ errno = 0;
+ } else if (z.real == 1. && ay < CM_SQRT_DBL_MIN) {
+ /* C99 standard says: atanh(1+/-0.) should be inf +/- 0i */
+ if (ay == 0.) {
+ r.real = INF;
+ r.imag = z.imag;
+ errno = EDOM;
+ } else {
+ r.real = -log(sqrt(ay)/sqrt(hypot(ay, 2.)));
+ r.imag = copysign(atan2(2., -ay)/2, z.imag);
+ errno = 0;
+ }
+ } else {
+ r.real = m_log1p(4.*z.real/((1-z.real)*(1-z.real) + ay*ay))/4.;
+ r.imag = -atan2(-2.*z.imag, (1-z.real)*(1+z.real) - ay*ay)/2.;
+ errno = 0;
+ }
+ return r;
}
PyDoc_STRVAR(c_atanh_doc,
@@ -359,12 +359,12 @@ PyDoc_STRVAR(c_atanh_doc,
static Py_complex
c_cos(Py_complex z)
{
- /* cos(z) = cosh(iz) */
- Py_complex r;
- r.real = -z.imag;
- r.imag = z.real;
- r = c_cosh(r);
- return r;
+ /* cos(z) = cosh(iz) */
+ Py_complex r;
+ r.real = -z.imag;
+ r.imag = z.real;
+ r = c_cosh(r);
+ return r;
}
PyDoc_STRVAR(c_cos_doc,
@@ -379,51 +379,51 @@ static Py_complex cosh_special_values[7][7];
static Py_complex
c_cosh(Py_complex z)
{
- Py_complex r;
- double x_minus_one;
-
- /* special treatment for cosh(+/-inf + iy) if y is not a NaN */
- if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
- if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag) &&
- (z.imag != 0.)) {
- if (z.real > 0) {
- r.real = copysign(INF, cos(z.imag));
- r.imag = copysign(INF, sin(z.imag));
- }
- else {
- r.real = copysign(INF, cos(z.imag));
- r.imag = -copysign(INF, sin(z.imag));
- }
- }
- else {
- r = cosh_special_values[special_type(z.real)]
- [special_type(z.imag)];
- }
- /* need to set errno = EDOM if y is +/- infinity and x is not
- a NaN */
- if (Py_IS_INFINITY(z.imag) && !Py_IS_NAN(z.real))
- errno = EDOM;
- else
- errno = 0;
- return r;
- }
-
- if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) {
- /* deal correctly with cases where cosh(z.real) overflows but
- cosh(z) does not. */
- x_minus_one = z.real - copysign(1., z.real);
- r.real = cos(z.imag) * cosh(x_minus_one) * Py_MATH_E;
- r.imag = sin(z.imag) * sinh(x_minus_one) * Py_MATH_E;
- } else {
- r.real = cos(z.imag) * cosh(z.real);
- r.imag = sin(z.imag) * sinh(z.real);
- }
- /* detect overflow, and set errno accordingly */
- if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag))
- errno = ERANGE;
- else
- errno = 0;
- return r;
+ Py_complex r;
+ double x_minus_one;
+
+ /* special treatment for cosh(+/-inf + iy) if y is not a NaN */
+ if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
+ if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag) &&
+ (z.imag != 0.)) {
+ if (z.real > 0) {
+ r.real = copysign(INF, cos(z.imag));
+ r.imag = copysign(INF, sin(z.imag));
+ }
+ else {
+ r.real = copysign(INF, cos(z.imag));
+ r.imag = -copysign(INF, sin(z.imag));
+ }
+ }
+ else {
+ r = cosh_special_values[special_type(z.real)]
+ [special_type(z.imag)];
+ }
+ /* need to set errno = EDOM if y is +/- infinity and x is not
+ a NaN */
+ if (Py_IS_INFINITY(z.imag) && !Py_IS_NAN(z.real))
+ errno = EDOM;
+ else
+ errno = 0;
+ return r;
+ }
+
+ if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) {
+ /* deal correctly with cases where cosh(z.real) overflows but
+ cosh(z) does not. */
+ x_minus_one = z.real - copysign(1., z.real);
+ r.real = cos(z.imag) * cosh(x_minus_one) * Py_MATH_E;
+ r.imag = sin(z.imag) * sinh(x_minus_one) * Py_MATH_E;
+ } else {
+ r.real = cos(z.imag) * cosh(z.real);
+ r.imag = sin(z.imag) * sinh(z.real);
+ }
+ /* detect overflow, and set errno accordingly */
+ if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag))
+ errno = ERANGE;
+ else
+ errno = 0;
+ return r;
}
PyDoc_STRVAR(c_cosh_doc,
@@ -439,51 +439,51 @@ static Py_complex exp_special_values[7][7];
static Py_complex
c_exp(Py_complex z)
{
- Py_complex r;
- double l;
-
- if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
- if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag)
- && (z.imag != 0.)) {
- if (z.real > 0) {
- r.real = copysign(INF, cos(z.imag));
- r.imag = copysign(INF, sin(z.imag));
- }
- else {
- r.real = copysign(0., cos(z.imag));
- r.imag = copysign(0., sin(z.imag));
- }
- }
- else {
- r = exp_special_values[special_type(z.real)]
- [special_type(z.imag)];
- }
- /* need to set errno = EDOM if y is +/- infinity and x is not
- a NaN and not -infinity */
- if (Py_IS_INFINITY(z.imag) &&
- (Py_IS_FINITE(z.real) ||
- (Py_IS_INFINITY(z.real) && z.real > 0)))
- errno = EDOM;
- else
- errno = 0;
- return r;
- }
-
- if (z.real > CM_LOG_LARGE_DOUBLE) {
- l = exp(z.real-1.);
- r.real = l*cos(z.imag)*Py_MATH_E;
- r.imag = l*sin(z.imag)*Py_MATH_E;
- } else {
- l = exp(z.real);
- r.real = l*cos(z.imag);
- r.imag = l*sin(z.imag);
- }
- /* detect overflow, and set errno accordingly */
- if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag))
- errno = ERANGE;
- else
- errno = 0;
- return r;
+ Py_complex r;
+ double l;
+
+ if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
+ if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag)
+ && (z.imag != 0.)) {
+ if (z.real > 0) {
+ r.real = copysign(INF, cos(z.imag));
+ r.imag = copysign(INF, sin(z.imag));
+ }
+ else {
+ r.real = copysign(0., cos(z.imag));
+ r.imag = copysign(0., sin(z.imag));
+ }
+ }
+ else {
+ r = exp_special_values[special_type(z.real)]
+ [special_type(z.imag)];
+ }
+ /* need to set errno = EDOM if y is +/- infinity and x is not
+ a NaN and not -infinity */
+ if (Py_IS_INFINITY(z.imag) &&
+ (Py_IS_FINITE(z.real) ||
+ (Py_IS_INFINITY(z.real) && z.real > 0)))
+ errno = EDOM;
+ else
+ errno = 0;
+ return r;
+ }
+
+ if (z.real > CM_LOG_LARGE_DOUBLE) {
+ l = exp(z.real-1.);
+ r.real = l*cos(z.imag)*Py_MATH_E;
+ r.imag = l*sin(z.imag)*Py_MATH_E;
+ } else {
+ l = exp(z.real);
+ r.real = l*cos(z.imag);
+ r.imag = l*sin(z.imag);
+ }
+ /* detect overflow, and set errno accordingly */
+ if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag))
+ errno = ERANGE;
+ else
+ errno = 0;
+ return r;
}
PyDoc_STRVAR(c_exp_doc,
@@ -497,85 +497,85 @@ static Py_complex log_special_values[7][7];
static Py_complex
c_log(Py_complex z)
{
- /*
- The usual formula for the real part is log(hypot(z.real, z.imag)).
- There are four situations where this formula is potentially
- problematic:
-
- (1) the absolute value of z is subnormal. Then hypot is subnormal,
- so has fewer than the usual number of bits of accuracy, hence may
- have large relative error. This then gives a large absolute error
- in the log. This can be solved by rescaling z by a suitable power
- of 2.
-
- (2) the absolute value of z is greater than DBL_MAX (e.g. when both
- z.real and z.imag are within a factor of 1/sqrt(2) of DBL_MAX)
- Again, rescaling solves this.
-
- (3) the absolute value of z is close to 1. In this case it's
- difficult to achieve good accuracy, at least in part because a
- change of 1ulp in the real or imaginary part of z can result in a
- change of billions of ulps in the correctly rounded answer.
-
- (4) z = 0. The simplest thing to do here is to call the
- floating-point log with an argument of 0, and let its behaviour
- (returning -infinity, signaling a floating-point exception, setting
- errno, or whatever) determine that of c_log. So the usual formula
- is fine here.
-
- */
-
- Py_complex r;
- double ax, ay, am, an, h;
-
- SPECIAL_VALUE(z, log_special_values);
-
- ax = fabs(z.real);
- ay = fabs(z.imag);
-
- if (ax > CM_LARGE_DOUBLE || ay > CM_LARGE_DOUBLE) {
- r.real = log(hypot(ax/2., ay/2.)) + M_LN2;
- } else if (ax < DBL_MIN && ay < DBL_MIN) {
- if (ax > 0. || ay > 0.) {
- /* catch cases where hypot(ax, ay) is subnormal */
- r.real = log(hypot(ldexp(ax, DBL_MANT_DIG),
- ldexp(ay, DBL_MANT_DIG))) - DBL_MANT_DIG*M_LN2;
- }
- else {
- /* log(+/-0. +/- 0i) */
- r.real = -INF;
- r.imag = atan2(z.imag, z.real);
- errno = EDOM;
- return r;
- }
- } else {
- h = hypot(ax, ay);
- if (0.71 <= h && h <= 1.73) {
- am = ax > ay ? ax : ay; /* max(ax, ay) */
- an = ax > ay ? ay : ax; /* min(ax, ay) */
- r.real = m_log1p((am-1)*(am+1)+an*an)/2.;
- } else {
- r.real = log(h);
- }
- }
- r.imag = atan2(z.imag, z.real);
- errno = 0;
- return r;
+ /*
+ The usual formula for the real part is log(hypot(z.real, z.imag)).
+ There are four situations where this formula is potentially
+ problematic:
+
+ (1) the absolute value of z is subnormal. Then hypot is subnormal,
+ so has fewer than the usual number of bits of accuracy, hence may
+ have large relative error. This then gives a large absolute error
+ in the log. This can be solved by rescaling z by a suitable power
+ of 2.
+
+ (2) the absolute value of z is greater than DBL_MAX (e.g. when both
+ z.real and z.imag are within a factor of 1/sqrt(2) of DBL_MAX)
+ Again, rescaling solves this.
+
+ (3) the absolute value of z is close to 1. In this case it's
+ difficult to achieve good accuracy, at least in part because a
+ change of 1ulp in the real or imaginary part of z can result in a
+ change of billions of ulps in the correctly rounded answer.
+
+ (4) z = 0. The simplest thing to do here is to call the
+ floating-point log with an argument of 0, and let its behaviour
+ (returning -infinity, signaling a floating-point exception, setting
+ errno, or whatever) determine that of c_log. So the usual formula
+ is fine here.
+
+ */
+
+ Py_complex r;
+ double ax, ay, am, an, h;
+
+ SPECIAL_VALUE(z, log_special_values);
+
+ ax = fabs(z.real);
+ ay = fabs(z.imag);
+
+ if (ax > CM_LARGE_DOUBLE || ay > CM_LARGE_DOUBLE) {
+ r.real = log(hypot(ax/2., ay/2.)) + M_LN2;
+ } else if (ax < DBL_MIN && ay < DBL_MIN) {
+ if (ax > 0. || ay > 0.) {
+ /* catch cases where hypot(ax, ay) is subnormal */
+ r.real = log(hypot(ldexp(ax, DBL_MANT_DIG),
+ ldexp(ay, DBL_MANT_DIG))) - DBL_MANT_DIG*M_LN2;
+ }
+ else {
+ /* log(+/-0. +/- 0i) */
+ r.real = -INF;
+ r.imag = atan2(z.imag, z.real);
+ errno = EDOM;
+ return r;
+ }
+ } else {
+ h = hypot(ax, ay);
+ if (0.71 <= h && h <= 1.73) {
+ am = ax > ay ? ax : ay; /* max(ax, ay) */
+ an = ax > ay ? ay : ax; /* min(ax, ay) */
+ r.real = m_log1p((am-1)*(am+1)+an*an)/2.;
+ } else {
+ r.real = log(h);
+ }
+ }
+ r.imag = atan2(z.imag, z.real);
+ errno = 0;
+ return r;
}
static Py_complex
c_log10(Py_complex z)
{
- Py_complex r;
- int errno_save;
-
- r = c_log(z);
- errno_save = errno; /* just in case the divisions affect errno */
- r.real = r.real / M_LN10;
- r.imag = r.imag / M_LN10;
- errno = errno_save;
- return r;
+ Py_complex r;
+ int errno_save;
+
+ r = c_log(z);
+ errno_save = errno; /* just in case the divisions affect errno */
+ r.real = r.real / M_LN10;
+ r.imag = r.imag / M_LN10;
+ errno = errno_save;
+ return r;
}
PyDoc_STRVAR(c_log10_doc,
@@ -587,14 +587,14 @@ PyDoc_STRVAR(c_log10_doc,
static Py_complex
c_sin(Py_complex z)
{
- /* sin(z) = -i sin(iz) */
- Py_complex s, r;
- s.real = -z.imag;
- s.imag = z.real;
- s = c_sinh(s);
- r.real = s.imag;
- r.imag = -s.real;
- return r;
+ /* sin(z) = -i sin(iz) */
+ Py_complex s, r;
+ s.real = -z.imag;
+ s.imag = z.real;
+ s = c_sinh(s);
+ r.real = s.imag;
+ r.imag = -s.real;
+ return r;
}
PyDoc_STRVAR(c_sin_doc,
@@ -609,50 +609,50 @@ static Py_complex sinh_special_values[7][7];
static Py_complex
c_sinh(Py_complex z)
{
- Py_complex r;
- double x_minus_one;
-
- /* special treatment for sinh(+/-inf + iy) if y is finite and
- nonzero */
- if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
- if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag)
- && (z.imag != 0.)) {
- if (z.real > 0) {
- r.real = copysign(INF, cos(z.imag));
- r.imag = copysign(INF, sin(z.imag));
- }
- else {
- r.real = -copysign(INF, cos(z.imag));
- r.imag = copysign(INF, sin(z.imag));
- }
- }
- else {
- r = sinh_special_values[special_type(z.real)]
- [special_type(z.imag)];
- }
- /* need to set errno = EDOM if y is +/- infinity and x is not
- a NaN */
- if (Py_IS_INFINITY(z.imag) && !Py_IS_NAN(z.real))
- errno = EDOM;
- else
- errno = 0;
- return r;
- }
-
- if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) {
- x_minus_one = z.real - copysign(1., z.real);
- r.real = cos(z.imag) * sinh(x_minus_one) * Py_MATH_E;
- r.imag = sin(z.imag) * cosh(x_minus_one) * Py_MATH_E;
- } else {
- r.real = cos(z.imag) * sinh(z.real);
- r.imag = sin(z.imag) * cosh(z.real);
- }
- /* detect overflow, and set errno accordingly */
- if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag))
- errno = ERANGE;
- else
- errno = 0;
- return r;
+ Py_complex r;
+ double x_minus_one;
+
+ /* special treatment for sinh(+/-inf + iy) if y is finite and
+ nonzero */
+ if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
+ if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag)
+ && (z.imag != 0.)) {
+ if (z.real > 0) {
+ r.real = copysign(INF, cos(z.imag));
+ r.imag = copysign(INF, sin(z.imag));
+ }
+ else {
+ r.real = -copysign(INF, cos(z.imag));
+ r.imag = copysign(INF, sin(z.imag));
+ }
+ }
+ else {
+ r = sinh_special_values[special_type(z.real)]
+ [special_type(z.imag)];
+ }
+ /* need to set errno = EDOM if y is +/- infinity and x is not
+ a NaN */
+ if (Py_IS_INFINITY(z.imag) && !Py_IS_NAN(z.real))
+ errno = EDOM;
+ else
+ errno = 0;
+ return r;
+ }
+
+ if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) {
+ x_minus_one = z.real - copysign(1., z.real);
+ r.real = cos(z.imag) * sinh(x_minus_one) * Py_MATH_E;
+ r.imag = sin(z.imag) * cosh(x_minus_one) * Py_MATH_E;
+ } else {
+ r.real = cos(z.imag) * sinh(z.real);
+ r.imag = sin(z.imag) * cosh(z.real);
+ }
+ /* detect overflow, and set errno accordingly */
+ if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag))
+ errno = ERANGE;
+ else
+ errno = 0;
+ return r;
}
PyDoc_STRVAR(c_sinh_doc,
@@ -666,68 +666,68 @@ static Py_complex sqrt_special_values[7][7];
static Py_complex
c_sqrt(Py_complex z)
{
- /*
- Method: use symmetries to reduce to the case when x = z.real and y
- = z.imag are nonnegative. Then the real part of the result is
- given by
-
- s = sqrt((x + hypot(x, y))/2)
-
- and the imaginary part is
-
- d = (y/2)/s
-
- If either x or y is very large then there's a risk of overflow in
- computation of the expression x + hypot(x, y). We can avoid this
- by rewriting the formula for s as:
-
- s = 2*sqrt(x/8 + hypot(x/8, y/8))
-
- This costs us two extra multiplications/divisions, but avoids the
- overhead of checking for x and y large.
-
- If both x and y are subnormal then hypot(x, y) may also be
- subnormal, so will lack full precision. We solve this by rescaling
- x and y by a sufficiently large power of 2 to ensure that x and y
- are normal.
- */
-
-
- Py_complex r;
- double s,d;
- double ax, ay;
-
- SPECIAL_VALUE(z, sqrt_special_values);
-
- if (z.real == 0. && z.imag == 0.) {
- r.real = 0.;
- r.imag = z.imag;
- return r;
- }
-
- ax = fabs(z.real);
- ay = fabs(z.imag);
-
- if (ax < DBL_MIN && ay < DBL_MIN && (ax > 0. || ay > 0.)) {
- /* here we catch cases where hypot(ax, ay) is subnormal */
- ax = ldexp(ax, CM_SCALE_UP);
- s = ldexp(sqrt(ax + hypot(ax, ldexp(ay, CM_SCALE_UP))),
- CM_SCALE_DOWN);
- } else {
- ax /= 8.;
- s = 2.*sqrt(ax + hypot(ax, ay/8.));
- }
- d = ay/(2.*s);
-
- if (z.real >= 0.) {
- r.real = s;
- r.imag = copysign(d, z.imag);
- } else {
- r.real = d;
- r.imag = copysign(s, z.imag);
- }
- errno = 0;
- return r;
+ /*
+ Method: use symmetries to reduce to the case when x = z.real and y
+ = z.imag are nonnegative. Then the real part of the result is
+ given by
+
+ s = sqrt((x + hypot(x, y))/2)
+
+ and the imaginary part is
+
+ d = (y/2)/s
+
+ If either x or y is very large then there's a risk of overflow in
+ computation of the expression x + hypot(x, y). We can avoid this
+ by rewriting the formula for s as:
+
+ s = 2*sqrt(x/8 + hypot(x/8, y/8))
+
+ This costs us two extra multiplications/divisions, but avoids the
+ overhead of checking for x and y large.
+
+ If both x and y are subnormal then hypot(x, y) may also be
+ subnormal, so will lack full precision. We solve this by rescaling
+ x and y by a sufficiently large power of 2 to ensure that x and y
+ are normal.
+ */
+
+
+ Py_complex r;
+ double s,d;
+ double ax, ay;
+
+ SPECIAL_VALUE(z, sqrt_special_values);
+
+ if (z.real == 0. && z.imag == 0.) {
+ r.real = 0.;
+ r.imag = z.imag;
+ return r;
+ }
+
+ ax = fabs(z.real);
+ ay = fabs(z.imag);
+
+ if (ax < DBL_MIN && ay < DBL_MIN && (ax > 0. || ay > 0.)) {
+ /* here we catch cases where hypot(ax, ay) is subnormal */
+ ax = ldexp(ax, CM_SCALE_UP);
+ s = ldexp(sqrt(ax + hypot(ax, ldexp(ay, CM_SCALE_UP))),
+ CM_SCALE_DOWN);
+ } else {
+ ax /= 8.;
+ s = 2.*sqrt(ax + hypot(ax, ay/8.));
+ }
+ d = ay/(2.*s);
+
+ if (z.real >= 0.) {
+ r.real = s;
+ r.imag = copysign(d, z.imag);
+ } else {
+ r.real = d;
+ r.imag = copysign(s, z.imag);
+ }
+ errno = 0;
+ return r;
}
PyDoc_STRVAR(c_sqrt_doc,
@@ -739,14 +739,14 @@ PyDoc_STRVAR(c_sqrt_doc,
static Py_complex
c_tan(Py_complex z)
{
- /* tan(z) = -i tanh(iz) */
- Py_complex s, r;
- s.real = -z.imag;
- s.imag = z.real;
- s = c_tanh(s);
- r.real = s.imag;
- r.imag = -s.real;
- return r;
+ /* tan(z) = -i tanh(iz) */
+ Py_complex s, r;
+ s.real = -z.imag;
+ s.imag = z.real;
+ s = c_tanh(s);
+ r.real = s.imag;
+ r.imag = -s.real;
+ return r;
}
PyDoc_STRVAR(c_tan_doc,
@@ -761,65 +761,65 @@ static Py_complex tanh_special_values[7][7];
static Py_complex
c_tanh(Py_complex z)
{
- /* Formula:
-
- tanh(x+iy) = (tanh(x)(1+tan(y)^2) + i tan(y)(1-tanh(x))^2) /
- (1+tan(y)^2 tanh(x)^2)
-
- To avoid excessive roundoff error, 1-tanh(x)^2 is better computed
- as 1/cosh(x)^2. When abs(x) is large, we approximate 1-tanh(x)^2
- by 4 exp(-2*x) instead, to avoid possible overflow in the
- computation of cosh(x).
-
- */
-
- Py_complex r;
- double tx, ty, cx, txty, denom;
-
- /* special treatment for tanh(+/-inf + iy) if y is finite and
- nonzero */
- if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
- if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag)
- && (z.imag != 0.)) {
- if (z.real > 0) {
- r.real = 1.0;
- r.imag = copysign(0.,
- 2.*sin(z.imag)*cos(z.imag));
- }
- else {
- r.real = -1.0;
- r.imag = copysign(0.,
- 2.*sin(z.imag)*cos(z.imag));
- }
- }
- else {
- r = tanh_special_values[special_type(z.real)]
- [special_type(z.imag)];
- }
- /* need to set errno = EDOM if z.imag is +/-infinity and
- z.real is finite */
- if (Py_IS_INFINITY(z.imag) && Py_IS_FINITE(z.real))
- errno = EDOM;
- else
- errno = 0;
- return r;
- }
-
- /* danger of overflow in 2.*z.imag !*/
- if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) {
- r.real = copysign(1., z.real);
- r.imag = 4.*sin(z.imag)*cos(z.imag)*exp(-2.*fabs(z.real));
- } else {
- tx = tanh(z.real);
- ty = tan(z.imag);
- cx = 1./cosh(z.real);
- txty = tx*ty;
- denom = 1. + txty*txty;
- r.real = tx*(1.+ty*ty)/denom;
- r.imag = ((ty/denom)*cx)*cx;
- }
- errno = 0;
- return r;
+ /* Formula:
+
+ tanh(x+iy) = (tanh(x)(1+tan(y)^2) + i tan(y)(1-tanh(x))^2) /
+ (1+tan(y)^2 tanh(x)^2)
+
+ To avoid excessive roundoff error, 1-tanh(x)^2 is better computed
+ as 1/cosh(x)^2. When abs(x) is large, we approximate 1-tanh(x)^2
+ by 4 exp(-2*x) instead, to avoid possible overflow in the
+ computation of cosh(x).
+
+ */
+
+ Py_complex r;
+ double tx, ty, cx, txty, denom;
+
+ /* special treatment for tanh(+/-inf + iy) if y is finite and
+ nonzero */
+ if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
+ if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag)
+ && (z.imag != 0.)) {
+ if (z.real > 0) {
+ r.real = 1.0;
+ r.imag = copysign(0.,
+ 2.*sin(z.imag)*cos(z.imag));
+ }
+ else {
+ r.real = -1.0;
+ r.imag = copysign(0.,
+ 2.*sin(z.imag)*cos(z.imag));
+ }
+ }
+ else {
+ r = tanh_special_values[special_type(z.real)]
+ [special_type(z.imag)];
+ }
+ /* need to set errno = EDOM if z.imag is +/-infinity and
+ z.real is finite */
+ if (Py_IS_INFINITY(z.imag) && Py_IS_FINITE(z.real))
+ errno = EDOM;
+ else
+ errno = 0;
+ return r;
+ }
+
+ /* danger of overflow in 2.*z.imag !*/
+ if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) {
+ r.real = copysign(1., z.real);
+ r.imag = 4.*sin(z.imag)*cos(z.imag)*exp(-2.*fabs(z.real));
+ } else {
+ tx = tanh(z.real);
+ ty = tan(z.imag);
+ cx = 1./cosh(z.real);
+ txty = tx*ty;
+ denom = 1. + txty*txty;
+ r.real = tx*(1.+ty*ty)/denom;
+ r.imag = ((ty/denom)*cx)*cx;
+ }
+ errno = 0;
+ return r;
}
PyDoc_STRVAR(c_tanh_doc,
@@ -831,23 +831,23 @@ PyDoc_STRVAR(c_tanh_doc,
static PyObject *
cmath_log(PyObject *self, PyObject *args)
{
- Py_complex x;
- Py_complex y;
-
- if (!PyArg_ParseTuple(args, "D|D", &x, &y))
- return NULL;
-
- errno = 0;
- PyFPE_START_PROTECT("complex function", return 0)
- x = c_log(x);
- if (PyTuple_GET_SIZE(args) == 2) {
- y = c_log(y);
- x = c_quot(x, y);
- }
- PyFPE_END_PROTECT(x)
- if (errno != 0)
- return math_error();
- return PyComplex_FromCComplex(x);
+ Py_complex x;
+ Py_complex y;
+
+ if (!PyArg_ParseTuple(args, "D|D", &x, &y))
+ return NULL;
+
+ errno = 0;
+ PyFPE_START_PROTECT("complex function", return 0)
+ x = c_log(x);
+ if (PyTuple_GET_SIZE(args) == 2) {
+ y = c_log(y);
+ x = c_quot(x, y);
+ }
+ PyFPE_END_PROTECT(x)
+ if (errno != 0)
+ return math_error();
+ return PyComplex_FromCComplex(x);
}
PyDoc_STRVAR(cmath_log_doc,
@@ -860,42 +860,42 @@ If the base not specified, returns the natural logarithm (base e) of x.");
static PyObject *
math_error(void)
{
- if (errno == EDOM)
- PyErr_SetString(PyExc_ValueError, "math domain error");
- else if (errno == ERANGE)
- PyErr_SetString(PyExc_OverflowError, "math range error");
- else /* Unexpected math error */
- PyErr_SetFromErrno(PyExc_ValueError);
- return NULL;
+ if (errno == EDOM)
+ PyErr_SetString(PyExc_ValueError, "math domain error");
+ else if (errno == ERANGE)
+ PyErr_SetString(PyExc_OverflowError, "math range error");
+ else /* Unexpected math error */
+ PyErr_SetFromErrno(PyExc_ValueError);
+ return NULL;
}
static PyObject *
math_1(PyObject *args, Py_complex (*func)(Py_complex))
{
- Py_complex x,r ;
- if (!PyArg_ParseTuple(args, "D", &x))
- return NULL;
- errno = 0;
- PyFPE_START_PROTECT("complex function", return 0);
- r = (*func)(x);
- PyFPE_END_PROTECT(r);
- if (errno == EDOM) {
- PyErr_SetString(PyExc_ValueError, "math domain error");
- return NULL;
- }
- else if (errno == ERANGE) {
- PyErr_SetString(PyExc_OverflowError, "math range error");
- return NULL;
- }
- else {
- return PyComplex_FromCComplex(r);
- }
+ Py_complex x,r ;
+ if (!PyArg_ParseTuple(args, "D", &x))
+ return NULL;
+ errno = 0;
+ PyFPE_START_PROTECT("complex function", return 0);
+ r = (*func)(x);
+ PyFPE_END_PROTECT(r);
+ if (errno == EDOM) {
+ PyErr_SetString(PyExc_ValueError, "math domain error");
+ return NULL;
+ }
+ else if (errno == ERANGE) {
+ PyErr_SetString(PyExc_OverflowError, "math range error");
+ return NULL;
+ }
+ else {
+ return PyComplex_FromCComplex(r);
+ }
}
#define FUNC1(stubname, func) \
- static PyObject * stubname(PyObject *self, PyObject *args) { \
- return math_1(args, func); \
- }
+ static PyObject * stubname(PyObject *self, PyObject *args) { \
+ return math_1(args, func); \
+ }
FUNC1(cmath_acos, c_acos)
FUNC1(cmath_acosh, c_acosh)
@@ -916,18 +916,18 @@ FUNC1(cmath_tanh, c_tanh)
static PyObject *
cmath_phase(PyObject *self, PyObject *args)
{
- Py_complex z;
- double phi;
- if (!PyArg_ParseTuple(args, "D:phase", &z))
- return NULL;
- errno = 0;
- PyFPE_START_PROTECT("arg function", return 0)
- phi = c_atan2(z);
- PyFPE_END_PROTECT(phi)
- if (errno != 0)
- return math_error();
- else
- return PyFloat_FromDouble(phi);
+ Py_complex z;
+ double phi;
+ if (!PyArg_ParseTuple(args, "D:phase", &z))
+ return NULL;
+ errno = 0;
+ PyFPE_START_PROTECT("arg function", return 0)
+ phi = c_atan2(z);
+ PyFPE_END_PROTECT(phi)
+ if (errno != 0)
+ return math_error();
+ else
+ return PyFloat_FromDouble(phi);
}
PyDoc_STRVAR(cmath_phase_doc,
@@ -937,18 +937,18 @@ Return argument, also known as the phase angle, of a complex.");
static PyObject *
cmath_polar(PyObject *self, PyObject *args)
{
- Py_complex z;
- double r, phi;
- if (!PyArg_ParseTuple(args, "D:polar", &z))
- return NULL;
- PyFPE_START_PROTECT("polar function", return 0)
- phi = c_atan2(z); /* should not cause any exception */
- r = c_abs(z); /* sets errno to ERANGE on overflow; otherwise 0 */
- PyFPE_END_PROTECT(r)
- if (errno != 0)
- return math_error();
- else
- return Py_BuildValue("dd", r, phi);
+ Py_complex z;
+ double r, phi;
+ if (!PyArg_ParseTuple(args, "D:polar", &z))
+ return NULL;
+ PyFPE_START_PROTECT("polar function", return 0)
+ phi = c_atan2(z); /* should not cause any exception */
+ r = c_abs(z); /* sets errno to ERANGE on overflow; otherwise 0 */
+ PyFPE_END_PROTECT(r)
+ if (errno != 0)
+ return math_error();
+ else
+ return Py_BuildValue("dd", r, phi);
}
PyDoc_STRVAR(cmath_polar_doc,
@@ -972,51 +972,51 @@ static Py_complex rect_special_values[7][7];
static PyObject *
cmath_rect(PyObject *self, PyObject *args)
{
- Py_complex z;
- double r, phi;
- if (!PyArg_ParseTuple(args, "dd:rect", &r, &phi))
- return NULL;
- errno = 0;
- PyFPE_START_PROTECT("rect function", return 0)
-
- /* deal with special values */
- if (!Py_IS_FINITE(r) || !Py_IS_FINITE(phi)) {
- /* if r is +/-infinity and phi is finite but nonzero then
- result is (+-INF +-INF i), but we need to compute cos(phi)
- and sin(phi) to figure out the signs. */
- if (Py_IS_INFINITY(r) && (Py_IS_FINITE(phi)
- && (phi != 0.))) {
- if (r > 0) {
- z.real = copysign(INF, cos(phi));
- z.imag = copysign(INF, sin(phi));
- }
- else {
- z.real = -copysign(INF, cos(phi));
- z.imag = -copysign(INF, sin(phi));
- }
- }
- else {
- z = rect_special_values[special_type(r)]
- [special_type(phi)];
- }
- /* need to set errno = EDOM if r is a nonzero number and phi
- is infinite */
- if (r != 0. && !Py_IS_NAN(r) && Py_IS_INFINITY(phi))
- errno = EDOM;
- else
- errno = 0;
- }
- else {
- z.real = r * cos(phi);
- z.imag = r * sin(phi);
- errno = 0;
- }
-
- PyFPE_END_PROTECT(z)
- if (errno != 0)
- return math_error();
- else
- return PyComplex_FromCComplex(z);
+ Py_complex z;
+ double r, phi;
+ if (!PyArg_ParseTuple(args, "dd:rect", &r, &phi))
+ return NULL;
+ errno = 0;
+ PyFPE_START_PROTECT("rect function", return 0)
+
+ /* deal with special values */
+ if (!Py_IS_FINITE(r) || !Py_IS_FINITE(phi)) {
+ /* if r is +/-infinity and phi is finite but nonzero then
+ result is (+-INF +-INF i), but we need to compute cos(phi)
+ and sin(phi) to figure out the signs. */
+ if (Py_IS_INFINITY(r) && (Py_IS_FINITE(phi)
+ && (phi != 0.))) {
+ if (r > 0) {
+ z.real = copysign(INF, cos(phi));
+ z.imag = copysign(INF, sin(phi));
+ }
+ else {
+ z.real = -copysign(INF, cos(phi));
+ z.imag = -copysign(INF, sin(phi));
+ }
+ }
+ else {
+ z = rect_special_values[special_type(r)]
+ [special_type(phi)];
+ }
+ /* need to set errno = EDOM if r is a nonzero number and phi
+ is infinite */
+ if (r != 0. && !Py_IS_NAN(r) && Py_IS_INFINITY(phi))
+ errno = EDOM;
+ else
+ errno = 0;
+ }
+ else {
+ z.real = r * cos(phi);
+ z.imag = r * sin(phi);
+ errno = 0;
+ }
+
+ PyFPE_END_PROTECT(z)
+ if (errno != 0)
+ return math_error();
+ else
+ return PyComplex_FromCComplex(z);
}
PyDoc_STRVAR(cmath_rect_doc,
@@ -1026,10 +1026,10 @@ Convert from polar coordinates to rectangular coordinates.");
static PyObject *
cmath_isnan(PyObject *self, PyObject *args)
{
- Py_complex z;
- if (!PyArg_ParseTuple(args, "D:isnan", &z))
- return NULL;
- return PyBool_FromLong(Py_IS_NAN(z.real) || Py_IS_NAN(z.imag));
+ Py_complex z;
+ if (!PyArg_ParseTuple(args, "D:isnan", &z))
+ return NULL;
+ return PyBool_FromLong(Py_IS_NAN(z.real) || Py_IS_NAN(z.imag));
}
PyDoc_STRVAR(cmath_isnan_doc,
@@ -1039,11 +1039,11 @@ Checks if the real or imaginary part of z not a number (NaN)");
static PyObject *
cmath_isinf(PyObject *self, PyObject *args)
{
- Py_complex z;
- if (!PyArg_ParseTuple(args, "D:isnan", &z))
- return NULL;
- return PyBool_FromLong(Py_IS_INFINITY(z.real) ||
- Py_IS_INFINITY(z.imag));
+ Py_complex z;
+ if (!PyArg_ParseTuple(args, "D:isnan", &z))
+ return NULL;
+ return PyBool_FromLong(Py_IS_INFINITY(z.real) ||
+ Py_IS_INFINITY(z.imag));
}
PyDoc_STRVAR(cmath_isinf_doc,
@@ -1056,169 +1056,169 @@ PyDoc_STRVAR(module_doc,
"functions for complex numbers.");
static PyMethodDef cmath_methods[] = {
- {"acos", cmath_acos, METH_VARARGS, c_acos_doc},
- {"acosh", cmath_acosh, METH_VARARGS, c_acosh_doc},
- {"asin", cmath_asin, METH_VARARGS, c_asin_doc},
- {"asinh", cmath_asinh, METH_VARARGS, c_asinh_doc},
- {"atan", cmath_atan, METH_VARARGS, c_atan_doc},
- {"atanh", cmath_atanh, METH_VARARGS, c_atanh_doc},
- {"cos", cmath_cos, METH_VARARGS, c_cos_doc},
- {"cosh", cmath_cosh, METH_VARARGS, c_cosh_doc},
- {"exp", cmath_exp, METH_VARARGS, c_exp_doc},
- {"isinf", cmath_isinf, METH_VARARGS, cmath_isinf_doc},
- {"isnan", cmath_isnan, METH_VARARGS, cmath_isnan_doc},
- {"log", cmath_log, METH_VARARGS, cmath_log_doc},
- {"log10", cmath_log10, METH_VARARGS, c_log10_doc},
- {"phase", cmath_phase, METH_VARARGS, cmath_phase_doc},
- {"polar", cmath_polar, METH_VARARGS, cmath_polar_doc},
- {"rect", cmath_rect, METH_VARARGS, cmath_rect_doc},
- {"sin", cmath_sin, METH_VARARGS, c_sin_doc},
- {"sinh", cmath_sinh, METH_VARARGS, c_sinh_doc},
- {"sqrt", cmath_sqrt, METH_VARARGS, c_sqrt_doc},
- {"tan", cmath_tan, METH_VARARGS, c_tan_doc},
- {"tanh", cmath_tanh, METH_VARARGS, c_tanh_doc},
- {NULL, NULL} /* sentinel */
+ {"acos", cmath_acos, METH_VARARGS, c_acos_doc},
+ {"acosh", cmath_acosh, METH_VARARGS, c_acosh_doc},
+ {"asin", cmath_asin, METH_VARARGS, c_asin_doc},
+ {"asinh", cmath_asinh, METH_VARARGS, c_asinh_doc},
+ {"atan", cmath_atan, METH_VARARGS, c_atan_doc},
+ {"atanh", cmath_atanh, METH_VARARGS, c_atanh_doc},
+ {"cos", cmath_cos, METH_VARARGS, c_cos_doc},
+ {"cosh", cmath_cosh, METH_VARARGS, c_cosh_doc},
+ {"exp", cmath_exp, METH_VARARGS, c_exp_doc},
+ {"isinf", cmath_isinf, METH_VARARGS, cmath_isinf_doc},
+ {"isnan", cmath_isnan, METH_VARARGS, cmath_isnan_doc},
+ {"log", cmath_log, METH_VARARGS, cmath_log_doc},
+ {"log10", cmath_log10, METH_VARARGS, c_log10_doc},
+ {"phase", cmath_phase, METH_VARARGS, cmath_phase_doc},
+ {"polar", cmath_polar, METH_VARARGS, cmath_polar_doc},
+ {"rect", cmath_rect, METH_VARARGS, cmath_rect_doc},
+ {"sin", cmath_sin, METH_VARARGS, c_sin_doc},
+ {"sinh", cmath_sinh, METH_VARARGS, c_sinh_doc},
+ {"sqrt", cmath_sqrt, METH_VARARGS, c_sqrt_doc},
+ {"tan", cmath_tan, METH_VARARGS, c_tan_doc},
+ {"tanh", cmath_tanh, METH_VARARGS, c_tanh_doc},
+ {NULL, NULL} /* sentinel */
};
static struct PyModuleDef cmathmodule = {
- PyModuleDef_HEAD_INIT,
- "cmath",
- module_doc,
- -1,
- cmath_methods,
- NULL,
- NULL,
- NULL,
- NULL
+ PyModuleDef_HEAD_INIT,
+ "cmath",
+ module_doc,
+ -1,
+ cmath_methods,
+ NULL,
+ NULL,
+ NULL,
+ NULL
};
PyMODINIT_FUNC
PyInit_cmath(void)
{
- PyObject *m;
+ PyObject *m;
- m = PyModule_Create(&cmathmodule);
- if (m == NULL)
- return NULL;
+ m = PyModule_Create(&cmathmodule);
+ if (m == NULL)
+ return NULL;
- PyModule_AddObject(m, "pi",
- PyFloat_FromDouble(Py_MATH_PI));
- PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E));
+ PyModule_AddObject(m, "pi",
+ PyFloat_FromDouble(Py_MATH_PI));
+ PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E));
- /* initialize special value tables */
+ /* initialize special value tables */
#define INIT_SPECIAL_VALUES(NAME, BODY) { Py_complex* p = (Py_complex*)NAME; BODY }
#define C(REAL, IMAG) p->real = REAL; p->imag = IMAG; ++p;
- INIT_SPECIAL_VALUES(acos_special_values, {
- C(P34,INF) C(P,INF) C(P,INF) C(P,-INF) C(P,-INF) C(P34,-INF) C(N,INF)
- C(P12,INF) C(U,U) C(U,U) C(U,U) C(U,U) C(P12,-INF) C(N,N)
- C(P12,INF) C(U,U) C(P12,0.) C(P12,-0.) C(U,U) C(P12,-INF) C(P12,N)
- C(P12,INF) C(U,U) C(P12,0.) C(P12,-0.) C(U,U) C(P12,-INF) C(P12,N)
- C(P12,INF) C(U,U) C(U,U) C(U,U) C(U,U) C(P12,-INF) C(N,N)
- C(P14,INF) C(0.,INF) C(0.,INF) C(0.,-INF) C(0.,-INF) C(P14,-INF) C(N,INF)
- C(N,INF) C(N,N) C(N,N) C(N,N) C(N,N) C(N,-INF) C(N,N)
- })
-
- INIT_SPECIAL_VALUES(acosh_special_values, {
- C(INF,-P34) C(INF,-P) C(INF,-P) C(INF,P) C(INF,P) C(INF,P34) C(INF,N)
- C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N)
- C(INF,-P12) C(U,U) C(0.,-P12) C(0.,P12) C(U,U) C(INF,P12) C(N,N)
- C(INF,-P12) C(U,U) C(0.,-P12) C(0.,P12) C(U,U) C(INF,P12) C(N,N)
- C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N)
- C(INF,-P14) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,P14) C(INF,N)
- C(INF,N) C(N,N) C(N,N) C(N,N) C(N,N) C(INF,N) C(N,N)
- })
-
- INIT_SPECIAL_VALUES(asinh_special_values, {
- C(-INF,-P14) C(-INF,-0.) C(-INF,-0.) C(-INF,0.) C(-INF,0.) C(-INF,P14) C(-INF,N)
- C(-INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(-INF,P12) C(N,N)
- C(-INF,-P12) C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(-INF,P12) C(N,N)
- C(INF,-P12) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(INF,P12) C(N,N)
- C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N)
- C(INF,-P14) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,P14) C(INF,N)
- C(INF,N) C(N,N) C(N,-0.) C(N,0.) C(N,N) C(INF,N) C(N,N)
- })
-
- INIT_SPECIAL_VALUES(atanh_special_values, {
- C(-0.,-P12) C(-0.,-P12) C(-0.,-P12) C(-0.,P12) C(-0.,P12) C(-0.,P12) C(-0.,N)
- C(-0.,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(-0.,P12) C(N,N)
- C(-0.,-P12) C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(-0.,P12) C(-0.,N)
- C(0.,-P12) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(0.,P12) C(0.,N)
- C(0.,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(0.,P12) C(N,N)
- C(0.,-P12) C(0.,-P12) C(0.,-P12) C(0.,P12) C(0.,P12) C(0.,P12) C(0.,N)
- C(0.,-P12) C(N,N) C(N,N) C(N,N) C(N,N) C(0.,P12) C(N,N)
- })
-
- INIT_SPECIAL_VALUES(cosh_special_values, {
- C(INF,N) C(U,U) C(INF,0.) C(INF,-0.) C(U,U) C(INF,N) C(INF,N)
- C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
- C(N,0.) C(U,U) C(1.,0.) C(1.,-0.) C(U,U) C(N,0.) C(N,0.)
- C(N,0.) C(U,U) C(1.,-0.) C(1.,0.) C(U,U) C(N,0.) C(N,0.)
- C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
- C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N)
- C(N,N) C(N,N) C(N,0.) C(N,0.) C(N,N) C(N,N) C(N,N)
- })
-
- INIT_SPECIAL_VALUES(exp_special_values, {
- C(0.,0.) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(0.,0.) C(0.,0.)
- C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
- C(N,N) C(U,U) C(1.,-0.) C(1.,0.) C(U,U) C(N,N) C(N,N)
- C(N,N) C(U,U) C(1.,-0.) C(1.,0.) C(U,U) C(N,N) C(N,N)
- C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
- C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N)
- C(N,N) C(N,N) C(N,-0.) C(N,0.) C(N,N) C(N,N) C(N,N)
- })
-
- INIT_SPECIAL_VALUES(log_special_values, {
- C(INF,-P34) C(INF,-P) C(INF,-P) C(INF,P) C(INF,P) C(INF,P34) C(INF,N)
- C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N)
- C(INF,-P12) C(U,U) C(-INF,-P) C(-INF,P) C(U,U) C(INF,P12) C(N,N)
- C(INF,-P12) C(U,U) C(-INF,-0.) C(-INF,0.) C(U,U) C(INF,P12) C(N,N)
- C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N)
- C(INF,-P14) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,P14) C(INF,N)
- C(INF,N) C(N,N) C(N,N) C(N,N) C(N,N) C(INF,N) C(N,N)
- })
-
- INIT_SPECIAL_VALUES(sinh_special_values, {
- C(INF,N) C(U,U) C(-INF,-0.) C(-INF,0.) C(U,U) C(INF,N) C(INF,N)
- C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
- C(0.,N) C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(0.,N) C(0.,N)
- C(0.,N) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(0.,N) C(0.,N)
- C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
- C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N)
- C(N,N) C(N,N) C(N,-0.) C(N,0.) C(N,N) C(N,N) C(N,N)
- })
-
- INIT_SPECIAL_VALUES(sqrt_special_values, {
- C(INF,-INF) C(0.,-INF) C(0.,-INF) C(0.,INF) C(0.,INF) C(INF,INF) C(N,INF)
- C(INF,-INF) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,INF) C(N,N)
- C(INF,-INF) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(INF,INF) C(N,N)
- C(INF,-INF) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(INF,INF) C(N,N)
- C(INF,-INF) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,INF) C(N,N)
- C(INF,-INF) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,INF) C(INF,N)
- C(INF,-INF) C(N,N) C(N,N) C(N,N) C(N,N) C(INF,INF) C(N,N)
- })
-
- INIT_SPECIAL_VALUES(tanh_special_values, {
- C(-1.,0.) C(U,U) C(-1.,-0.) C(-1.,0.) C(U,U) C(-1.,0.) C(-1.,0.)
- C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
- C(N,N) C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(N,N) C(N,N)
- C(N,N) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(N,N) C(N,N)
- C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
- C(1.,0.) C(U,U) C(1.,-0.) C(1.,0.) C(U,U) C(1.,0.) C(1.,0.)
- C(N,N) C(N,N) C(N,-0.) C(N,0.) C(N,N) C(N,N) C(N,N)
- })
-
- INIT_SPECIAL_VALUES(rect_special_values, {
- C(INF,N) C(U,U) C(-INF,0.) C(-INF,-0.) C(U,U) C(INF,N) C(INF,N)
- C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
- C(0.,0.) C(U,U) C(-0.,0.) C(-0.,-0.) C(U,U) C(0.,0.) C(0.,0.)
- C(0.,0.) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(0.,0.) C(0.,0.)
- C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
- C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N)
- C(N,N) C(N,N) C(N,0.) C(N,0.) C(N,N) C(N,N) C(N,N)
- })
- return m;
+ INIT_SPECIAL_VALUES(acos_special_values, {
+ C(P34,INF) C(P,INF) C(P,INF) C(P,-INF) C(P,-INF) C(P34,-INF) C(N,INF)
+ C(P12,INF) C(U,U) C(U,U) C(U,U) C(U,U) C(P12,-INF) C(N,N)
+ C(P12,INF) C(U,U) C(P12,0.) C(P12,-0.) C(U,U) C(P12,-INF) C(P12,N)
+ C(P12,INF) C(U,U) C(P12,0.) C(P12,-0.) C(U,U) C(P12,-INF) C(P12,N)
+ C(P12,INF) C(U,U) C(U,U) C(U,U) C(U,U) C(P12,-INF) C(N,N)
+ C(P14,INF) C(0.,INF) C(0.,INF) C(0.,-INF) C(0.,-INF) C(P14,-INF) C(N,INF)
+ C(N,INF) C(N,N) C(N,N) C(N,N) C(N,N) C(N,-INF) C(N,N)
+ })
+
+ INIT_SPECIAL_VALUES(acosh_special_values, {
+ C(INF,-P34) C(INF,-P) C(INF,-P) C(INF,P) C(INF,P) C(INF,P34) C(INF,N)
+ C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N)
+ C(INF,-P12) C(U,U) C(0.,-P12) C(0.,P12) C(U,U) C(INF,P12) C(N,N)
+ C(INF,-P12) C(U,U) C(0.,-P12) C(0.,P12) C(U,U) C(INF,P12) C(N,N)
+ C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N)
+ C(INF,-P14) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,P14) C(INF,N)
+ C(INF,N) C(N,N) C(N,N) C(N,N) C(N,N) C(INF,N) C(N,N)
+ })
+
+ INIT_SPECIAL_VALUES(asinh_special_values, {
+ C(-INF,-P14) C(-INF,-0.) C(-INF,-0.) C(-INF,0.) C(-INF,0.) C(-INF,P14) C(-INF,N)
+ C(-INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(-INF,P12) C(N,N)
+ C(-INF,-P12) C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(-INF,P12) C(N,N)
+ C(INF,-P12) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(INF,P12) C(N,N)
+ C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N)
+ C(INF,-P14) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,P14) C(INF,N)
+ C(INF,N) C(N,N) C(N,-0.) C(N,0.) C(N,N) C(INF,N) C(N,N)
+ })
+
+ INIT_SPECIAL_VALUES(atanh_special_values, {
+ C(-0.,-P12) C(-0.,-P12) C(-0.,-P12) C(-0.,P12) C(-0.,P12) C(-0.,P12) C(-0.,N)
+ C(-0.,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(-0.,P12) C(N,N)
+ C(-0.,-P12) C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(-0.,P12) C(-0.,N)
+ C(0.,-P12) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(0.,P12) C(0.,N)
+ C(0.,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(0.,P12) C(N,N)
+ C(0.,-P12) C(0.,-P12) C(0.,-P12) C(0.,P12) C(0.,P12) C(0.,P12) C(0.,N)
+ C(0.,-P12) C(N,N) C(N,N) C(N,N) C(N,N) C(0.,P12) C(N,N)
+ })
+
+ INIT_SPECIAL_VALUES(cosh_special_values, {
+ C(INF,N) C(U,U) C(INF,0.) C(INF,-0.) C(U,U) C(INF,N) C(INF,N)
+ C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
+ C(N,0.) C(U,U) C(1.,0.) C(1.,-0.) C(U,U) C(N,0.) C(N,0.)
+ C(N,0.) C(U,U) C(1.,-0.) C(1.,0.) C(U,U) C(N,0.) C(N,0.)
+ C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
+ C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N)
+ C(N,N) C(N,N) C(N,0.) C(N,0.) C(N,N) C(N,N) C(N,N)
+ })
+
+ INIT_SPECIAL_VALUES(exp_special_values, {
+ C(0.,0.) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(0.,0.) C(0.,0.)
+ C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
+ C(N,N) C(U,U) C(1.,-0.) C(1.,0.) C(U,U) C(N,N) C(N,N)
+ C(N,N) C(U,U) C(1.,-0.) C(1.,0.) C(U,U) C(N,N) C(N,N)
+ C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
+ C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N)
+ C(N,N) C(N,N) C(N,-0.) C(N,0.) C(N,N) C(N,N) C(N,N)
+ })
+
+ INIT_SPECIAL_VALUES(log_special_values, {
+ C(INF,-P34) C(INF,-P) C(INF,-P) C(INF,P) C(INF,P) C(INF,P34) C(INF,N)
+ C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N)
+ C(INF,-P12) C(U,U) C(-INF,-P) C(-INF,P) C(U,U) C(INF,P12) C(N,N)
+ C(INF,-P12) C(U,U) C(-INF,-0.) C(-INF,0.) C(U,U) C(INF,P12) C(N,N)
+ C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N)
+ C(INF,-P14) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,P14) C(INF,N)
+ C(INF,N) C(N,N) C(N,N) C(N,N) C(N,N) C(INF,N) C(N,N)
+ })
+
+ INIT_SPECIAL_VALUES(sinh_special_values, {
+ C(INF,N) C(U,U) C(-INF,-0.) C(-INF,0.) C(U,U) C(INF,N) C(INF,N)
+ C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
+ C(0.,N) C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(0.,N) C(0.,N)
+ C(0.,N) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(0.,N) C(0.,N)
+ C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
+ C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N)
+ C(N,N) C(N,N) C(N,-0.) C(N,0.) C(N,N) C(N,N) C(N,N)
+ })
+
+ INIT_SPECIAL_VALUES(sqrt_special_values, {
+ C(INF,-INF) C(0.,-INF) C(0.,-INF) C(0.,INF) C(0.,INF) C(INF,INF) C(N,INF)
+ C(INF,-INF) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,INF) C(N,N)
+ C(INF,-INF) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(INF,INF) C(N,N)
+ C(INF,-INF) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(INF,INF) C(N,N)
+ C(INF,-INF) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,INF) C(N,N)
+ C(INF,-INF) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,INF) C(INF,N)
+ C(INF,-INF) C(N,N) C(N,N) C(N,N) C(N,N) C(INF,INF) C(N,N)
+ })
+
+ INIT_SPECIAL_VALUES(tanh_special_values, {
+ C(-1.,0.) C(U,U) C(-1.,-0.) C(-1.,0.) C(U,U) C(-1.,0.) C(-1.,0.)
+ C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
+ C(N,N) C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(N,N) C(N,N)
+ C(N,N) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(N,N) C(N,N)
+ C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
+ C(1.,0.) C(U,U) C(1.,-0.) C(1.,0.) C(U,U) C(1.,0.) C(1.,0.)
+ C(N,N) C(N,N) C(N,-0.) C(N,0.) C(N,N) C(N,N) C(N,N)
+ })
+
+ INIT_SPECIAL_VALUES(rect_special_values, {
+ C(INF,N) C(U,U) C(-INF,0.) C(-INF,-0.) C(U,U) C(INF,N) C(INF,N)
+ C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
+ C(0.,0.) C(U,U) C(-0.,0.) C(-0.,-0.) C(U,U) C(0.,0.) C(0.,0.)
+ C(0.,0.) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(0.,0.) C(0.,0.)
+ C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
+ C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N)
+ C(N,N) C(N,N) C(N,0.) C(N,0.) C(N,N) C(N,N) C(N,N)
+ })
+ return m;
}