diff options
author | Antoine Pitrou <solipsis@pitrou.net> | 2010-05-09 15:52:27 (GMT) |
---|---|---|
committer | Antoine Pitrou <solipsis@pitrou.net> | 2010-05-09 15:52:27 (GMT) |
commit | f95a1b3c53bdd678b64aa608d4375660033460c3 (patch) | |
tree | a8bee40b1b14e28ff5978ea519f3035a3c399912 /Modules/gcmodule.c | |
parent | bd250300191133d276a71b395b6428081bf825b8 (diff) | |
download | cpython-f95a1b3c53bdd678b64aa608d4375660033460c3.zip cpython-f95a1b3c53bdd678b64aa608d4375660033460c3.tar.gz cpython-f95a1b3c53bdd678b64aa608d4375660033460c3.tar.bz2 |
Recorded merge of revisions 81029 via svnmerge from
svn+ssh://pythondev@svn.python.org/python/trunk
........
r81029 | antoine.pitrou | 2010-05-09 16:46:46 +0200 (dim., 09 mai 2010) | 3 lines
Untabify C files. Will watch buildbots.
........
Diffstat (limited to 'Modules/gcmodule.c')
-rw-r--r-- | Modules/gcmodule.c | 1722 |
1 files changed, 861 insertions, 861 deletions
diff --git a/Modules/gcmodule.c b/Modules/gcmodule.c index 3058724..3717a27 100644 --- a/Modules/gcmodule.c +++ b/Modules/gcmodule.c @@ -24,7 +24,7 @@ */ #include "Python.h" -#include "frameobject.h" /* for PyFrame_ClearFreeList */ +#include "frameobject.h" /* for PyFrame_ClearFreeList */ /* Get an object's GC head */ #define AS_GC(o) ((PyGC_Head *)(o)-1) @@ -35,10 +35,10 @@ /*** Global GC state ***/ struct gc_generation { - PyGC_Head head; - int threshold; /* collection threshold */ - int count; /* count of allocations or collections of younger - generations */ + PyGC_Head head; + int threshold; /* collection threshold */ + int count; /* count of allocations or collections of younger + generations */ }; #define NUM_GENERATIONS 3 @@ -46,10 +46,10 @@ struct gc_generation { /* linked lists of container objects */ static struct gc_generation generations[NUM_GENERATIONS] = { - /* PyGC_Head, threshold, count */ - {{{GEN_HEAD(0), GEN_HEAD(0), 0}}, 700, 0}, - {{{GEN_HEAD(1), GEN_HEAD(1), 0}}, 10, 0}, - {{{GEN_HEAD(2), GEN_HEAD(2), 0}}, 10, 0}, + /* PyGC_Head, threshold, count */ + {{{GEN_HEAD(0), GEN_HEAD(0), 0}}, 700, 0}, + {{{GEN_HEAD(1), GEN_HEAD(1), 0}}, 10, 0}, + {{{GEN_HEAD(2), GEN_HEAD(2), 0}}, 10, 0}, }; PyGC_Head *_PyGC_generation0 = GEN_HEAD(0); @@ -91,7 +91,7 @@ static Py_ssize_t long_lived_pending = 0; In addition to the various configurable thresholds, we only trigger a full collection if the ratio - long_lived_pending / long_lived_total + long_lived_pending / long_lived_total is above a given value (hardwired to 25%). The reason is that, while "non-full" collections (i.e., collections of @@ -113,18 +113,18 @@ static Py_ssize_t long_lived_pending = 0; This heuristic was suggested by Martin von Löwis on python-dev in June 2008. His original analysis and proposal can be found at: - http://mail.python.org/pipermail/python-dev/2008-June/080579.html + http://mail.python.org/pipermail/python-dev/2008-June/080579.html */ /* set for debugging information */ -#define DEBUG_STATS (1<<0) /* print collection statistics */ -#define DEBUG_COLLECTABLE (1<<1) /* print collectable objects */ -#define DEBUG_UNCOLLECTABLE (1<<2) /* print uncollectable objects */ -#define DEBUG_SAVEALL (1<<5) /* save all garbage in gc.garbage */ -#define DEBUG_LEAK DEBUG_COLLECTABLE | \ - DEBUG_UNCOLLECTABLE | \ - DEBUG_SAVEALL +#define DEBUG_STATS (1<<0) /* print collection statistics */ +#define DEBUG_COLLECTABLE (1<<1) /* print collectable objects */ +#define DEBUG_UNCOLLECTABLE (1<<2) /* print uncollectable objects */ +#define DEBUG_SAVEALL (1<<5) /* save all garbage in gc.garbage */ +#define DEBUG_LEAK DEBUG_COLLECTABLE | \ + DEBUG_UNCOLLECTABLE | \ + DEBUG_SAVEALL static int debug; static PyObject *tmod = NULL; @@ -167,28 +167,28 @@ GC_TENTATIVELY_UNREACHABLE it has a __del__ method), its gc_refs is restored to GC_REACHABLE again. ---------------------------------------------------------------------------- */ -#define GC_UNTRACKED _PyGC_REFS_UNTRACKED -#define GC_REACHABLE _PyGC_REFS_REACHABLE -#define GC_TENTATIVELY_UNREACHABLE _PyGC_REFS_TENTATIVELY_UNREACHABLE +#define GC_UNTRACKED _PyGC_REFS_UNTRACKED +#define GC_REACHABLE _PyGC_REFS_REACHABLE +#define GC_TENTATIVELY_UNREACHABLE _PyGC_REFS_TENTATIVELY_UNREACHABLE #define IS_TRACKED(o) ((AS_GC(o))->gc.gc_refs != GC_UNTRACKED) #define IS_REACHABLE(o) ((AS_GC(o))->gc.gc_refs == GC_REACHABLE) #define IS_TENTATIVELY_UNREACHABLE(o) ( \ - (AS_GC(o))->gc.gc_refs == GC_TENTATIVELY_UNREACHABLE) + (AS_GC(o))->gc.gc_refs == GC_TENTATIVELY_UNREACHABLE) /*** list functions ***/ static void gc_list_init(PyGC_Head *list) { - list->gc.gc_prev = list; - list->gc.gc_next = list; + list->gc.gc_prev = list; + list->gc.gc_next = list; } static int gc_list_is_empty(PyGC_Head *list) { - return (list->gc.gc_next == list); + return (list->gc.gc_next == list); } #if 0 @@ -197,10 +197,10 @@ gc_list_is_empty(PyGC_Head *list) static void gc_list_append(PyGC_Head *node, PyGC_Head *list) { - node->gc.gc_next = list; - node->gc.gc_prev = list->gc.gc_prev; - node->gc.gc_prev->gc.gc_next = node; - list->gc.gc_prev = node; + node->gc.gc_next = list; + node->gc.gc_prev = list->gc.gc_prev; + node->gc.gc_prev->gc.gc_next = node; + list->gc.gc_prev = node; } #endif @@ -208,9 +208,9 @@ gc_list_append(PyGC_Head *node, PyGC_Head *list) static void gc_list_remove(PyGC_Head *node) { - node->gc.gc_prev->gc.gc_next = node->gc.gc_next; - node->gc.gc_next->gc.gc_prev = node->gc.gc_prev; - node->gc.gc_next = NULL; /* object is not currently tracked */ + node->gc.gc_prev->gc.gc_next = node->gc.gc_next; + node->gc.gc_next->gc.gc_prev = node->gc.gc_prev; + node->gc.gc_next = NULL; /* object is not currently tracked */ } /* Move `node` from the gc list it's currently in (which is not explicitly @@ -220,43 +220,43 @@ gc_list_remove(PyGC_Head *node) static void gc_list_move(PyGC_Head *node, PyGC_Head *list) { - PyGC_Head *new_prev; - PyGC_Head *current_prev = node->gc.gc_prev; - PyGC_Head *current_next = node->gc.gc_next; - /* Unlink from current list. */ - current_prev->gc.gc_next = current_next; - current_next->gc.gc_prev = current_prev; - /* Relink at end of new list. */ - new_prev = node->gc.gc_prev = list->gc.gc_prev; - new_prev->gc.gc_next = list->gc.gc_prev = node; - node->gc.gc_next = list; + PyGC_Head *new_prev; + PyGC_Head *current_prev = node->gc.gc_prev; + PyGC_Head *current_next = node->gc.gc_next; + /* Unlink from current list. */ + current_prev->gc.gc_next = current_next; + current_next->gc.gc_prev = current_prev; + /* Relink at end of new list. */ + new_prev = node->gc.gc_prev = list->gc.gc_prev; + new_prev->gc.gc_next = list->gc.gc_prev = node; + node->gc.gc_next = list; } /* append list `from` onto list `to`; `from` becomes an empty list */ static void gc_list_merge(PyGC_Head *from, PyGC_Head *to) { - PyGC_Head *tail; - assert(from != to); - if (!gc_list_is_empty(from)) { - tail = to->gc.gc_prev; - tail->gc.gc_next = from->gc.gc_next; - tail->gc.gc_next->gc.gc_prev = tail; - to->gc.gc_prev = from->gc.gc_prev; - to->gc.gc_prev->gc.gc_next = to; - } - gc_list_init(from); + PyGC_Head *tail; + assert(from != to); + if (!gc_list_is_empty(from)) { + tail = to->gc.gc_prev; + tail->gc.gc_next = from->gc.gc_next; + tail->gc.gc_next->gc.gc_prev = tail; + to->gc.gc_prev = from->gc.gc_prev; + to->gc.gc_prev->gc.gc_next = to; + } + gc_list_init(from); } static Py_ssize_t gc_list_size(PyGC_Head *list) { - PyGC_Head *gc; - Py_ssize_t n = 0; - for (gc = list->gc.gc_next; gc != list; gc = gc->gc.gc_next) { - n++; - } - return n; + PyGC_Head *gc; + Py_ssize_t n = 0; + for (gc = list->gc.gc_next; gc != list; gc = gc->gc.gc_next) { + n++; + } + return n; } /* Append objects in a GC list to a Python list. @@ -265,16 +265,16 @@ gc_list_size(PyGC_Head *list) static int append_objects(PyObject *py_list, PyGC_Head *gc_list) { - PyGC_Head *gc; - for (gc = gc_list->gc.gc_next; gc != gc_list; gc = gc->gc.gc_next) { - PyObject *op = FROM_GC(gc); - if (op != py_list) { - if (PyList_Append(py_list, op)) { - return -1; /* exception */ - } - } - } - return 0; + PyGC_Head *gc; + for (gc = gc_list->gc.gc_next; gc != gc_list; gc = gc->gc.gc_next) { + PyObject *op = FROM_GC(gc); + if (op != py_list) { + if (PyList_Append(py_list, op)) { + return -1; /* exception */ + } + } + } + return 0; } /*** end of list stuff ***/ @@ -287,48 +287,48 @@ append_objects(PyObject *py_list, PyGC_Head *gc_list) static void update_refs(PyGC_Head *containers) { - PyGC_Head *gc = containers->gc.gc_next; - for (; gc != containers; gc = gc->gc.gc_next) { - assert(gc->gc.gc_refs == GC_REACHABLE); - gc->gc.gc_refs = Py_REFCNT(FROM_GC(gc)); - /* Python's cyclic gc should never see an incoming refcount - * of 0: if something decref'ed to 0, it should have been - * deallocated immediately at that time. - * Possible cause (if the assert triggers): a tp_dealloc - * routine left a gc-aware object tracked during its teardown - * phase, and did something-- or allowed something to happen -- - * that called back into Python. gc can trigger then, and may - * see the still-tracked dying object. Before this assert - * was added, such mistakes went on to allow gc to try to - * delete the object again. In a debug build, that caused - * a mysterious segfault, when _Py_ForgetReference tried - * to remove the object from the doubly-linked list of all - * objects a second time. In a release build, an actual - * double deallocation occurred, which leads to corruption - * of the allocator's internal bookkeeping pointers. That's - * so serious that maybe this should be a release-build - * check instead of an assert? - */ - assert(gc->gc.gc_refs != 0); - } + PyGC_Head *gc = containers->gc.gc_next; + for (; gc != containers; gc = gc->gc.gc_next) { + assert(gc->gc.gc_refs == GC_REACHABLE); + gc->gc.gc_refs = Py_REFCNT(FROM_GC(gc)); + /* Python's cyclic gc should never see an incoming refcount + * of 0: if something decref'ed to 0, it should have been + * deallocated immediately at that time. + * Possible cause (if the assert triggers): a tp_dealloc + * routine left a gc-aware object tracked during its teardown + * phase, and did something-- or allowed something to happen -- + * that called back into Python. gc can trigger then, and may + * see the still-tracked dying object. Before this assert + * was added, such mistakes went on to allow gc to try to + * delete the object again. In a debug build, that caused + * a mysterious segfault, when _Py_ForgetReference tried + * to remove the object from the doubly-linked list of all + * objects a second time. In a release build, an actual + * double deallocation occurred, which leads to corruption + * of the allocator's internal bookkeeping pointers. That's + * so serious that maybe this should be a release-build + * check instead of an assert? + */ + assert(gc->gc.gc_refs != 0); + } } /* A traversal callback for subtract_refs. */ static int visit_decref(PyObject *op, void *data) { - assert(op != NULL); - if (PyObject_IS_GC(op)) { - PyGC_Head *gc = AS_GC(op); - /* We're only interested in gc_refs for objects in the - * generation being collected, which can be recognized - * because only they have positive gc_refs. - */ - assert(gc->gc.gc_refs != 0); /* else refcount was too small */ - if (gc->gc.gc_refs > 0) - gc->gc.gc_refs--; - } - return 0; + assert(op != NULL); + if (PyObject_IS_GC(op)) { + PyGC_Head *gc = AS_GC(op); + /* We're only interested in gc_refs for objects in the + * generation being collected, which can be recognized + * because only they have positive gc_refs. + */ + assert(gc->gc.gc_refs != 0); /* else refcount was too small */ + if (gc->gc.gc_refs > 0) + gc->gc.gc_refs--; + } + return 0; } /* Subtract internal references from gc_refs. After this, gc_refs is >= 0 @@ -339,57 +339,57 @@ visit_decref(PyObject *op, void *data) static void subtract_refs(PyGC_Head *containers) { - traverseproc traverse; - PyGC_Head *gc = containers->gc.gc_next; - for (; gc != containers; gc=gc->gc.gc_next) { - traverse = Py_TYPE(FROM_GC(gc))->tp_traverse; - (void) traverse(FROM_GC(gc), - (visitproc)visit_decref, - NULL); - } + traverseproc traverse; + PyGC_Head *gc = containers->gc.gc_next; + for (; gc != containers; gc=gc->gc.gc_next) { + traverse = Py_TYPE(FROM_GC(gc))->tp_traverse; + (void) traverse(FROM_GC(gc), + (visitproc)visit_decref, + NULL); + } } /* A traversal callback for move_unreachable. */ static int visit_reachable(PyObject *op, PyGC_Head *reachable) { - if (PyObject_IS_GC(op)) { - PyGC_Head *gc = AS_GC(op); - const Py_ssize_t gc_refs = gc->gc.gc_refs; - - if (gc_refs == 0) { - /* This is in move_unreachable's 'young' list, but - * the traversal hasn't yet gotten to it. All - * we need to do is tell move_unreachable that it's - * reachable. - */ - gc->gc.gc_refs = 1; - } - else if (gc_refs == GC_TENTATIVELY_UNREACHABLE) { - /* This had gc_refs = 0 when move_unreachable got - * to it, but turns out it's reachable after all. - * Move it back to move_unreachable's 'young' list, - * and move_unreachable will eventually get to it - * again. - */ - gc_list_move(gc, reachable); - gc->gc.gc_refs = 1; - } - /* Else there's nothing to do. - * If gc_refs > 0, it must be in move_unreachable's 'young' - * list, and move_unreachable will eventually get to it. - * If gc_refs == GC_REACHABLE, it's either in some other - * generation so we don't care about it, or move_unreachable - * already dealt with it. - * If gc_refs == GC_UNTRACKED, it must be ignored. - */ - else { - assert(gc_refs > 0 - || gc_refs == GC_REACHABLE - || gc_refs == GC_UNTRACKED); - } - } - return 0; + if (PyObject_IS_GC(op)) { + PyGC_Head *gc = AS_GC(op); + const Py_ssize_t gc_refs = gc->gc.gc_refs; + + if (gc_refs == 0) { + /* This is in move_unreachable's 'young' list, but + * the traversal hasn't yet gotten to it. All + * we need to do is tell move_unreachable that it's + * reachable. + */ + gc->gc.gc_refs = 1; + } + else if (gc_refs == GC_TENTATIVELY_UNREACHABLE) { + /* This had gc_refs = 0 when move_unreachable got + * to it, but turns out it's reachable after all. + * Move it back to move_unreachable's 'young' list, + * and move_unreachable will eventually get to it + * again. + */ + gc_list_move(gc, reachable); + gc->gc.gc_refs = 1; + } + /* Else there's nothing to do. + * If gc_refs > 0, it must be in move_unreachable's 'young' + * list, and move_unreachable will eventually get to it. + * If gc_refs == GC_REACHABLE, it's either in some other + * generation so we don't care about it, or move_unreachable + * already dealt with it. + * If gc_refs == GC_UNTRACKED, it must be ignored. + */ + else { + assert(gc_refs > 0 + || gc_refs == GC_REACHABLE + || gc_refs == GC_UNTRACKED); + } + } + return 0; } /* Move the unreachable objects from young to unreachable. After this, @@ -403,68 +403,68 @@ visit_reachable(PyObject *op, PyGC_Head *reachable) static void move_unreachable(PyGC_Head *young, PyGC_Head *unreachable) { - PyGC_Head *gc = young->gc.gc_next; - - /* Invariants: all objects "to the left" of us in young have gc_refs - * = GC_REACHABLE, and are indeed reachable (directly or indirectly) - * from outside the young list as it was at entry. All other objects - * from the original young "to the left" of us are in unreachable now, - * and have gc_refs = GC_TENTATIVELY_UNREACHABLE. All objects to the - * left of us in 'young' now have been scanned, and no objects here - * or to the right have been scanned yet. - */ - - while (gc != young) { - PyGC_Head *next; - - if (gc->gc.gc_refs) { - /* gc is definitely reachable from outside the - * original 'young'. Mark it as such, and traverse - * its pointers to find any other objects that may - * be directly reachable from it. Note that the - * call to tp_traverse may append objects to young, - * so we have to wait until it returns to determine - * the next object to visit. - */ - PyObject *op = FROM_GC(gc); - traverseproc traverse = Py_TYPE(op)->tp_traverse; - assert(gc->gc.gc_refs > 0); - gc->gc.gc_refs = GC_REACHABLE; - (void) traverse(op, - (visitproc)visit_reachable, - (void *)young); - next = gc->gc.gc_next; - if (PyTuple_CheckExact(op)) { - _PyTuple_MaybeUntrack(op); - } - else if (PyDict_CheckExact(op)) { - _PyDict_MaybeUntrack(op); - } - } - else { - /* This *may* be unreachable. To make progress, - * assume it is. gc isn't directly reachable from - * any object we've already traversed, but may be - * reachable from an object we haven't gotten to yet. - * visit_reachable will eventually move gc back into - * young if that's so, and we'll see it again. - */ - next = gc->gc.gc_next; - gc_list_move(gc, unreachable); - gc->gc.gc_refs = GC_TENTATIVELY_UNREACHABLE; - } - gc = next; - } + PyGC_Head *gc = young->gc.gc_next; + + /* Invariants: all objects "to the left" of us in young have gc_refs + * = GC_REACHABLE, and are indeed reachable (directly or indirectly) + * from outside the young list as it was at entry. All other objects + * from the original young "to the left" of us are in unreachable now, + * and have gc_refs = GC_TENTATIVELY_UNREACHABLE. All objects to the + * left of us in 'young' now have been scanned, and no objects here + * or to the right have been scanned yet. + */ + + while (gc != young) { + PyGC_Head *next; + + if (gc->gc.gc_refs) { + /* gc is definitely reachable from outside the + * original 'young'. Mark it as such, and traverse + * its pointers to find any other objects that may + * be directly reachable from it. Note that the + * call to tp_traverse may append objects to young, + * so we have to wait until it returns to determine + * the next object to visit. + */ + PyObject *op = FROM_GC(gc); + traverseproc traverse = Py_TYPE(op)->tp_traverse; + assert(gc->gc.gc_refs > 0); + gc->gc.gc_refs = GC_REACHABLE; + (void) traverse(op, + (visitproc)visit_reachable, + (void *)young); + next = gc->gc.gc_next; + if (PyTuple_CheckExact(op)) { + _PyTuple_MaybeUntrack(op); + } + else if (PyDict_CheckExact(op)) { + _PyDict_MaybeUntrack(op); + } + } + else { + /* This *may* be unreachable. To make progress, + * assume it is. gc isn't directly reachable from + * any object we've already traversed, but may be + * reachable from an object we haven't gotten to yet. + * visit_reachable will eventually move gc back into + * young if that's so, and we'll see it again. + */ + next = gc->gc.gc_next; + gc_list_move(gc, unreachable); + gc->gc.gc_refs = GC_TENTATIVELY_UNREACHABLE; + } + gc = next; + } } /* Return true if object has a finalization method. */ static int has_finalizer(PyObject *op) { - if (PyGen_CheckExact(op)) - return PyGen_NeedsFinalizing((PyGenObject *)op); - else - return op->ob_type->tp_del != NULL; + if (PyGen_CheckExact(op)) + return PyGen_NeedsFinalizing((PyGenObject *)op); + else + return op->ob_type->tp_del != NULL; } /* Move the objects in unreachable with __del__ methods into `finalizers`. @@ -474,37 +474,37 @@ has_finalizer(PyObject *op) static void move_finalizers(PyGC_Head *unreachable, PyGC_Head *finalizers) { - PyGC_Head *gc; - PyGC_Head *next; - - /* March over unreachable. Move objects with finalizers into - * `finalizers`. - */ - for (gc = unreachable->gc.gc_next; gc != unreachable; gc = next) { - PyObject *op = FROM_GC(gc); - - assert(IS_TENTATIVELY_UNREACHABLE(op)); - next = gc->gc.gc_next; - - if (has_finalizer(op)) { - gc_list_move(gc, finalizers); - gc->gc.gc_refs = GC_REACHABLE; - } - } + PyGC_Head *gc; + PyGC_Head *next; + + /* March over unreachable. Move objects with finalizers into + * `finalizers`. + */ + for (gc = unreachable->gc.gc_next; gc != unreachable; gc = next) { + PyObject *op = FROM_GC(gc); + + assert(IS_TENTATIVELY_UNREACHABLE(op)); + next = gc->gc.gc_next; + + if (has_finalizer(op)) { + gc_list_move(gc, finalizers); + gc->gc.gc_refs = GC_REACHABLE; + } + } } /* A traversal callback for move_finalizer_reachable. */ static int visit_move(PyObject *op, PyGC_Head *tolist) { - if (PyObject_IS_GC(op)) { - if (IS_TENTATIVELY_UNREACHABLE(op)) { - PyGC_Head *gc = AS_GC(op); - gc_list_move(gc, tolist); - gc->gc.gc_refs = GC_REACHABLE; - } - } - return 0; + if (PyObject_IS_GC(op)) { + if (IS_TENTATIVELY_UNREACHABLE(op)) { + PyGC_Head *gc = AS_GC(op); + gc_list_move(gc, tolist); + gc->gc.gc_refs = GC_REACHABLE; + } + } + return 0; } /* Move objects that are reachable from finalizers, from the unreachable set @@ -513,15 +513,15 @@ visit_move(PyObject *op, PyGC_Head *tolist) static void move_finalizer_reachable(PyGC_Head *finalizers) { - traverseproc traverse; - PyGC_Head *gc = finalizers->gc.gc_next; - for (; gc != finalizers; gc = gc->gc.gc_next) { - /* Note that the finalizers list may grow during this. */ - traverse = Py_TYPE(FROM_GC(gc))->tp_traverse; - (void) traverse(FROM_GC(gc), - (visitproc)visit_move, - (void *)finalizers); - } + traverseproc traverse; + PyGC_Head *gc = finalizers->gc.gc_next; + for (; gc != finalizers; gc = gc->gc.gc_next) { + /* Note that the finalizers list may grow during this. */ + traverse = Py_TYPE(FROM_GC(gc))->tp_traverse; + (void) traverse(FROM_GC(gc), + (visitproc)visit_move, + (void *)finalizers); + } } /* Clear all weakrefs to unreachable objects, and if such a weakref has a @@ -538,150 +538,150 @@ move_finalizer_reachable(PyGC_Head *finalizers) static int handle_weakrefs(PyGC_Head *unreachable, PyGC_Head *old) { - PyGC_Head *gc; - PyObject *op; /* generally FROM_GC(gc) */ - PyWeakReference *wr; /* generally a cast of op */ - PyGC_Head wrcb_to_call; /* weakrefs with callbacks to call */ - PyGC_Head *next; - int num_freed = 0; - - gc_list_init(&wrcb_to_call); - - /* Clear all weakrefs to the objects in unreachable. If such a weakref - * also has a callback, move it into `wrcb_to_call` if the callback - * needs to be invoked. Note that we cannot invoke any callbacks until - * all weakrefs to unreachable objects are cleared, lest the callback - * resurrect an unreachable object via a still-active weakref. We - * make another pass over wrcb_to_call, invoking callbacks, after this - * pass completes. - */ - for (gc = unreachable->gc.gc_next; gc != unreachable; gc = next) { - PyWeakReference **wrlist; - - op = FROM_GC(gc); - assert(IS_TENTATIVELY_UNREACHABLE(op)); - next = gc->gc.gc_next; - - if (! PyType_SUPPORTS_WEAKREFS(Py_TYPE(op))) - continue; - - /* It supports weakrefs. Does it have any? */ - wrlist = (PyWeakReference **) - PyObject_GET_WEAKREFS_LISTPTR(op); - - /* `op` may have some weakrefs. March over the list, clear - * all the weakrefs, and move the weakrefs with callbacks - * that must be called into wrcb_to_call. - */ - for (wr = *wrlist; wr != NULL; wr = *wrlist) { - PyGC_Head *wrasgc; /* AS_GC(wr) */ - - /* _PyWeakref_ClearRef clears the weakref but leaves - * the callback pointer intact. Obscure: it also - * changes *wrlist. - */ - assert(wr->wr_object == op); - _PyWeakref_ClearRef(wr); - assert(wr->wr_object == Py_None); - if (wr->wr_callback == NULL) - continue; /* no callback */ - - /* Headache time. `op` is going away, and is weakly referenced by - * `wr`, which has a callback. Should the callback be invoked? If wr - * is also trash, no: - * - * 1. There's no need to call it. The object and the weakref are - * both going away, so it's legitimate to pretend the weakref is - * going away first. The user has to ensure a weakref outlives its - * referent if they want a guarantee that the wr callback will get - * invoked. - * - * 2. It may be catastrophic to call it. If the callback is also in - * cyclic trash (CT), then although the CT is unreachable from - * outside the current generation, CT may be reachable from the - * callback. Then the callback could resurrect insane objects. - * - * Since the callback is never needed and may be unsafe in this case, - * wr is simply left in the unreachable set. Note that because we - * already called _PyWeakref_ClearRef(wr), its callback will never - * trigger. - * - * OTOH, if wr isn't part of CT, we should invoke the callback: the - * weakref outlived the trash. Note that since wr isn't CT in this - * case, its callback can't be CT either -- wr acted as an external - * root to this generation, and therefore its callback did too. So - * nothing in CT is reachable from the callback either, so it's hard - * to imagine how calling it later could create a problem for us. wr - * is moved to wrcb_to_call in this case. - */ - if (IS_TENTATIVELY_UNREACHABLE(wr)) - continue; - assert(IS_REACHABLE(wr)); - - /* Create a new reference so that wr can't go away - * before we can process it again. - */ - Py_INCREF(wr); - - /* Move wr to wrcb_to_call, for the next pass. */ - wrasgc = AS_GC(wr); - assert(wrasgc != next); /* wrasgc is reachable, but - next isn't, so they can't - be the same */ - gc_list_move(wrasgc, &wrcb_to_call); - } - } - - /* Invoke the callbacks we decided to honor. It's safe to invoke them - * because they can't reference unreachable objects. - */ - while (! gc_list_is_empty(&wrcb_to_call)) { - PyObject *temp; - PyObject *callback; - - gc = wrcb_to_call.gc.gc_next; - op = FROM_GC(gc); - assert(IS_REACHABLE(op)); - assert(PyWeakref_Check(op)); - wr = (PyWeakReference *)op; - callback = wr->wr_callback; - assert(callback != NULL); - - /* copy-paste of weakrefobject.c's handle_callback() */ - temp = PyObject_CallFunctionObjArgs(callback, wr, NULL); - if (temp == NULL) - PyErr_WriteUnraisable(callback); - else - Py_DECREF(temp); - - /* Give up the reference we created in the first pass. When - * op's refcount hits 0 (which it may or may not do right now), - * op's tp_dealloc will decref op->wr_callback too. Note - * that the refcount probably will hit 0 now, and because this - * weakref was reachable to begin with, gc didn't already - * add it to its count of freed objects. Example: a reachable - * weak value dict maps some key to this reachable weakref. - * The callback removes this key->weakref mapping from the - * dict, leaving no other references to the weakref (excepting - * ours). - */ - Py_DECREF(op); - if (wrcb_to_call.gc.gc_next == gc) { - /* object is still alive -- move it */ - gc_list_move(gc, old); - } - else - ++num_freed; - } - - return num_freed; + PyGC_Head *gc; + PyObject *op; /* generally FROM_GC(gc) */ + PyWeakReference *wr; /* generally a cast of op */ + PyGC_Head wrcb_to_call; /* weakrefs with callbacks to call */ + PyGC_Head *next; + int num_freed = 0; + + gc_list_init(&wrcb_to_call); + + /* Clear all weakrefs to the objects in unreachable. If such a weakref + * also has a callback, move it into `wrcb_to_call` if the callback + * needs to be invoked. Note that we cannot invoke any callbacks until + * all weakrefs to unreachable objects are cleared, lest the callback + * resurrect an unreachable object via a still-active weakref. We + * make another pass over wrcb_to_call, invoking callbacks, after this + * pass completes. + */ + for (gc = unreachable->gc.gc_next; gc != unreachable; gc = next) { + PyWeakReference **wrlist; + + op = FROM_GC(gc); + assert(IS_TENTATIVELY_UNREACHABLE(op)); + next = gc->gc.gc_next; + + if (! PyType_SUPPORTS_WEAKREFS(Py_TYPE(op))) + continue; + + /* It supports weakrefs. Does it have any? */ + wrlist = (PyWeakReference **) + PyObject_GET_WEAKREFS_LISTPTR(op); + + /* `op` may have some weakrefs. March over the list, clear + * all the weakrefs, and move the weakrefs with callbacks + * that must be called into wrcb_to_call. + */ + for (wr = *wrlist; wr != NULL; wr = *wrlist) { + PyGC_Head *wrasgc; /* AS_GC(wr) */ + + /* _PyWeakref_ClearRef clears the weakref but leaves + * the callback pointer intact. Obscure: it also + * changes *wrlist. + */ + assert(wr->wr_object == op); + _PyWeakref_ClearRef(wr); + assert(wr->wr_object == Py_None); + if (wr->wr_callback == NULL) + continue; /* no callback */ + + /* Headache time. `op` is going away, and is weakly referenced by + * `wr`, which has a callback. Should the callback be invoked? If wr + * is also trash, no: + * + * 1. There's no need to call it. The object and the weakref are + * both going away, so it's legitimate to pretend the weakref is + * going away first. The user has to ensure a weakref outlives its + * referent if they want a guarantee that the wr callback will get + * invoked. + * + * 2. It may be catastrophic to call it. If the callback is also in + * cyclic trash (CT), then although the CT is unreachable from + * outside the current generation, CT may be reachable from the + * callback. Then the callback could resurrect insane objects. + * + * Since the callback is never needed and may be unsafe in this case, + * wr is simply left in the unreachable set. Note that because we + * already called _PyWeakref_ClearRef(wr), its callback will never + * trigger. + * + * OTOH, if wr isn't part of CT, we should invoke the callback: the + * weakref outlived the trash. Note that since wr isn't CT in this + * case, its callback can't be CT either -- wr acted as an external + * root to this generation, and therefore its callback did too. So + * nothing in CT is reachable from the callback either, so it's hard + * to imagine how calling it later could create a problem for us. wr + * is moved to wrcb_to_call in this case. + */ + if (IS_TENTATIVELY_UNREACHABLE(wr)) + continue; + assert(IS_REACHABLE(wr)); + + /* Create a new reference so that wr can't go away + * before we can process it again. + */ + Py_INCREF(wr); + + /* Move wr to wrcb_to_call, for the next pass. */ + wrasgc = AS_GC(wr); + assert(wrasgc != next); /* wrasgc is reachable, but + next isn't, so they can't + be the same */ + gc_list_move(wrasgc, &wrcb_to_call); + } + } + + /* Invoke the callbacks we decided to honor. It's safe to invoke them + * because they can't reference unreachable objects. + */ + while (! gc_list_is_empty(&wrcb_to_call)) { + PyObject *temp; + PyObject *callback; + + gc = wrcb_to_call.gc.gc_next; + op = FROM_GC(gc); + assert(IS_REACHABLE(op)); + assert(PyWeakref_Check(op)); + wr = (PyWeakReference *)op; + callback = wr->wr_callback; + assert(callback != NULL); + + /* copy-paste of weakrefobject.c's handle_callback() */ + temp = PyObject_CallFunctionObjArgs(callback, wr, NULL); + if (temp == NULL) + PyErr_WriteUnraisable(callback); + else + Py_DECREF(temp); + + /* Give up the reference we created in the first pass. When + * op's refcount hits 0 (which it may or may not do right now), + * op's tp_dealloc will decref op->wr_callback too. Note + * that the refcount probably will hit 0 now, and because this + * weakref was reachable to begin with, gc didn't already + * add it to its count of freed objects. Example: a reachable + * weak value dict maps some key to this reachable weakref. + * The callback removes this key->weakref mapping from the + * dict, leaving no other references to the weakref (excepting + * ours). + */ + Py_DECREF(op); + if (wrcb_to_call.gc.gc_next == gc) { + /* object is still alive -- move it */ + gc_list_move(gc, old); + } + else + ++num_freed; + } + + return num_freed; } static void debug_cycle(char *msg, PyObject *op) { - PySys_WriteStderr("gc: %.100s <%.100s %p>\n", - msg, Py_TYPE(op)->tp_name, op); + PySys_WriteStderr("gc: %.100s <%.100s %p>\n", + msg, Py_TYPE(op)->tp_name, op); } /* Handle uncollectable garbage (cycles with finalizers, and stuff reachable @@ -696,56 +696,56 @@ debug_cycle(char *msg, PyObject *op) static int handle_finalizers(PyGC_Head *finalizers, PyGC_Head *old) { - PyGC_Head *gc = finalizers->gc.gc_next; - - if (garbage == NULL) { - garbage = PyList_New(0); - if (garbage == NULL) - Py_FatalError("gc couldn't create gc.garbage list"); - } - for (; gc != finalizers; gc = gc->gc.gc_next) { - PyObject *op = FROM_GC(gc); - - if ((debug & DEBUG_SAVEALL) || has_finalizer(op)) { - if (PyList_Append(garbage, op) < 0) - return -1; - } - } - - gc_list_merge(finalizers, old); - return 0; + PyGC_Head *gc = finalizers->gc.gc_next; + + if (garbage == NULL) { + garbage = PyList_New(0); + if (garbage == NULL) + Py_FatalError("gc couldn't create gc.garbage list"); + } + for (; gc != finalizers; gc = gc->gc.gc_next) { + PyObject *op = FROM_GC(gc); + + if ((debug & DEBUG_SAVEALL) || has_finalizer(op)) { + if (PyList_Append(garbage, op) < 0) + return -1; + } + } + + gc_list_merge(finalizers, old); + return 0; } -/* Break reference cycles by clearing the containers involved. This is +/* Break reference cycles by clearing the containers involved. This is * tricky business as the lists can be changing and we don't know which * objects may be freed. It is possible I screwed something up here. */ static void delete_garbage(PyGC_Head *collectable, PyGC_Head *old) { - inquiry clear; - - while (!gc_list_is_empty(collectable)) { - PyGC_Head *gc = collectable->gc.gc_next; - PyObject *op = FROM_GC(gc); - - assert(IS_TENTATIVELY_UNREACHABLE(op)); - if (debug & DEBUG_SAVEALL) { - PyList_Append(garbage, op); - } - else { - if ((clear = Py_TYPE(op)->tp_clear) != NULL) { - Py_INCREF(op); - clear(op); - Py_DECREF(op); - } - } - if (collectable->gc.gc_next == gc) { - /* object is still alive, move it, it may die later */ - gc_list_move(gc, old); - gc->gc.gc_refs = GC_REACHABLE; - } - } + inquiry clear; + + while (!gc_list_is_empty(collectable)) { + PyGC_Head *gc = collectable->gc.gc_next; + PyObject *op = FROM_GC(gc); + + assert(IS_TENTATIVELY_UNREACHABLE(op)); + if (debug & DEBUG_SAVEALL) { + PyList_Append(garbage, op); + } + else { + if ((clear = Py_TYPE(op)->tp_clear) != NULL) { + Py_INCREF(op); + clear(op); + Py_DECREF(op); + } + } + if (collectable->gc.gc_next == gc) { + /* object is still alive, move it, it may die later */ + gc_list_move(gc, old); + gc->gc.gc_refs = GC_REACHABLE; + } + } } /* Clear all free lists @@ -756,30 +756,30 @@ delete_garbage(PyGC_Head *collectable, PyGC_Head *old) static void clear_freelists(void) { - (void)PyMethod_ClearFreeList(); - (void)PyFrame_ClearFreeList(); - (void)PyCFunction_ClearFreeList(); - (void)PyTuple_ClearFreeList(); - (void)PyUnicode_ClearFreeList(); - (void)PyFloat_ClearFreeList(); + (void)PyMethod_ClearFreeList(); + (void)PyFrame_ClearFreeList(); + (void)PyCFunction_ClearFreeList(); + (void)PyTuple_ClearFreeList(); + (void)PyUnicode_ClearFreeList(); + (void)PyFloat_ClearFreeList(); } static double get_time(void) { - double result = 0; - if (tmod != NULL) { - PyObject *f = PyObject_CallMethod(tmod, "time", NULL); - if (f == NULL) { - PyErr_Clear(); - } - else { - if (PyFloat_Check(f)) - result = PyFloat_AsDouble(f); - Py_DECREF(f); - } - } - return result; + double result = 0; + if (tmod != NULL) { + PyObject *f = PyObject_CallMethod(tmod, "time", NULL); + if (f == NULL) { + PyErr_Clear(); + } + else { + if (PyFloat_Check(f)) + result = PyFloat_AsDouble(f); + Py_DECREF(f); + } + } + return result; } /* This is the main function. Read this to understand how the @@ -787,184 +787,184 @@ get_time(void) static Py_ssize_t collect(int generation) { - int i; - Py_ssize_t m = 0; /* # objects collected */ - Py_ssize_t n = 0; /* # unreachable objects that couldn't be collected */ - PyGC_Head *young; /* the generation we are examining */ - PyGC_Head *old; /* next older generation */ - PyGC_Head unreachable; /* non-problematic unreachable trash */ - PyGC_Head finalizers; /* objects with, & reachable from, __del__ */ - PyGC_Head *gc; - double t1 = 0.0; - - if (delstr == NULL) { - delstr = PyUnicode_InternFromString("__del__"); - if (delstr == NULL) - Py_FatalError("gc couldn't allocate \"__del__\""); - } - - if (debug & DEBUG_STATS) { - PySys_WriteStderr("gc: collecting generation %d...\n", - generation); - PySys_WriteStderr("gc: objects in each generation:"); - for (i = 0; i < NUM_GENERATIONS; i++) - PySys_WriteStderr(" %" PY_FORMAT_SIZE_T "d", - gc_list_size(GEN_HEAD(i))); - t1 = get_time(); - PySys_WriteStderr("\n"); - } - - /* update collection and allocation counters */ - if (generation+1 < NUM_GENERATIONS) - generations[generation+1].count += 1; - for (i = 0; i <= generation; i++) - generations[i].count = 0; - - /* merge younger generations with one we are currently collecting */ - for (i = 0; i < generation; i++) { - gc_list_merge(GEN_HEAD(i), GEN_HEAD(generation)); - } - - /* handy references */ - young = GEN_HEAD(generation); - if (generation < NUM_GENERATIONS-1) - old = GEN_HEAD(generation+1); - else - old = young; - - /* Using ob_refcnt and gc_refs, calculate which objects in the - * container set are reachable from outside the set (i.e., have a - * refcount greater than 0 when all the references within the - * set are taken into account). - */ - update_refs(young); - subtract_refs(young); - - /* Leave everything reachable from outside young in young, and move - * everything else (in young) to unreachable. - * NOTE: This used to move the reachable objects into a reachable - * set instead. But most things usually turn out to be reachable, - * so it's more efficient to move the unreachable things. - */ - gc_list_init(&unreachable); - move_unreachable(young, &unreachable); - - /* Move reachable objects to next generation. */ - if (young != old) { - if (generation == NUM_GENERATIONS - 2) { - long_lived_pending += gc_list_size(young); - } - gc_list_merge(young, old); - } - else { - long_lived_pending = 0; - long_lived_total = gc_list_size(young); - } - - /* All objects in unreachable are trash, but objects reachable from - * finalizers can't safely be deleted. Python programmers should take - * care not to create such things. For Python, finalizers means - * instance objects with __del__ methods. Weakrefs with callbacks - * can also call arbitrary Python code but they will be dealt with by - * handle_weakrefs(). - */ - gc_list_init(&finalizers); - move_finalizers(&unreachable, &finalizers); - /* finalizers contains the unreachable objects with a finalizer; - * unreachable objects reachable *from* those are also uncollectable, - * and we move those into the finalizers list too. - */ - move_finalizer_reachable(&finalizers); - - /* Collect statistics on collectable objects found and print - * debugging information. - */ - for (gc = unreachable.gc.gc_next; gc != &unreachable; - gc = gc->gc.gc_next) { - m++; - if (debug & DEBUG_COLLECTABLE) { - debug_cycle("collectable", FROM_GC(gc)); - } - } - - /* Clear weakrefs and invoke callbacks as necessary. */ - m += handle_weakrefs(&unreachable, old); - - /* Call tp_clear on objects in the unreachable set. This will cause - * the reference cycles to be broken. It may also cause some objects - * in finalizers to be freed. - */ - delete_garbage(&unreachable, old); - - /* Collect statistics on uncollectable objects found and print - * debugging information. */ - for (gc = finalizers.gc.gc_next; - gc != &finalizers; - gc = gc->gc.gc_next) { - n++; - if (debug & DEBUG_UNCOLLECTABLE) - debug_cycle("uncollectable", FROM_GC(gc)); - } - if (debug & DEBUG_STATS) { - double t2 = get_time(); - if (m == 0 && n == 0) - PySys_WriteStderr("gc: done"); - else - PySys_WriteStderr( - "gc: done, " - "%" PY_FORMAT_SIZE_T "d unreachable, " - "%" PY_FORMAT_SIZE_T "d uncollectable", - n+m, n); - if (t1 && t2) { - PySys_WriteStderr(", %.4fs elapsed", t2-t1); - } - PySys_WriteStderr(".\n"); - } - - /* Append instances in the uncollectable set to a Python - * reachable list of garbage. The programmer has to deal with - * this if they insist on creating this type of structure. - */ - (void)handle_finalizers(&finalizers, old); - - /* Clear free list only during the collection of the highest - * generation */ - if (generation == NUM_GENERATIONS-1) { - clear_freelists(); - } - - if (PyErr_Occurred()) { - if (gc_str == NULL) - gc_str = PyUnicode_FromString("garbage collection"); - PyErr_WriteUnraisable(gc_str); - Py_FatalError("unexpected exception during garbage collection"); - } - return n+m; + int i; + Py_ssize_t m = 0; /* # objects collected */ + Py_ssize_t n = 0; /* # unreachable objects that couldn't be collected */ + PyGC_Head *young; /* the generation we are examining */ + PyGC_Head *old; /* next older generation */ + PyGC_Head unreachable; /* non-problematic unreachable trash */ + PyGC_Head finalizers; /* objects with, & reachable from, __del__ */ + PyGC_Head *gc; + double t1 = 0.0; + + if (delstr == NULL) { + delstr = PyUnicode_InternFromString("__del__"); + if (delstr == NULL) + Py_FatalError("gc couldn't allocate \"__del__\""); + } + + if (debug & DEBUG_STATS) { + PySys_WriteStderr("gc: collecting generation %d...\n", + generation); + PySys_WriteStderr("gc: objects in each generation:"); + for (i = 0; i < NUM_GENERATIONS; i++) + PySys_WriteStderr(" %" PY_FORMAT_SIZE_T "d", + gc_list_size(GEN_HEAD(i))); + t1 = get_time(); + PySys_WriteStderr("\n"); + } + + /* update collection and allocation counters */ + if (generation+1 < NUM_GENERATIONS) + generations[generation+1].count += 1; + for (i = 0; i <= generation; i++) + generations[i].count = 0; + + /* merge younger generations with one we are currently collecting */ + for (i = 0; i < generation; i++) { + gc_list_merge(GEN_HEAD(i), GEN_HEAD(generation)); + } + + /* handy references */ + young = GEN_HEAD(generation); + if (generation < NUM_GENERATIONS-1) + old = GEN_HEAD(generation+1); + else + old = young; + + /* Using ob_refcnt and gc_refs, calculate which objects in the + * container set are reachable from outside the set (i.e., have a + * refcount greater than 0 when all the references within the + * set are taken into account). + */ + update_refs(young); + subtract_refs(young); + + /* Leave everything reachable from outside young in young, and move + * everything else (in young) to unreachable. + * NOTE: This used to move the reachable objects into a reachable + * set instead. But most things usually turn out to be reachable, + * so it's more efficient to move the unreachable things. + */ + gc_list_init(&unreachable); + move_unreachable(young, &unreachable); + + /* Move reachable objects to next generation. */ + if (young != old) { + if (generation == NUM_GENERATIONS - 2) { + long_lived_pending += gc_list_size(young); + } + gc_list_merge(young, old); + } + else { + long_lived_pending = 0; + long_lived_total = gc_list_size(young); + } + + /* All objects in unreachable are trash, but objects reachable from + * finalizers can't safely be deleted. Python programmers should take + * care not to create such things. For Python, finalizers means + * instance objects with __del__ methods. Weakrefs with callbacks + * can also call arbitrary Python code but they will be dealt with by + * handle_weakrefs(). + */ + gc_list_init(&finalizers); + move_finalizers(&unreachable, &finalizers); + /* finalizers contains the unreachable objects with a finalizer; + * unreachable objects reachable *from* those are also uncollectable, + * and we move those into the finalizers list too. + */ + move_finalizer_reachable(&finalizers); + + /* Collect statistics on collectable objects found and print + * debugging information. + */ + for (gc = unreachable.gc.gc_next; gc != &unreachable; + gc = gc->gc.gc_next) { + m++; + if (debug & DEBUG_COLLECTABLE) { + debug_cycle("collectable", FROM_GC(gc)); + } + } + + /* Clear weakrefs and invoke callbacks as necessary. */ + m += handle_weakrefs(&unreachable, old); + + /* Call tp_clear on objects in the unreachable set. This will cause + * the reference cycles to be broken. It may also cause some objects + * in finalizers to be freed. + */ + delete_garbage(&unreachable, old); + + /* Collect statistics on uncollectable objects found and print + * debugging information. */ + for (gc = finalizers.gc.gc_next; + gc != &finalizers; + gc = gc->gc.gc_next) { + n++; + if (debug & DEBUG_UNCOLLECTABLE) + debug_cycle("uncollectable", FROM_GC(gc)); + } + if (debug & DEBUG_STATS) { + double t2 = get_time(); + if (m == 0 && n == 0) + PySys_WriteStderr("gc: done"); + else + PySys_WriteStderr( + "gc: done, " + "%" PY_FORMAT_SIZE_T "d unreachable, " + "%" PY_FORMAT_SIZE_T "d uncollectable", + n+m, n); + if (t1 && t2) { + PySys_WriteStderr(", %.4fs elapsed", t2-t1); + } + PySys_WriteStderr(".\n"); + } + + /* Append instances in the uncollectable set to a Python + * reachable list of garbage. The programmer has to deal with + * this if they insist on creating this type of structure. + */ + (void)handle_finalizers(&finalizers, old); + + /* Clear free list only during the collection of the highest + * generation */ + if (generation == NUM_GENERATIONS-1) { + clear_freelists(); + } + + if (PyErr_Occurred()) { + if (gc_str == NULL) + gc_str = PyUnicode_FromString("garbage collection"); + PyErr_WriteUnraisable(gc_str); + Py_FatalError("unexpected exception during garbage collection"); + } + return n+m; } static Py_ssize_t collect_generations(void) { - int i; - Py_ssize_t n = 0; - - /* Find the oldest generation (highest numbered) where the count - * exceeds the threshold. Objects in the that generation and - * generations younger than it will be collected. */ - for (i = NUM_GENERATIONS-1; i >= 0; i--) { - if (generations[i].count > generations[i].threshold) { - /* Avoid quadratic performance degradation in number - of tracked objects. See comments at the beginning - of this file, and issue #4074. - */ - if (i == NUM_GENERATIONS - 1 - && long_lived_pending < long_lived_total / 4) - continue; - n = collect(i); - break; - } - } - return n; + int i; + Py_ssize_t n = 0; + + /* Find the oldest generation (highest numbered) where the count + * exceeds the threshold. Objects in the that generation and + * generations younger than it will be collected. */ + for (i = NUM_GENERATIONS-1; i >= 0; i--) { + if (generations[i].count > generations[i].threshold) { + /* Avoid quadratic performance degradation in number + of tracked objects. See comments at the beginning + of this file, and issue #4074. + */ + if (i == NUM_GENERATIONS - 1 + && long_lived_pending < long_lived_total / 4) + continue; + n = collect(i); + break; + } + } + return n; } PyDoc_STRVAR(gc_enable__doc__, @@ -975,9 +975,9 @@ PyDoc_STRVAR(gc_enable__doc__, static PyObject * gc_enable(PyObject *self, PyObject *noargs) { - enabled = 1; - Py_INCREF(Py_None); - return Py_None; + enabled = 1; + Py_INCREF(Py_None); + return Py_None; } PyDoc_STRVAR(gc_disable__doc__, @@ -988,9 +988,9 @@ PyDoc_STRVAR(gc_disable__doc__, static PyObject * gc_disable(PyObject *self, PyObject *noargs) { - enabled = 0; - Py_INCREF(Py_None); - return Py_None; + enabled = 0; + Py_INCREF(Py_None); + return Py_None; } PyDoc_STRVAR(gc_isenabled__doc__, @@ -1001,7 +1001,7 @@ PyDoc_STRVAR(gc_isenabled__doc__, static PyObject * gc_isenabled(PyObject *self, PyObject *noargs) { - return PyBool_FromLong((long)enabled); + return PyBool_FromLong((long)enabled); } PyDoc_STRVAR(gc_collect__doc__, @@ -1015,27 +1015,27 @@ PyDoc_STRVAR(gc_collect__doc__, static PyObject * gc_collect(PyObject *self, PyObject *args, PyObject *kws) { - static char *keywords[] = {"generation", NULL}; - int genarg = NUM_GENERATIONS - 1; - Py_ssize_t n; - - if (!PyArg_ParseTupleAndKeywords(args, kws, "|i", keywords, &genarg)) - return NULL; - - else if (genarg < 0 || genarg >= NUM_GENERATIONS) { - PyErr_SetString(PyExc_ValueError, "invalid generation"); - return NULL; - } - - if (collecting) - n = 0; /* already collecting, don't do anything */ - else { - collecting = 1; - n = collect(genarg); - collecting = 0; - } - - return PyLong_FromSsize_t(n); + static char *keywords[] = {"generation", NULL}; + int genarg = NUM_GENERATIONS - 1; + Py_ssize_t n; + + if (!PyArg_ParseTupleAndKeywords(args, kws, "|i", keywords, &genarg)) + return NULL; + + else if (genarg < 0 || genarg >= NUM_GENERATIONS) { + PyErr_SetString(PyExc_ValueError, "invalid generation"); + return NULL; + } + + if (collecting) + n = 0; /* already collecting, don't do anything */ + else { + collecting = 1; + n = collect(genarg); + collecting = 0; + } + + return PyLong_FromSsize_t(n); } PyDoc_STRVAR(gc_set_debug__doc__, @@ -1055,11 +1055,11 @@ PyDoc_STRVAR(gc_set_debug__doc__, static PyObject * gc_set_debug(PyObject *self, PyObject *args) { - if (!PyArg_ParseTuple(args, "i:set_debug", &debug)) - return NULL; + if (!PyArg_ParseTuple(args, "i:set_debug", &debug)) + return NULL; - Py_INCREF(Py_None); - return Py_None; + Py_INCREF(Py_None); + return Py_None; } PyDoc_STRVAR(gc_get_debug__doc__, @@ -1070,7 +1070,7 @@ PyDoc_STRVAR(gc_get_debug__doc__, static PyObject * gc_get_debug(PyObject *self, PyObject *noargs) { - return Py_BuildValue("i", debug); + return Py_BuildValue("i", debug); } PyDoc_STRVAR(gc_set_thresh__doc__, @@ -1082,19 +1082,19 @@ PyDoc_STRVAR(gc_set_thresh__doc__, static PyObject * gc_set_thresh(PyObject *self, PyObject *args) { - int i; - if (!PyArg_ParseTuple(args, "i|ii:set_threshold", - &generations[0].threshold, - &generations[1].threshold, - &generations[2].threshold)) - return NULL; - for (i = 2; i < NUM_GENERATIONS; i++) { - /* generations higher than 2 get the same threshold */ - generations[i].threshold = generations[2].threshold; - } - - Py_INCREF(Py_None); - return Py_None; + int i; + if (!PyArg_ParseTuple(args, "i|ii:set_threshold", + &generations[0].threshold, + &generations[1].threshold, + &generations[2].threshold)) + return NULL; + for (i = 2; i < NUM_GENERATIONS; i++) { + /* generations higher than 2 get the same threshold */ + generations[i].threshold = generations[2].threshold; + } + + Py_INCREF(Py_None); + return Py_None; } PyDoc_STRVAR(gc_get_thresh__doc__, @@ -1105,10 +1105,10 @@ PyDoc_STRVAR(gc_get_thresh__doc__, static PyObject * gc_get_thresh(PyObject *self, PyObject *noargs) { - return Py_BuildValue("(iii)", - generations[0].threshold, - generations[1].threshold, - generations[2].threshold); + return Py_BuildValue("(iii)", + generations[0].threshold, + generations[1].threshold, + generations[2].threshold); } PyDoc_STRVAR(gc_get_count__doc__, @@ -1119,39 +1119,39 @@ PyDoc_STRVAR(gc_get_count__doc__, static PyObject * gc_get_count(PyObject *self, PyObject *noargs) { - return Py_BuildValue("(iii)", - generations[0].count, - generations[1].count, - generations[2].count); + return Py_BuildValue("(iii)", + generations[0].count, + generations[1].count, + generations[2].count); } static int referrersvisit(PyObject* obj, PyObject *objs) { - Py_ssize_t i; - for (i = 0; i < PyTuple_GET_SIZE(objs); i++) - if (PyTuple_GET_ITEM(objs, i) == obj) - return 1; - return 0; + Py_ssize_t i; + for (i = 0; i < PyTuple_GET_SIZE(objs); i++) + if (PyTuple_GET_ITEM(objs, i) == obj) + return 1; + return 0; } static int gc_referrers_for(PyObject *objs, PyGC_Head *list, PyObject *resultlist) { - PyGC_Head *gc; - PyObject *obj; - traverseproc traverse; - for (gc = list->gc.gc_next; gc != list; gc = gc->gc.gc_next) { - obj = FROM_GC(gc); - traverse = Py_TYPE(obj)->tp_traverse; - if (obj == objs || obj == resultlist) - continue; - if (traverse(obj, (visitproc)referrersvisit, objs)) { - if (PyList_Append(resultlist, obj) < 0) - return 0; /* error */ - } - } - return 1; /* no error */ + PyGC_Head *gc; + PyObject *obj; + traverseproc traverse; + for (gc = list->gc.gc_next; gc != list; gc = gc->gc.gc_next) { + obj = FROM_GC(gc); + traverse = Py_TYPE(obj)->tp_traverse; + if (obj == objs || obj == resultlist) + continue; + if (traverse(obj, (visitproc)referrersvisit, objs)) { + if (PyList_Append(resultlist, obj) < 0) + return 0; /* error */ + } + } + return 1; /* no error */ } PyDoc_STRVAR(gc_get_referrers__doc__, @@ -1161,24 +1161,24 @@ Return the list of objects that directly refer to any of objs."); static PyObject * gc_get_referrers(PyObject *self, PyObject *args) { - int i; - PyObject *result = PyList_New(0); - if (!result) return NULL; - - for (i = 0; i < NUM_GENERATIONS; i++) { - if (!(gc_referrers_for(args, GEN_HEAD(i), result))) { - Py_DECREF(result); - return NULL; - } - } - return result; + int i; + PyObject *result = PyList_New(0); + if (!result) return NULL; + + for (i = 0; i < NUM_GENERATIONS; i++) { + if (!(gc_referrers_for(args, GEN_HEAD(i), result))) { + Py_DECREF(result); + return NULL; + } + } + return result; } /* Append obj to list; return true if error (out of memory), false if OK. */ static int referentsvisit(PyObject *obj, PyObject *list) { - return PyList_Append(list, obj) < 0; + return PyList_Append(list, obj) < 0; } PyDoc_STRVAR(gc_get_referents__doc__, @@ -1188,27 +1188,27 @@ Return the list of objects that are directly referred to by objs."); static PyObject * gc_get_referents(PyObject *self, PyObject *args) { - Py_ssize_t i; - PyObject *result = PyList_New(0); - - if (result == NULL) - return NULL; - - for (i = 0; i < PyTuple_GET_SIZE(args); i++) { - traverseproc traverse; - PyObject *obj = PyTuple_GET_ITEM(args, i); - - if (! PyObject_IS_GC(obj)) - continue; - traverse = Py_TYPE(obj)->tp_traverse; - if (! traverse) - continue; - if (traverse(obj, (visitproc)referentsvisit, result)) { - Py_DECREF(result); - return NULL; - } - } - return result; + Py_ssize_t i; + PyObject *result = PyList_New(0); + + if (result == NULL) + return NULL; + + for (i = 0; i < PyTuple_GET_SIZE(args); i++) { + traverseproc traverse; + PyObject *obj = PyTuple_GET_ITEM(args, i); + + if (! PyObject_IS_GC(obj)) + continue; + traverse = Py_TYPE(obj)->tp_traverse; + if (! traverse) + continue; + if (traverse(obj, (visitproc)referentsvisit, result)) { + Py_DECREF(result); + return NULL; + } + } + return result; } PyDoc_STRVAR(gc_get_objects__doc__, @@ -1220,19 +1220,19 @@ PyDoc_STRVAR(gc_get_objects__doc__, static PyObject * gc_get_objects(PyObject *self, PyObject *noargs) { - int i; - PyObject* result; - - result = PyList_New(0); - if (result == NULL) - return NULL; - for (i = 0; i < NUM_GENERATIONS; i++) { - if (append_objects(result, GEN_HEAD(i))) { - Py_DECREF(result); - return NULL; - } - } - return result; + int i; + PyObject* result; + + result = PyList_New(0); + if (result == NULL) + return NULL; + for (i = 0; i < NUM_GENERATIONS; i++) { + if (append_objects(result, GEN_HEAD(i))) { + Py_DECREF(result); + return NULL; + } + } + return result; } PyDoc_STRVAR(gc_is_tracked__doc__, @@ -1245,14 +1245,14 @@ PyDoc_STRVAR(gc_is_tracked__doc__, static PyObject * gc_is_tracked(PyObject *self, PyObject *obj) { - PyObject *result; - - if (PyObject_IS_GC(obj) && IS_TRACKED(obj)) - result = Py_True; - else - result = Py_False; - Py_INCREF(result); - return result; + PyObject *result; + + if (PyObject_IS_GC(obj) && IS_TRACKED(obj)) + result = Py_True; + else + result = Py_False; + Py_INCREF(result); + return result; } @@ -1274,101 +1274,101 @@ PyDoc_STRVAR(gc__doc__, "get_referents() -- Return the list of objects that an object refers to.\n"); static PyMethodDef GcMethods[] = { - {"enable", gc_enable, METH_NOARGS, gc_enable__doc__}, - {"disable", gc_disable, METH_NOARGS, gc_disable__doc__}, - {"isenabled", gc_isenabled, METH_NOARGS, gc_isenabled__doc__}, - {"set_debug", gc_set_debug, METH_VARARGS, gc_set_debug__doc__}, - {"get_debug", gc_get_debug, METH_NOARGS, gc_get_debug__doc__}, - {"get_count", gc_get_count, METH_NOARGS, gc_get_count__doc__}, - {"set_threshold", gc_set_thresh, METH_VARARGS, gc_set_thresh__doc__}, - {"get_threshold", gc_get_thresh, METH_NOARGS, gc_get_thresh__doc__}, - {"collect", (PyCFunction)gc_collect, - METH_VARARGS | METH_KEYWORDS, gc_collect__doc__}, - {"get_objects", gc_get_objects,METH_NOARGS, gc_get_objects__doc__}, - {"is_tracked", gc_is_tracked, METH_O, gc_is_tracked__doc__}, - {"get_referrers", gc_get_referrers, METH_VARARGS, - gc_get_referrers__doc__}, - {"get_referents", gc_get_referents, METH_VARARGS, - gc_get_referents__doc__}, - {NULL, NULL} /* Sentinel */ + {"enable", gc_enable, METH_NOARGS, gc_enable__doc__}, + {"disable", gc_disable, METH_NOARGS, gc_disable__doc__}, + {"isenabled", gc_isenabled, METH_NOARGS, gc_isenabled__doc__}, + {"set_debug", gc_set_debug, METH_VARARGS, gc_set_debug__doc__}, + {"get_debug", gc_get_debug, METH_NOARGS, gc_get_debug__doc__}, + {"get_count", gc_get_count, METH_NOARGS, gc_get_count__doc__}, + {"set_threshold", gc_set_thresh, METH_VARARGS, gc_set_thresh__doc__}, + {"get_threshold", gc_get_thresh, METH_NOARGS, gc_get_thresh__doc__}, + {"collect", (PyCFunction)gc_collect, + METH_VARARGS | METH_KEYWORDS, gc_collect__doc__}, + {"get_objects", gc_get_objects,METH_NOARGS, gc_get_objects__doc__}, + {"is_tracked", gc_is_tracked, METH_O, gc_is_tracked__doc__}, + {"get_referrers", gc_get_referrers, METH_VARARGS, + gc_get_referrers__doc__}, + {"get_referents", gc_get_referents, METH_VARARGS, + gc_get_referents__doc__}, + {NULL, NULL} /* Sentinel */ }; static struct PyModuleDef gcmodule = { - PyModuleDef_HEAD_INIT, - "gc", - gc__doc__, - -1, - GcMethods, - NULL, - NULL, - NULL, - NULL + PyModuleDef_HEAD_INIT, + "gc", + gc__doc__, + -1, + GcMethods, + NULL, + NULL, + NULL, + NULL }; PyMODINIT_FUNC PyInit_gc(void) { - PyObject *m; - - m = PyModule_Create(&gcmodule); - - if (m == NULL) - return NULL; - - if (garbage == NULL) { - garbage = PyList_New(0); - if (garbage == NULL) - return NULL; - } - Py_INCREF(garbage); - if (PyModule_AddObject(m, "garbage", garbage) < 0) - return NULL; - - /* Importing can't be done in collect() because collect() - * can be called via PyGC_Collect() in Py_Finalize(). - * This wouldn't be a problem, except that <initialized> is - * reset to 0 before calling collect which trips up - * the import and triggers an assertion. - */ - if (tmod == NULL) { - tmod = PyImport_ImportModuleNoBlock("time"); - if (tmod == NULL) - PyErr_Clear(); - } + PyObject *m; + + m = PyModule_Create(&gcmodule); + + if (m == NULL) + return NULL; + + if (garbage == NULL) { + garbage = PyList_New(0); + if (garbage == NULL) + return NULL; + } + Py_INCREF(garbage); + if (PyModule_AddObject(m, "garbage", garbage) < 0) + return NULL; + + /* Importing can't be done in collect() because collect() + * can be called via PyGC_Collect() in Py_Finalize(). + * This wouldn't be a problem, except that <initialized> is + * reset to 0 before calling collect which trips up + * the import and triggers an assertion. + */ + if (tmod == NULL) { + tmod = PyImport_ImportModuleNoBlock("time"); + if (tmod == NULL) + PyErr_Clear(); + } #define ADD_INT(NAME) if (PyModule_AddIntConstant(m, #NAME, NAME) < 0) return NULL - ADD_INT(DEBUG_STATS); - ADD_INT(DEBUG_COLLECTABLE); - ADD_INT(DEBUG_UNCOLLECTABLE); - ADD_INT(DEBUG_SAVEALL); - ADD_INT(DEBUG_LEAK); + ADD_INT(DEBUG_STATS); + ADD_INT(DEBUG_COLLECTABLE); + ADD_INT(DEBUG_UNCOLLECTABLE); + ADD_INT(DEBUG_SAVEALL); + ADD_INT(DEBUG_LEAK); #undef ADD_INT - return m; + return m; } /* API to invoke gc.collect() from C */ Py_ssize_t PyGC_Collect(void) { - Py_ssize_t n; + Py_ssize_t n; - if (collecting) - n = 0; /* already collecting, don't do anything */ - else { - collecting = 1; - n = collect(NUM_GENERATIONS - 1); - collecting = 0; - } + if (collecting) + n = 0; /* already collecting, don't do anything */ + else { + collecting = 1; + n = collect(NUM_GENERATIONS - 1); + collecting = 0; + } - return n; + return n; } /* for debugging */ void _PyGC_Dump(PyGC_Head *g) { - _PyObject_Dump(FROM_GC(g)); + _PyObject_Dump(FROM_GC(g)); } /* extension modules might be compiled with GC support so these @@ -1382,7 +1382,7 @@ _PyGC_Dump(PyGC_Head *g) void PyObject_GC_Track(void *op) { - _PyObject_GC_TRACK(op); + _PyObject_GC_TRACK(op); } /* for binary compatibility with 2.2 */ @@ -1395,11 +1395,11 @@ _PyObject_GC_Track(PyObject *op) void PyObject_GC_UnTrack(void *op) { - /* Obscure: the Py_TRASHCAN mechanism requires that we be able to - * call PyObject_GC_UnTrack twice on an object. - */ - if (IS_TRACKED(op)) - _PyObject_GC_UNTRACK(op); + /* Obscure: the Py_TRASHCAN mechanism requires that we be able to + * call PyObject_GC_UnTrack twice on an object. + */ + if (IS_TRACKED(op)) + _PyObject_GC_UNTRACK(op); } /* for binary compatibility with 2.2 */ @@ -1412,73 +1412,73 @@ _PyObject_GC_UnTrack(PyObject *op) PyObject * _PyObject_GC_Malloc(size_t basicsize) { - PyObject *op; - PyGC_Head *g; - if (basicsize > PY_SSIZE_T_MAX - sizeof(PyGC_Head)) - return PyErr_NoMemory(); - g = (PyGC_Head *)PyObject_MALLOC( - sizeof(PyGC_Head) + basicsize); - if (g == NULL) - return PyErr_NoMemory(); - g->gc.gc_refs = GC_UNTRACKED; - generations[0].count++; /* number of allocated GC objects */ - if (generations[0].count > generations[0].threshold && - enabled && - generations[0].threshold && - !collecting && - !PyErr_Occurred()) { - collecting = 1; - collect_generations(); - collecting = 0; - } - op = FROM_GC(g); - return op; + PyObject *op; + PyGC_Head *g; + if (basicsize > PY_SSIZE_T_MAX - sizeof(PyGC_Head)) + return PyErr_NoMemory(); + g = (PyGC_Head *)PyObject_MALLOC( + sizeof(PyGC_Head) + basicsize); + if (g == NULL) + return PyErr_NoMemory(); + g->gc.gc_refs = GC_UNTRACKED; + generations[0].count++; /* number of allocated GC objects */ + if (generations[0].count > generations[0].threshold && + enabled && + generations[0].threshold && + !collecting && + !PyErr_Occurred()) { + collecting = 1; + collect_generations(); + collecting = 0; + } + op = FROM_GC(g); + return op; } PyObject * _PyObject_GC_New(PyTypeObject *tp) { - PyObject *op = _PyObject_GC_Malloc(_PyObject_SIZE(tp)); - if (op != NULL) - op = PyObject_INIT(op, tp); - return op; + PyObject *op = _PyObject_GC_Malloc(_PyObject_SIZE(tp)); + if (op != NULL) + op = PyObject_INIT(op, tp); + return op; } PyVarObject * _PyObject_GC_NewVar(PyTypeObject *tp, Py_ssize_t nitems) { - const size_t size = _PyObject_VAR_SIZE(tp, nitems); - PyVarObject *op = (PyVarObject *) _PyObject_GC_Malloc(size); - if (op != NULL) - op = PyObject_INIT_VAR(op, tp, nitems); - return op; + const size_t size = _PyObject_VAR_SIZE(tp, nitems); + PyVarObject *op = (PyVarObject *) _PyObject_GC_Malloc(size); + if (op != NULL) + op = PyObject_INIT_VAR(op, tp, nitems); + return op; } PyVarObject * _PyObject_GC_Resize(PyVarObject *op, Py_ssize_t nitems) { - const size_t basicsize = _PyObject_VAR_SIZE(Py_TYPE(op), nitems); - PyGC_Head *g = AS_GC(op); - if (basicsize > PY_SSIZE_T_MAX - sizeof(PyGC_Head)) - return (PyVarObject *)PyErr_NoMemory(); - g = (PyGC_Head *)PyObject_REALLOC(g, sizeof(PyGC_Head) + basicsize); - if (g == NULL) - return (PyVarObject *)PyErr_NoMemory(); - op = (PyVarObject *) FROM_GC(g); - Py_SIZE(op) = nitems; - return op; + const size_t basicsize = _PyObject_VAR_SIZE(Py_TYPE(op), nitems); + PyGC_Head *g = AS_GC(op); + if (basicsize > PY_SSIZE_T_MAX - sizeof(PyGC_Head)) + return (PyVarObject *)PyErr_NoMemory(); + g = (PyGC_Head *)PyObject_REALLOC(g, sizeof(PyGC_Head) + basicsize); + if (g == NULL) + return (PyVarObject *)PyErr_NoMemory(); + op = (PyVarObject *) FROM_GC(g); + Py_SIZE(op) = nitems; + return op; } void PyObject_GC_Del(void *op) { - PyGC_Head *g = AS_GC(op); - if (IS_TRACKED(op)) - gc_list_remove(g); - if (generations[0].count > 0) { - generations[0].count--; - } - PyObject_FREE(g); + PyGC_Head *g = AS_GC(op); + if (IS_TRACKED(op)) + gc_list_remove(g); + if (generations[0].count > 0) { + generations[0].count--; + } + PyObject_FREE(g); } /* for binary compatibility with 2.2 */ |