summaryrefslogtreecommitdiffstats
path: root/Modules/gcmodule.c
diff options
context:
space:
mode:
authorAntoine Pitrou <solipsis@pitrou.net>2010-05-09 15:52:27 (GMT)
committerAntoine Pitrou <solipsis@pitrou.net>2010-05-09 15:52:27 (GMT)
commitf95a1b3c53bdd678b64aa608d4375660033460c3 (patch)
treea8bee40b1b14e28ff5978ea519f3035a3c399912 /Modules/gcmodule.c
parentbd250300191133d276a71b395b6428081bf825b8 (diff)
downloadcpython-f95a1b3c53bdd678b64aa608d4375660033460c3.zip
cpython-f95a1b3c53bdd678b64aa608d4375660033460c3.tar.gz
cpython-f95a1b3c53bdd678b64aa608d4375660033460c3.tar.bz2
Recorded merge of revisions 81029 via svnmerge from
svn+ssh://pythondev@svn.python.org/python/trunk ........ r81029 | antoine.pitrou | 2010-05-09 16:46:46 +0200 (dim., 09 mai 2010) | 3 lines Untabify C files. Will watch buildbots. ........
Diffstat (limited to 'Modules/gcmodule.c')
-rw-r--r--Modules/gcmodule.c1722
1 files changed, 861 insertions, 861 deletions
diff --git a/Modules/gcmodule.c b/Modules/gcmodule.c
index 3058724..3717a27 100644
--- a/Modules/gcmodule.c
+++ b/Modules/gcmodule.c
@@ -24,7 +24,7 @@
*/
#include "Python.h"
-#include "frameobject.h" /* for PyFrame_ClearFreeList */
+#include "frameobject.h" /* for PyFrame_ClearFreeList */
/* Get an object's GC head */
#define AS_GC(o) ((PyGC_Head *)(o)-1)
@@ -35,10 +35,10 @@
/*** Global GC state ***/
struct gc_generation {
- PyGC_Head head;
- int threshold; /* collection threshold */
- int count; /* count of allocations or collections of younger
- generations */
+ PyGC_Head head;
+ int threshold; /* collection threshold */
+ int count; /* count of allocations or collections of younger
+ generations */
};
#define NUM_GENERATIONS 3
@@ -46,10 +46,10 @@ struct gc_generation {
/* linked lists of container objects */
static struct gc_generation generations[NUM_GENERATIONS] = {
- /* PyGC_Head, threshold, count */
- {{{GEN_HEAD(0), GEN_HEAD(0), 0}}, 700, 0},
- {{{GEN_HEAD(1), GEN_HEAD(1), 0}}, 10, 0},
- {{{GEN_HEAD(2), GEN_HEAD(2), 0}}, 10, 0},
+ /* PyGC_Head, threshold, count */
+ {{{GEN_HEAD(0), GEN_HEAD(0), 0}}, 700, 0},
+ {{{GEN_HEAD(1), GEN_HEAD(1), 0}}, 10, 0},
+ {{{GEN_HEAD(2), GEN_HEAD(2), 0}}, 10, 0},
};
PyGC_Head *_PyGC_generation0 = GEN_HEAD(0);
@@ -91,7 +91,7 @@ static Py_ssize_t long_lived_pending = 0;
In addition to the various configurable thresholds, we only trigger a
full collection if the ratio
- long_lived_pending / long_lived_total
+ long_lived_pending / long_lived_total
is above a given value (hardwired to 25%).
The reason is that, while "non-full" collections (i.e., collections of
@@ -113,18 +113,18 @@ static Py_ssize_t long_lived_pending = 0;
This heuristic was suggested by Martin von Löwis on python-dev in
June 2008. His original analysis and proposal can be found at:
- http://mail.python.org/pipermail/python-dev/2008-June/080579.html
+ http://mail.python.org/pipermail/python-dev/2008-June/080579.html
*/
/* set for debugging information */
-#define DEBUG_STATS (1<<0) /* print collection statistics */
-#define DEBUG_COLLECTABLE (1<<1) /* print collectable objects */
-#define DEBUG_UNCOLLECTABLE (1<<2) /* print uncollectable objects */
-#define DEBUG_SAVEALL (1<<5) /* save all garbage in gc.garbage */
-#define DEBUG_LEAK DEBUG_COLLECTABLE | \
- DEBUG_UNCOLLECTABLE | \
- DEBUG_SAVEALL
+#define DEBUG_STATS (1<<0) /* print collection statistics */
+#define DEBUG_COLLECTABLE (1<<1) /* print collectable objects */
+#define DEBUG_UNCOLLECTABLE (1<<2) /* print uncollectable objects */
+#define DEBUG_SAVEALL (1<<5) /* save all garbage in gc.garbage */
+#define DEBUG_LEAK DEBUG_COLLECTABLE | \
+ DEBUG_UNCOLLECTABLE | \
+ DEBUG_SAVEALL
static int debug;
static PyObject *tmod = NULL;
@@ -167,28 +167,28 @@ GC_TENTATIVELY_UNREACHABLE
it has a __del__ method), its gc_refs is restored to GC_REACHABLE again.
----------------------------------------------------------------------------
*/
-#define GC_UNTRACKED _PyGC_REFS_UNTRACKED
-#define GC_REACHABLE _PyGC_REFS_REACHABLE
-#define GC_TENTATIVELY_UNREACHABLE _PyGC_REFS_TENTATIVELY_UNREACHABLE
+#define GC_UNTRACKED _PyGC_REFS_UNTRACKED
+#define GC_REACHABLE _PyGC_REFS_REACHABLE
+#define GC_TENTATIVELY_UNREACHABLE _PyGC_REFS_TENTATIVELY_UNREACHABLE
#define IS_TRACKED(o) ((AS_GC(o))->gc.gc_refs != GC_UNTRACKED)
#define IS_REACHABLE(o) ((AS_GC(o))->gc.gc_refs == GC_REACHABLE)
#define IS_TENTATIVELY_UNREACHABLE(o) ( \
- (AS_GC(o))->gc.gc_refs == GC_TENTATIVELY_UNREACHABLE)
+ (AS_GC(o))->gc.gc_refs == GC_TENTATIVELY_UNREACHABLE)
/*** list functions ***/
static void
gc_list_init(PyGC_Head *list)
{
- list->gc.gc_prev = list;
- list->gc.gc_next = list;
+ list->gc.gc_prev = list;
+ list->gc.gc_next = list;
}
static int
gc_list_is_empty(PyGC_Head *list)
{
- return (list->gc.gc_next == list);
+ return (list->gc.gc_next == list);
}
#if 0
@@ -197,10 +197,10 @@ gc_list_is_empty(PyGC_Head *list)
static void
gc_list_append(PyGC_Head *node, PyGC_Head *list)
{
- node->gc.gc_next = list;
- node->gc.gc_prev = list->gc.gc_prev;
- node->gc.gc_prev->gc.gc_next = node;
- list->gc.gc_prev = node;
+ node->gc.gc_next = list;
+ node->gc.gc_prev = list->gc.gc_prev;
+ node->gc.gc_prev->gc.gc_next = node;
+ list->gc.gc_prev = node;
}
#endif
@@ -208,9 +208,9 @@ gc_list_append(PyGC_Head *node, PyGC_Head *list)
static void
gc_list_remove(PyGC_Head *node)
{
- node->gc.gc_prev->gc.gc_next = node->gc.gc_next;
- node->gc.gc_next->gc.gc_prev = node->gc.gc_prev;
- node->gc.gc_next = NULL; /* object is not currently tracked */
+ node->gc.gc_prev->gc.gc_next = node->gc.gc_next;
+ node->gc.gc_next->gc.gc_prev = node->gc.gc_prev;
+ node->gc.gc_next = NULL; /* object is not currently tracked */
}
/* Move `node` from the gc list it's currently in (which is not explicitly
@@ -220,43 +220,43 @@ gc_list_remove(PyGC_Head *node)
static void
gc_list_move(PyGC_Head *node, PyGC_Head *list)
{
- PyGC_Head *new_prev;
- PyGC_Head *current_prev = node->gc.gc_prev;
- PyGC_Head *current_next = node->gc.gc_next;
- /* Unlink from current list. */
- current_prev->gc.gc_next = current_next;
- current_next->gc.gc_prev = current_prev;
- /* Relink at end of new list. */
- new_prev = node->gc.gc_prev = list->gc.gc_prev;
- new_prev->gc.gc_next = list->gc.gc_prev = node;
- node->gc.gc_next = list;
+ PyGC_Head *new_prev;
+ PyGC_Head *current_prev = node->gc.gc_prev;
+ PyGC_Head *current_next = node->gc.gc_next;
+ /* Unlink from current list. */
+ current_prev->gc.gc_next = current_next;
+ current_next->gc.gc_prev = current_prev;
+ /* Relink at end of new list. */
+ new_prev = node->gc.gc_prev = list->gc.gc_prev;
+ new_prev->gc.gc_next = list->gc.gc_prev = node;
+ node->gc.gc_next = list;
}
/* append list `from` onto list `to`; `from` becomes an empty list */
static void
gc_list_merge(PyGC_Head *from, PyGC_Head *to)
{
- PyGC_Head *tail;
- assert(from != to);
- if (!gc_list_is_empty(from)) {
- tail = to->gc.gc_prev;
- tail->gc.gc_next = from->gc.gc_next;
- tail->gc.gc_next->gc.gc_prev = tail;
- to->gc.gc_prev = from->gc.gc_prev;
- to->gc.gc_prev->gc.gc_next = to;
- }
- gc_list_init(from);
+ PyGC_Head *tail;
+ assert(from != to);
+ if (!gc_list_is_empty(from)) {
+ tail = to->gc.gc_prev;
+ tail->gc.gc_next = from->gc.gc_next;
+ tail->gc.gc_next->gc.gc_prev = tail;
+ to->gc.gc_prev = from->gc.gc_prev;
+ to->gc.gc_prev->gc.gc_next = to;
+ }
+ gc_list_init(from);
}
static Py_ssize_t
gc_list_size(PyGC_Head *list)
{
- PyGC_Head *gc;
- Py_ssize_t n = 0;
- for (gc = list->gc.gc_next; gc != list; gc = gc->gc.gc_next) {
- n++;
- }
- return n;
+ PyGC_Head *gc;
+ Py_ssize_t n = 0;
+ for (gc = list->gc.gc_next; gc != list; gc = gc->gc.gc_next) {
+ n++;
+ }
+ return n;
}
/* Append objects in a GC list to a Python list.
@@ -265,16 +265,16 @@ gc_list_size(PyGC_Head *list)
static int
append_objects(PyObject *py_list, PyGC_Head *gc_list)
{
- PyGC_Head *gc;
- for (gc = gc_list->gc.gc_next; gc != gc_list; gc = gc->gc.gc_next) {
- PyObject *op = FROM_GC(gc);
- if (op != py_list) {
- if (PyList_Append(py_list, op)) {
- return -1; /* exception */
- }
- }
- }
- return 0;
+ PyGC_Head *gc;
+ for (gc = gc_list->gc.gc_next; gc != gc_list; gc = gc->gc.gc_next) {
+ PyObject *op = FROM_GC(gc);
+ if (op != py_list) {
+ if (PyList_Append(py_list, op)) {
+ return -1; /* exception */
+ }
+ }
+ }
+ return 0;
}
/*** end of list stuff ***/
@@ -287,48 +287,48 @@ append_objects(PyObject *py_list, PyGC_Head *gc_list)
static void
update_refs(PyGC_Head *containers)
{
- PyGC_Head *gc = containers->gc.gc_next;
- for (; gc != containers; gc = gc->gc.gc_next) {
- assert(gc->gc.gc_refs == GC_REACHABLE);
- gc->gc.gc_refs = Py_REFCNT(FROM_GC(gc));
- /* Python's cyclic gc should never see an incoming refcount
- * of 0: if something decref'ed to 0, it should have been
- * deallocated immediately at that time.
- * Possible cause (if the assert triggers): a tp_dealloc
- * routine left a gc-aware object tracked during its teardown
- * phase, and did something-- or allowed something to happen --
- * that called back into Python. gc can trigger then, and may
- * see the still-tracked dying object. Before this assert
- * was added, such mistakes went on to allow gc to try to
- * delete the object again. In a debug build, that caused
- * a mysterious segfault, when _Py_ForgetReference tried
- * to remove the object from the doubly-linked list of all
- * objects a second time. In a release build, an actual
- * double deallocation occurred, which leads to corruption
- * of the allocator's internal bookkeeping pointers. That's
- * so serious that maybe this should be a release-build
- * check instead of an assert?
- */
- assert(gc->gc.gc_refs != 0);
- }
+ PyGC_Head *gc = containers->gc.gc_next;
+ for (; gc != containers; gc = gc->gc.gc_next) {
+ assert(gc->gc.gc_refs == GC_REACHABLE);
+ gc->gc.gc_refs = Py_REFCNT(FROM_GC(gc));
+ /* Python's cyclic gc should never see an incoming refcount
+ * of 0: if something decref'ed to 0, it should have been
+ * deallocated immediately at that time.
+ * Possible cause (if the assert triggers): a tp_dealloc
+ * routine left a gc-aware object tracked during its teardown
+ * phase, and did something-- or allowed something to happen --
+ * that called back into Python. gc can trigger then, and may
+ * see the still-tracked dying object. Before this assert
+ * was added, such mistakes went on to allow gc to try to
+ * delete the object again. In a debug build, that caused
+ * a mysterious segfault, when _Py_ForgetReference tried
+ * to remove the object from the doubly-linked list of all
+ * objects a second time. In a release build, an actual
+ * double deallocation occurred, which leads to corruption
+ * of the allocator's internal bookkeeping pointers. That's
+ * so serious that maybe this should be a release-build
+ * check instead of an assert?
+ */
+ assert(gc->gc.gc_refs != 0);
+ }
}
/* A traversal callback for subtract_refs. */
static int
visit_decref(PyObject *op, void *data)
{
- assert(op != NULL);
- if (PyObject_IS_GC(op)) {
- PyGC_Head *gc = AS_GC(op);
- /* We're only interested in gc_refs for objects in the
- * generation being collected, which can be recognized
- * because only they have positive gc_refs.
- */
- assert(gc->gc.gc_refs != 0); /* else refcount was too small */
- if (gc->gc.gc_refs > 0)
- gc->gc.gc_refs--;
- }
- return 0;
+ assert(op != NULL);
+ if (PyObject_IS_GC(op)) {
+ PyGC_Head *gc = AS_GC(op);
+ /* We're only interested in gc_refs for objects in the
+ * generation being collected, which can be recognized
+ * because only they have positive gc_refs.
+ */
+ assert(gc->gc.gc_refs != 0); /* else refcount was too small */
+ if (gc->gc.gc_refs > 0)
+ gc->gc.gc_refs--;
+ }
+ return 0;
}
/* Subtract internal references from gc_refs. After this, gc_refs is >= 0
@@ -339,57 +339,57 @@ visit_decref(PyObject *op, void *data)
static void
subtract_refs(PyGC_Head *containers)
{
- traverseproc traverse;
- PyGC_Head *gc = containers->gc.gc_next;
- for (; gc != containers; gc=gc->gc.gc_next) {
- traverse = Py_TYPE(FROM_GC(gc))->tp_traverse;
- (void) traverse(FROM_GC(gc),
- (visitproc)visit_decref,
- NULL);
- }
+ traverseproc traverse;
+ PyGC_Head *gc = containers->gc.gc_next;
+ for (; gc != containers; gc=gc->gc.gc_next) {
+ traverse = Py_TYPE(FROM_GC(gc))->tp_traverse;
+ (void) traverse(FROM_GC(gc),
+ (visitproc)visit_decref,
+ NULL);
+ }
}
/* A traversal callback for move_unreachable. */
static int
visit_reachable(PyObject *op, PyGC_Head *reachable)
{
- if (PyObject_IS_GC(op)) {
- PyGC_Head *gc = AS_GC(op);
- const Py_ssize_t gc_refs = gc->gc.gc_refs;
-
- if (gc_refs == 0) {
- /* This is in move_unreachable's 'young' list, but
- * the traversal hasn't yet gotten to it. All
- * we need to do is tell move_unreachable that it's
- * reachable.
- */
- gc->gc.gc_refs = 1;
- }
- else if (gc_refs == GC_TENTATIVELY_UNREACHABLE) {
- /* This had gc_refs = 0 when move_unreachable got
- * to it, but turns out it's reachable after all.
- * Move it back to move_unreachable's 'young' list,
- * and move_unreachable will eventually get to it
- * again.
- */
- gc_list_move(gc, reachable);
- gc->gc.gc_refs = 1;
- }
- /* Else there's nothing to do.
- * If gc_refs > 0, it must be in move_unreachable's 'young'
- * list, and move_unreachable will eventually get to it.
- * If gc_refs == GC_REACHABLE, it's either in some other
- * generation so we don't care about it, or move_unreachable
- * already dealt with it.
- * If gc_refs == GC_UNTRACKED, it must be ignored.
- */
- else {
- assert(gc_refs > 0
- || gc_refs == GC_REACHABLE
- || gc_refs == GC_UNTRACKED);
- }
- }
- return 0;
+ if (PyObject_IS_GC(op)) {
+ PyGC_Head *gc = AS_GC(op);
+ const Py_ssize_t gc_refs = gc->gc.gc_refs;
+
+ if (gc_refs == 0) {
+ /* This is in move_unreachable's 'young' list, but
+ * the traversal hasn't yet gotten to it. All
+ * we need to do is tell move_unreachable that it's
+ * reachable.
+ */
+ gc->gc.gc_refs = 1;
+ }
+ else if (gc_refs == GC_TENTATIVELY_UNREACHABLE) {
+ /* This had gc_refs = 0 when move_unreachable got
+ * to it, but turns out it's reachable after all.
+ * Move it back to move_unreachable's 'young' list,
+ * and move_unreachable will eventually get to it
+ * again.
+ */
+ gc_list_move(gc, reachable);
+ gc->gc.gc_refs = 1;
+ }
+ /* Else there's nothing to do.
+ * If gc_refs > 0, it must be in move_unreachable's 'young'
+ * list, and move_unreachable will eventually get to it.
+ * If gc_refs == GC_REACHABLE, it's either in some other
+ * generation so we don't care about it, or move_unreachable
+ * already dealt with it.
+ * If gc_refs == GC_UNTRACKED, it must be ignored.
+ */
+ else {
+ assert(gc_refs > 0
+ || gc_refs == GC_REACHABLE
+ || gc_refs == GC_UNTRACKED);
+ }
+ }
+ return 0;
}
/* Move the unreachable objects from young to unreachable. After this,
@@ -403,68 +403,68 @@ visit_reachable(PyObject *op, PyGC_Head *reachable)
static void
move_unreachable(PyGC_Head *young, PyGC_Head *unreachable)
{
- PyGC_Head *gc = young->gc.gc_next;
-
- /* Invariants: all objects "to the left" of us in young have gc_refs
- * = GC_REACHABLE, and are indeed reachable (directly or indirectly)
- * from outside the young list as it was at entry. All other objects
- * from the original young "to the left" of us are in unreachable now,
- * and have gc_refs = GC_TENTATIVELY_UNREACHABLE. All objects to the
- * left of us in 'young' now have been scanned, and no objects here
- * or to the right have been scanned yet.
- */
-
- while (gc != young) {
- PyGC_Head *next;
-
- if (gc->gc.gc_refs) {
- /* gc is definitely reachable from outside the
- * original 'young'. Mark it as such, and traverse
- * its pointers to find any other objects that may
- * be directly reachable from it. Note that the
- * call to tp_traverse may append objects to young,
- * so we have to wait until it returns to determine
- * the next object to visit.
- */
- PyObject *op = FROM_GC(gc);
- traverseproc traverse = Py_TYPE(op)->tp_traverse;
- assert(gc->gc.gc_refs > 0);
- gc->gc.gc_refs = GC_REACHABLE;
- (void) traverse(op,
- (visitproc)visit_reachable,
- (void *)young);
- next = gc->gc.gc_next;
- if (PyTuple_CheckExact(op)) {
- _PyTuple_MaybeUntrack(op);
- }
- else if (PyDict_CheckExact(op)) {
- _PyDict_MaybeUntrack(op);
- }
- }
- else {
- /* This *may* be unreachable. To make progress,
- * assume it is. gc isn't directly reachable from
- * any object we've already traversed, but may be
- * reachable from an object we haven't gotten to yet.
- * visit_reachable will eventually move gc back into
- * young if that's so, and we'll see it again.
- */
- next = gc->gc.gc_next;
- gc_list_move(gc, unreachable);
- gc->gc.gc_refs = GC_TENTATIVELY_UNREACHABLE;
- }
- gc = next;
- }
+ PyGC_Head *gc = young->gc.gc_next;
+
+ /* Invariants: all objects "to the left" of us in young have gc_refs
+ * = GC_REACHABLE, and are indeed reachable (directly or indirectly)
+ * from outside the young list as it was at entry. All other objects
+ * from the original young "to the left" of us are in unreachable now,
+ * and have gc_refs = GC_TENTATIVELY_UNREACHABLE. All objects to the
+ * left of us in 'young' now have been scanned, and no objects here
+ * or to the right have been scanned yet.
+ */
+
+ while (gc != young) {
+ PyGC_Head *next;
+
+ if (gc->gc.gc_refs) {
+ /* gc is definitely reachable from outside the
+ * original 'young'. Mark it as such, and traverse
+ * its pointers to find any other objects that may
+ * be directly reachable from it. Note that the
+ * call to tp_traverse may append objects to young,
+ * so we have to wait until it returns to determine
+ * the next object to visit.
+ */
+ PyObject *op = FROM_GC(gc);
+ traverseproc traverse = Py_TYPE(op)->tp_traverse;
+ assert(gc->gc.gc_refs > 0);
+ gc->gc.gc_refs = GC_REACHABLE;
+ (void) traverse(op,
+ (visitproc)visit_reachable,
+ (void *)young);
+ next = gc->gc.gc_next;
+ if (PyTuple_CheckExact(op)) {
+ _PyTuple_MaybeUntrack(op);
+ }
+ else if (PyDict_CheckExact(op)) {
+ _PyDict_MaybeUntrack(op);
+ }
+ }
+ else {
+ /* This *may* be unreachable. To make progress,
+ * assume it is. gc isn't directly reachable from
+ * any object we've already traversed, but may be
+ * reachable from an object we haven't gotten to yet.
+ * visit_reachable will eventually move gc back into
+ * young if that's so, and we'll see it again.
+ */
+ next = gc->gc.gc_next;
+ gc_list_move(gc, unreachable);
+ gc->gc.gc_refs = GC_TENTATIVELY_UNREACHABLE;
+ }
+ gc = next;
+ }
}
/* Return true if object has a finalization method. */
static int
has_finalizer(PyObject *op)
{
- if (PyGen_CheckExact(op))
- return PyGen_NeedsFinalizing((PyGenObject *)op);
- else
- return op->ob_type->tp_del != NULL;
+ if (PyGen_CheckExact(op))
+ return PyGen_NeedsFinalizing((PyGenObject *)op);
+ else
+ return op->ob_type->tp_del != NULL;
}
/* Move the objects in unreachable with __del__ methods into `finalizers`.
@@ -474,37 +474,37 @@ has_finalizer(PyObject *op)
static void
move_finalizers(PyGC_Head *unreachable, PyGC_Head *finalizers)
{
- PyGC_Head *gc;
- PyGC_Head *next;
-
- /* March over unreachable. Move objects with finalizers into
- * `finalizers`.
- */
- for (gc = unreachable->gc.gc_next; gc != unreachable; gc = next) {
- PyObject *op = FROM_GC(gc);
-
- assert(IS_TENTATIVELY_UNREACHABLE(op));
- next = gc->gc.gc_next;
-
- if (has_finalizer(op)) {
- gc_list_move(gc, finalizers);
- gc->gc.gc_refs = GC_REACHABLE;
- }
- }
+ PyGC_Head *gc;
+ PyGC_Head *next;
+
+ /* March over unreachable. Move objects with finalizers into
+ * `finalizers`.
+ */
+ for (gc = unreachable->gc.gc_next; gc != unreachable; gc = next) {
+ PyObject *op = FROM_GC(gc);
+
+ assert(IS_TENTATIVELY_UNREACHABLE(op));
+ next = gc->gc.gc_next;
+
+ if (has_finalizer(op)) {
+ gc_list_move(gc, finalizers);
+ gc->gc.gc_refs = GC_REACHABLE;
+ }
+ }
}
/* A traversal callback for move_finalizer_reachable. */
static int
visit_move(PyObject *op, PyGC_Head *tolist)
{
- if (PyObject_IS_GC(op)) {
- if (IS_TENTATIVELY_UNREACHABLE(op)) {
- PyGC_Head *gc = AS_GC(op);
- gc_list_move(gc, tolist);
- gc->gc.gc_refs = GC_REACHABLE;
- }
- }
- return 0;
+ if (PyObject_IS_GC(op)) {
+ if (IS_TENTATIVELY_UNREACHABLE(op)) {
+ PyGC_Head *gc = AS_GC(op);
+ gc_list_move(gc, tolist);
+ gc->gc.gc_refs = GC_REACHABLE;
+ }
+ }
+ return 0;
}
/* Move objects that are reachable from finalizers, from the unreachable set
@@ -513,15 +513,15 @@ visit_move(PyObject *op, PyGC_Head *tolist)
static void
move_finalizer_reachable(PyGC_Head *finalizers)
{
- traverseproc traverse;
- PyGC_Head *gc = finalizers->gc.gc_next;
- for (; gc != finalizers; gc = gc->gc.gc_next) {
- /* Note that the finalizers list may grow during this. */
- traverse = Py_TYPE(FROM_GC(gc))->tp_traverse;
- (void) traverse(FROM_GC(gc),
- (visitproc)visit_move,
- (void *)finalizers);
- }
+ traverseproc traverse;
+ PyGC_Head *gc = finalizers->gc.gc_next;
+ for (; gc != finalizers; gc = gc->gc.gc_next) {
+ /* Note that the finalizers list may grow during this. */
+ traverse = Py_TYPE(FROM_GC(gc))->tp_traverse;
+ (void) traverse(FROM_GC(gc),
+ (visitproc)visit_move,
+ (void *)finalizers);
+ }
}
/* Clear all weakrefs to unreachable objects, and if such a weakref has a
@@ -538,150 +538,150 @@ move_finalizer_reachable(PyGC_Head *finalizers)
static int
handle_weakrefs(PyGC_Head *unreachable, PyGC_Head *old)
{
- PyGC_Head *gc;
- PyObject *op; /* generally FROM_GC(gc) */
- PyWeakReference *wr; /* generally a cast of op */
- PyGC_Head wrcb_to_call; /* weakrefs with callbacks to call */
- PyGC_Head *next;
- int num_freed = 0;
-
- gc_list_init(&wrcb_to_call);
-
- /* Clear all weakrefs to the objects in unreachable. If such a weakref
- * also has a callback, move it into `wrcb_to_call` if the callback
- * needs to be invoked. Note that we cannot invoke any callbacks until
- * all weakrefs to unreachable objects are cleared, lest the callback
- * resurrect an unreachable object via a still-active weakref. We
- * make another pass over wrcb_to_call, invoking callbacks, after this
- * pass completes.
- */
- for (gc = unreachable->gc.gc_next; gc != unreachable; gc = next) {
- PyWeakReference **wrlist;
-
- op = FROM_GC(gc);
- assert(IS_TENTATIVELY_UNREACHABLE(op));
- next = gc->gc.gc_next;
-
- if (! PyType_SUPPORTS_WEAKREFS(Py_TYPE(op)))
- continue;
-
- /* It supports weakrefs. Does it have any? */
- wrlist = (PyWeakReference **)
- PyObject_GET_WEAKREFS_LISTPTR(op);
-
- /* `op` may have some weakrefs. March over the list, clear
- * all the weakrefs, and move the weakrefs with callbacks
- * that must be called into wrcb_to_call.
- */
- for (wr = *wrlist; wr != NULL; wr = *wrlist) {
- PyGC_Head *wrasgc; /* AS_GC(wr) */
-
- /* _PyWeakref_ClearRef clears the weakref but leaves
- * the callback pointer intact. Obscure: it also
- * changes *wrlist.
- */
- assert(wr->wr_object == op);
- _PyWeakref_ClearRef(wr);
- assert(wr->wr_object == Py_None);
- if (wr->wr_callback == NULL)
- continue; /* no callback */
-
- /* Headache time. `op` is going away, and is weakly referenced by
- * `wr`, which has a callback. Should the callback be invoked? If wr
- * is also trash, no:
- *
- * 1. There's no need to call it. The object and the weakref are
- * both going away, so it's legitimate to pretend the weakref is
- * going away first. The user has to ensure a weakref outlives its
- * referent if they want a guarantee that the wr callback will get
- * invoked.
- *
- * 2. It may be catastrophic to call it. If the callback is also in
- * cyclic trash (CT), then although the CT is unreachable from
- * outside the current generation, CT may be reachable from the
- * callback. Then the callback could resurrect insane objects.
- *
- * Since the callback is never needed and may be unsafe in this case,
- * wr is simply left in the unreachable set. Note that because we
- * already called _PyWeakref_ClearRef(wr), its callback will never
- * trigger.
- *
- * OTOH, if wr isn't part of CT, we should invoke the callback: the
- * weakref outlived the trash. Note that since wr isn't CT in this
- * case, its callback can't be CT either -- wr acted as an external
- * root to this generation, and therefore its callback did too. So
- * nothing in CT is reachable from the callback either, so it's hard
- * to imagine how calling it later could create a problem for us. wr
- * is moved to wrcb_to_call in this case.
- */
- if (IS_TENTATIVELY_UNREACHABLE(wr))
- continue;
- assert(IS_REACHABLE(wr));
-
- /* Create a new reference so that wr can't go away
- * before we can process it again.
- */
- Py_INCREF(wr);
-
- /* Move wr to wrcb_to_call, for the next pass. */
- wrasgc = AS_GC(wr);
- assert(wrasgc != next); /* wrasgc is reachable, but
- next isn't, so they can't
- be the same */
- gc_list_move(wrasgc, &wrcb_to_call);
- }
- }
-
- /* Invoke the callbacks we decided to honor. It's safe to invoke them
- * because they can't reference unreachable objects.
- */
- while (! gc_list_is_empty(&wrcb_to_call)) {
- PyObject *temp;
- PyObject *callback;
-
- gc = wrcb_to_call.gc.gc_next;
- op = FROM_GC(gc);
- assert(IS_REACHABLE(op));
- assert(PyWeakref_Check(op));
- wr = (PyWeakReference *)op;
- callback = wr->wr_callback;
- assert(callback != NULL);
-
- /* copy-paste of weakrefobject.c's handle_callback() */
- temp = PyObject_CallFunctionObjArgs(callback, wr, NULL);
- if (temp == NULL)
- PyErr_WriteUnraisable(callback);
- else
- Py_DECREF(temp);
-
- /* Give up the reference we created in the first pass. When
- * op's refcount hits 0 (which it may or may not do right now),
- * op's tp_dealloc will decref op->wr_callback too. Note
- * that the refcount probably will hit 0 now, and because this
- * weakref was reachable to begin with, gc didn't already
- * add it to its count of freed objects. Example: a reachable
- * weak value dict maps some key to this reachable weakref.
- * The callback removes this key->weakref mapping from the
- * dict, leaving no other references to the weakref (excepting
- * ours).
- */
- Py_DECREF(op);
- if (wrcb_to_call.gc.gc_next == gc) {
- /* object is still alive -- move it */
- gc_list_move(gc, old);
- }
- else
- ++num_freed;
- }
-
- return num_freed;
+ PyGC_Head *gc;
+ PyObject *op; /* generally FROM_GC(gc) */
+ PyWeakReference *wr; /* generally a cast of op */
+ PyGC_Head wrcb_to_call; /* weakrefs with callbacks to call */
+ PyGC_Head *next;
+ int num_freed = 0;
+
+ gc_list_init(&wrcb_to_call);
+
+ /* Clear all weakrefs to the objects in unreachable. If such a weakref
+ * also has a callback, move it into `wrcb_to_call` if the callback
+ * needs to be invoked. Note that we cannot invoke any callbacks until
+ * all weakrefs to unreachable objects are cleared, lest the callback
+ * resurrect an unreachable object via a still-active weakref. We
+ * make another pass over wrcb_to_call, invoking callbacks, after this
+ * pass completes.
+ */
+ for (gc = unreachable->gc.gc_next; gc != unreachable; gc = next) {
+ PyWeakReference **wrlist;
+
+ op = FROM_GC(gc);
+ assert(IS_TENTATIVELY_UNREACHABLE(op));
+ next = gc->gc.gc_next;
+
+ if (! PyType_SUPPORTS_WEAKREFS(Py_TYPE(op)))
+ continue;
+
+ /* It supports weakrefs. Does it have any? */
+ wrlist = (PyWeakReference **)
+ PyObject_GET_WEAKREFS_LISTPTR(op);
+
+ /* `op` may have some weakrefs. March over the list, clear
+ * all the weakrefs, and move the weakrefs with callbacks
+ * that must be called into wrcb_to_call.
+ */
+ for (wr = *wrlist; wr != NULL; wr = *wrlist) {
+ PyGC_Head *wrasgc; /* AS_GC(wr) */
+
+ /* _PyWeakref_ClearRef clears the weakref but leaves
+ * the callback pointer intact. Obscure: it also
+ * changes *wrlist.
+ */
+ assert(wr->wr_object == op);
+ _PyWeakref_ClearRef(wr);
+ assert(wr->wr_object == Py_None);
+ if (wr->wr_callback == NULL)
+ continue; /* no callback */
+
+ /* Headache time. `op` is going away, and is weakly referenced by
+ * `wr`, which has a callback. Should the callback be invoked? If wr
+ * is also trash, no:
+ *
+ * 1. There's no need to call it. The object and the weakref are
+ * both going away, so it's legitimate to pretend the weakref is
+ * going away first. The user has to ensure a weakref outlives its
+ * referent if they want a guarantee that the wr callback will get
+ * invoked.
+ *
+ * 2. It may be catastrophic to call it. If the callback is also in
+ * cyclic trash (CT), then although the CT is unreachable from
+ * outside the current generation, CT may be reachable from the
+ * callback. Then the callback could resurrect insane objects.
+ *
+ * Since the callback is never needed and may be unsafe in this case,
+ * wr is simply left in the unreachable set. Note that because we
+ * already called _PyWeakref_ClearRef(wr), its callback will never
+ * trigger.
+ *
+ * OTOH, if wr isn't part of CT, we should invoke the callback: the
+ * weakref outlived the trash. Note that since wr isn't CT in this
+ * case, its callback can't be CT either -- wr acted as an external
+ * root to this generation, and therefore its callback did too. So
+ * nothing in CT is reachable from the callback either, so it's hard
+ * to imagine how calling it later could create a problem for us. wr
+ * is moved to wrcb_to_call in this case.
+ */
+ if (IS_TENTATIVELY_UNREACHABLE(wr))
+ continue;
+ assert(IS_REACHABLE(wr));
+
+ /* Create a new reference so that wr can't go away
+ * before we can process it again.
+ */
+ Py_INCREF(wr);
+
+ /* Move wr to wrcb_to_call, for the next pass. */
+ wrasgc = AS_GC(wr);
+ assert(wrasgc != next); /* wrasgc is reachable, but
+ next isn't, so they can't
+ be the same */
+ gc_list_move(wrasgc, &wrcb_to_call);
+ }
+ }
+
+ /* Invoke the callbacks we decided to honor. It's safe to invoke them
+ * because they can't reference unreachable objects.
+ */
+ while (! gc_list_is_empty(&wrcb_to_call)) {
+ PyObject *temp;
+ PyObject *callback;
+
+ gc = wrcb_to_call.gc.gc_next;
+ op = FROM_GC(gc);
+ assert(IS_REACHABLE(op));
+ assert(PyWeakref_Check(op));
+ wr = (PyWeakReference *)op;
+ callback = wr->wr_callback;
+ assert(callback != NULL);
+
+ /* copy-paste of weakrefobject.c's handle_callback() */
+ temp = PyObject_CallFunctionObjArgs(callback, wr, NULL);
+ if (temp == NULL)
+ PyErr_WriteUnraisable(callback);
+ else
+ Py_DECREF(temp);
+
+ /* Give up the reference we created in the first pass. When
+ * op's refcount hits 0 (which it may or may not do right now),
+ * op's tp_dealloc will decref op->wr_callback too. Note
+ * that the refcount probably will hit 0 now, and because this
+ * weakref was reachable to begin with, gc didn't already
+ * add it to its count of freed objects. Example: a reachable
+ * weak value dict maps some key to this reachable weakref.
+ * The callback removes this key->weakref mapping from the
+ * dict, leaving no other references to the weakref (excepting
+ * ours).
+ */
+ Py_DECREF(op);
+ if (wrcb_to_call.gc.gc_next == gc) {
+ /* object is still alive -- move it */
+ gc_list_move(gc, old);
+ }
+ else
+ ++num_freed;
+ }
+
+ return num_freed;
}
static void
debug_cycle(char *msg, PyObject *op)
{
- PySys_WriteStderr("gc: %.100s <%.100s %p>\n",
- msg, Py_TYPE(op)->tp_name, op);
+ PySys_WriteStderr("gc: %.100s <%.100s %p>\n",
+ msg, Py_TYPE(op)->tp_name, op);
}
/* Handle uncollectable garbage (cycles with finalizers, and stuff reachable
@@ -696,56 +696,56 @@ debug_cycle(char *msg, PyObject *op)
static int
handle_finalizers(PyGC_Head *finalizers, PyGC_Head *old)
{
- PyGC_Head *gc = finalizers->gc.gc_next;
-
- if (garbage == NULL) {
- garbage = PyList_New(0);
- if (garbage == NULL)
- Py_FatalError("gc couldn't create gc.garbage list");
- }
- for (; gc != finalizers; gc = gc->gc.gc_next) {
- PyObject *op = FROM_GC(gc);
-
- if ((debug & DEBUG_SAVEALL) || has_finalizer(op)) {
- if (PyList_Append(garbage, op) < 0)
- return -1;
- }
- }
-
- gc_list_merge(finalizers, old);
- return 0;
+ PyGC_Head *gc = finalizers->gc.gc_next;
+
+ if (garbage == NULL) {
+ garbage = PyList_New(0);
+ if (garbage == NULL)
+ Py_FatalError("gc couldn't create gc.garbage list");
+ }
+ for (; gc != finalizers; gc = gc->gc.gc_next) {
+ PyObject *op = FROM_GC(gc);
+
+ if ((debug & DEBUG_SAVEALL) || has_finalizer(op)) {
+ if (PyList_Append(garbage, op) < 0)
+ return -1;
+ }
+ }
+
+ gc_list_merge(finalizers, old);
+ return 0;
}
-/* Break reference cycles by clearing the containers involved. This is
+/* Break reference cycles by clearing the containers involved. This is
* tricky business as the lists can be changing and we don't know which
* objects may be freed. It is possible I screwed something up here.
*/
static void
delete_garbage(PyGC_Head *collectable, PyGC_Head *old)
{
- inquiry clear;
-
- while (!gc_list_is_empty(collectable)) {
- PyGC_Head *gc = collectable->gc.gc_next;
- PyObject *op = FROM_GC(gc);
-
- assert(IS_TENTATIVELY_UNREACHABLE(op));
- if (debug & DEBUG_SAVEALL) {
- PyList_Append(garbage, op);
- }
- else {
- if ((clear = Py_TYPE(op)->tp_clear) != NULL) {
- Py_INCREF(op);
- clear(op);
- Py_DECREF(op);
- }
- }
- if (collectable->gc.gc_next == gc) {
- /* object is still alive, move it, it may die later */
- gc_list_move(gc, old);
- gc->gc.gc_refs = GC_REACHABLE;
- }
- }
+ inquiry clear;
+
+ while (!gc_list_is_empty(collectable)) {
+ PyGC_Head *gc = collectable->gc.gc_next;
+ PyObject *op = FROM_GC(gc);
+
+ assert(IS_TENTATIVELY_UNREACHABLE(op));
+ if (debug & DEBUG_SAVEALL) {
+ PyList_Append(garbage, op);
+ }
+ else {
+ if ((clear = Py_TYPE(op)->tp_clear) != NULL) {
+ Py_INCREF(op);
+ clear(op);
+ Py_DECREF(op);
+ }
+ }
+ if (collectable->gc.gc_next == gc) {
+ /* object is still alive, move it, it may die later */
+ gc_list_move(gc, old);
+ gc->gc.gc_refs = GC_REACHABLE;
+ }
+ }
}
/* Clear all free lists
@@ -756,30 +756,30 @@ delete_garbage(PyGC_Head *collectable, PyGC_Head *old)
static void
clear_freelists(void)
{
- (void)PyMethod_ClearFreeList();
- (void)PyFrame_ClearFreeList();
- (void)PyCFunction_ClearFreeList();
- (void)PyTuple_ClearFreeList();
- (void)PyUnicode_ClearFreeList();
- (void)PyFloat_ClearFreeList();
+ (void)PyMethod_ClearFreeList();
+ (void)PyFrame_ClearFreeList();
+ (void)PyCFunction_ClearFreeList();
+ (void)PyTuple_ClearFreeList();
+ (void)PyUnicode_ClearFreeList();
+ (void)PyFloat_ClearFreeList();
}
static double
get_time(void)
{
- double result = 0;
- if (tmod != NULL) {
- PyObject *f = PyObject_CallMethod(tmod, "time", NULL);
- if (f == NULL) {
- PyErr_Clear();
- }
- else {
- if (PyFloat_Check(f))
- result = PyFloat_AsDouble(f);
- Py_DECREF(f);
- }
- }
- return result;
+ double result = 0;
+ if (tmod != NULL) {
+ PyObject *f = PyObject_CallMethod(tmod, "time", NULL);
+ if (f == NULL) {
+ PyErr_Clear();
+ }
+ else {
+ if (PyFloat_Check(f))
+ result = PyFloat_AsDouble(f);
+ Py_DECREF(f);
+ }
+ }
+ return result;
}
/* This is the main function. Read this to understand how the
@@ -787,184 +787,184 @@ get_time(void)
static Py_ssize_t
collect(int generation)
{
- int i;
- Py_ssize_t m = 0; /* # objects collected */
- Py_ssize_t n = 0; /* # unreachable objects that couldn't be collected */
- PyGC_Head *young; /* the generation we are examining */
- PyGC_Head *old; /* next older generation */
- PyGC_Head unreachable; /* non-problematic unreachable trash */
- PyGC_Head finalizers; /* objects with, & reachable from, __del__ */
- PyGC_Head *gc;
- double t1 = 0.0;
-
- if (delstr == NULL) {
- delstr = PyUnicode_InternFromString("__del__");
- if (delstr == NULL)
- Py_FatalError("gc couldn't allocate \"__del__\"");
- }
-
- if (debug & DEBUG_STATS) {
- PySys_WriteStderr("gc: collecting generation %d...\n",
- generation);
- PySys_WriteStderr("gc: objects in each generation:");
- for (i = 0; i < NUM_GENERATIONS; i++)
- PySys_WriteStderr(" %" PY_FORMAT_SIZE_T "d",
- gc_list_size(GEN_HEAD(i)));
- t1 = get_time();
- PySys_WriteStderr("\n");
- }
-
- /* update collection and allocation counters */
- if (generation+1 < NUM_GENERATIONS)
- generations[generation+1].count += 1;
- for (i = 0; i <= generation; i++)
- generations[i].count = 0;
-
- /* merge younger generations with one we are currently collecting */
- for (i = 0; i < generation; i++) {
- gc_list_merge(GEN_HEAD(i), GEN_HEAD(generation));
- }
-
- /* handy references */
- young = GEN_HEAD(generation);
- if (generation < NUM_GENERATIONS-1)
- old = GEN_HEAD(generation+1);
- else
- old = young;
-
- /* Using ob_refcnt and gc_refs, calculate which objects in the
- * container set are reachable from outside the set (i.e., have a
- * refcount greater than 0 when all the references within the
- * set are taken into account).
- */
- update_refs(young);
- subtract_refs(young);
-
- /* Leave everything reachable from outside young in young, and move
- * everything else (in young) to unreachable.
- * NOTE: This used to move the reachable objects into a reachable
- * set instead. But most things usually turn out to be reachable,
- * so it's more efficient to move the unreachable things.
- */
- gc_list_init(&unreachable);
- move_unreachable(young, &unreachable);
-
- /* Move reachable objects to next generation. */
- if (young != old) {
- if (generation == NUM_GENERATIONS - 2) {
- long_lived_pending += gc_list_size(young);
- }
- gc_list_merge(young, old);
- }
- else {
- long_lived_pending = 0;
- long_lived_total = gc_list_size(young);
- }
-
- /* All objects in unreachable are trash, but objects reachable from
- * finalizers can't safely be deleted. Python programmers should take
- * care not to create such things. For Python, finalizers means
- * instance objects with __del__ methods. Weakrefs with callbacks
- * can also call arbitrary Python code but they will be dealt with by
- * handle_weakrefs().
- */
- gc_list_init(&finalizers);
- move_finalizers(&unreachable, &finalizers);
- /* finalizers contains the unreachable objects with a finalizer;
- * unreachable objects reachable *from* those are also uncollectable,
- * and we move those into the finalizers list too.
- */
- move_finalizer_reachable(&finalizers);
-
- /* Collect statistics on collectable objects found and print
- * debugging information.
- */
- for (gc = unreachable.gc.gc_next; gc != &unreachable;
- gc = gc->gc.gc_next) {
- m++;
- if (debug & DEBUG_COLLECTABLE) {
- debug_cycle("collectable", FROM_GC(gc));
- }
- }
-
- /* Clear weakrefs and invoke callbacks as necessary. */
- m += handle_weakrefs(&unreachable, old);
-
- /* Call tp_clear on objects in the unreachable set. This will cause
- * the reference cycles to be broken. It may also cause some objects
- * in finalizers to be freed.
- */
- delete_garbage(&unreachable, old);
-
- /* Collect statistics on uncollectable objects found and print
- * debugging information. */
- for (gc = finalizers.gc.gc_next;
- gc != &finalizers;
- gc = gc->gc.gc_next) {
- n++;
- if (debug & DEBUG_UNCOLLECTABLE)
- debug_cycle("uncollectable", FROM_GC(gc));
- }
- if (debug & DEBUG_STATS) {
- double t2 = get_time();
- if (m == 0 && n == 0)
- PySys_WriteStderr("gc: done");
- else
- PySys_WriteStderr(
- "gc: done, "
- "%" PY_FORMAT_SIZE_T "d unreachable, "
- "%" PY_FORMAT_SIZE_T "d uncollectable",
- n+m, n);
- if (t1 && t2) {
- PySys_WriteStderr(", %.4fs elapsed", t2-t1);
- }
- PySys_WriteStderr(".\n");
- }
-
- /* Append instances in the uncollectable set to a Python
- * reachable list of garbage. The programmer has to deal with
- * this if they insist on creating this type of structure.
- */
- (void)handle_finalizers(&finalizers, old);
-
- /* Clear free list only during the collection of the highest
- * generation */
- if (generation == NUM_GENERATIONS-1) {
- clear_freelists();
- }
-
- if (PyErr_Occurred()) {
- if (gc_str == NULL)
- gc_str = PyUnicode_FromString("garbage collection");
- PyErr_WriteUnraisable(gc_str);
- Py_FatalError("unexpected exception during garbage collection");
- }
- return n+m;
+ int i;
+ Py_ssize_t m = 0; /* # objects collected */
+ Py_ssize_t n = 0; /* # unreachable objects that couldn't be collected */
+ PyGC_Head *young; /* the generation we are examining */
+ PyGC_Head *old; /* next older generation */
+ PyGC_Head unreachable; /* non-problematic unreachable trash */
+ PyGC_Head finalizers; /* objects with, & reachable from, __del__ */
+ PyGC_Head *gc;
+ double t1 = 0.0;
+
+ if (delstr == NULL) {
+ delstr = PyUnicode_InternFromString("__del__");
+ if (delstr == NULL)
+ Py_FatalError("gc couldn't allocate \"__del__\"");
+ }
+
+ if (debug & DEBUG_STATS) {
+ PySys_WriteStderr("gc: collecting generation %d...\n",
+ generation);
+ PySys_WriteStderr("gc: objects in each generation:");
+ for (i = 0; i < NUM_GENERATIONS; i++)
+ PySys_WriteStderr(" %" PY_FORMAT_SIZE_T "d",
+ gc_list_size(GEN_HEAD(i)));
+ t1 = get_time();
+ PySys_WriteStderr("\n");
+ }
+
+ /* update collection and allocation counters */
+ if (generation+1 < NUM_GENERATIONS)
+ generations[generation+1].count += 1;
+ for (i = 0; i <= generation; i++)
+ generations[i].count = 0;
+
+ /* merge younger generations with one we are currently collecting */
+ for (i = 0; i < generation; i++) {
+ gc_list_merge(GEN_HEAD(i), GEN_HEAD(generation));
+ }
+
+ /* handy references */
+ young = GEN_HEAD(generation);
+ if (generation < NUM_GENERATIONS-1)
+ old = GEN_HEAD(generation+1);
+ else
+ old = young;
+
+ /* Using ob_refcnt and gc_refs, calculate which objects in the
+ * container set are reachable from outside the set (i.e., have a
+ * refcount greater than 0 when all the references within the
+ * set are taken into account).
+ */
+ update_refs(young);
+ subtract_refs(young);
+
+ /* Leave everything reachable from outside young in young, and move
+ * everything else (in young) to unreachable.
+ * NOTE: This used to move the reachable objects into a reachable
+ * set instead. But most things usually turn out to be reachable,
+ * so it's more efficient to move the unreachable things.
+ */
+ gc_list_init(&unreachable);
+ move_unreachable(young, &unreachable);
+
+ /* Move reachable objects to next generation. */
+ if (young != old) {
+ if (generation == NUM_GENERATIONS - 2) {
+ long_lived_pending += gc_list_size(young);
+ }
+ gc_list_merge(young, old);
+ }
+ else {
+ long_lived_pending = 0;
+ long_lived_total = gc_list_size(young);
+ }
+
+ /* All objects in unreachable are trash, but objects reachable from
+ * finalizers can't safely be deleted. Python programmers should take
+ * care not to create such things. For Python, finalizers means
+ * instance objects with __del__ methods. Weakrefs with callbacks
+ * can also call arbitrary Python code but they will be dealt with by
+ * handle_weakrefs().
+ */
+ gc_list_init(&finalizers);
+ move_finalizers(&unreachable, &finalizers);
+ /* finalizers contains the unreachable objects with a finalizer;
+ * unreachable objects reachable *from* those are also uncollectable,
+ * and we move those into the finalizers list too.
+ */
+ move_finalizer_reachable(&finalizers);
+
+ /* Collect statistics on collectable objects found and print
+ * debugging information.
+ */
+ for (gc = unreachable.gc.gc_next; gc != &unreachable;
+ gc = gc->gc.gc_next) {
+ m++;
+ if (debug & DEBUG_COLLECTABLE) {
+ debug_cycle("collectable", FROM_GC(gc));
+ }
+ }
+
+ /* Clear weakrefs and invoke callbacks as necessary. */
+ m += handle_weakrefs(&unreachable, old);
+
+ /* Call tp_clear on objects in the unreachable set. This will cause
+ * the reference cycles to be broken. It may also cause some objects
+ * in finalizers to be freed.
+ */
+ delete_garbage(&unreachable, old);
+
+ /* Collect statistics on uncollectable objects found and print
+ * debugging information. */
+ for (gc = finalizers.gc.gc_next;
+ gc != &finalizers;
+ gc = gc->gc.gc_next) {
+ n++;
+ if (debug & DEBUG_UNCOLLECTABLE)
+ debug_cycle("uncollectable", FROM_GC(gc));
+ }
+ if (debug & DEBUG_STATS) {
+ double t2 = get_time();
+ if (m == 0 && n == 0)
+ PySys_WriteStderr("gc: done");
+ else
+ PySys_WriteStderr(
+ "gc: done, "
+ "%" PY_FORMAT_SIZE_T "d unreachable, "
+ "%" PY_FORMAT_SIZE_T "d uncollectable",
+ n+m, n);
+ if (t1 && t2) {
+ PySys_WriteStderr(", %.4fs elapsed", t2-t1);
+ }
+ PySys_WriteStderr(".\n");
+ }
+
+ /* Append instances in the uncollectable set to a Python
+ * reachable list of garbage. The programmer has to deal with
+ * this if they insist on creating this type of structure.
+ */
+ (void)handle_finalizers(&finalizers, old);
+
+ /* Clear free list only during the collection of the highest
+ * generation */
+ if (generation == NUM_GENERATIONS-1) {
+ clear_freelists();
+ }
+
+ if (PyErr_Occurred()) {
+ if (gc_str == NULL)
+ gc_str = PyUnicode_FromString("garbage collection");
+ PyErr_WriteUnraisable(gc_str);
+ Py_FatalError("unexpected exception during garbage collection");
+ }
+ return n+m;
}
static Py_ssize_t
collect_generations(void)
{
- int i;
- Py_ssize_t n = 0;
-
- /* Find the oldest generation (highest numbered) where the count
- * exceeds the threshold. Objects in the that generation and
- * generations younger than it will be collected. */
- for (i = NUM_GENERATIONS-1; i >= 0; i--) {
- if (generations[i].count > generations[i].threshold) {
- /* Avoid quadratic performance degradation in number
- of tracked objects. See comments at the beginning
- of this file, and issue #4074.
- */
- if (i == NUM_GENERATIONS - 1
- && long_lived_pending < long_lived_total / 4)
- continue;
- n = collect(i);
- break;
- }
- }
- return n;
+ int i;
+ Py_ssize_t n = 0;
+
+ /* Find the oldest generation (highest numbered) where the count
+ * exceeds the threshold. Objects in the that generation and
+ * generations younger than it will be collected. */
+ for (i = NUM_GENERATIONS-1; i >= 0; i--) {
+ if (generations[i].count > generations[i].threshold) {
+ /* Avoid quadratic performance degradation in number
+ of tracked objects. See comments at the beginning
+ of this file, and issue #4074.
+ */
+ if (i == NUM_GENERATIONS - 1
+ && long_lived_pending < long_lived_total / 4)
+ continue;
+ n = collect(i);
+ break;
+ }
+ }
+ return n;
}
PyDoc_STRVAR(gc_enable__doc__,
@@ -975,9 +975,9 @@ PyDoc_STRVAR(gc_enable__doc__,
static PyObject *
gc_enable(PyObject *self, PyObject *noargs)
{
- enabled = 1;
- Py_INCREF(Py_None);
- return Py_None;
+ enabled = 1;
+ Py_INCREF(Py_None);
+ return Py_None;
}
PyDoc_STRVAR(gc_disable__doc__,
@@ -988,9 +988,9 @@ PyDoc_STRVAR(gc_disable__doc__,
static PyObject *
gc_disable(PyObject *self, PyObject *noargs)
{
- enabled = 0;
- Py_INCREF(Py_None);
- return Py_None;
+ enabled = 0;
+ Py_INCREF(Py_None);
+ return Py_None;
}
PyDoc_STRVAR(gc_isenabled__doc__,
@@ -1001,7 +1001,7 @@ PyDoc_STRVAR(gc_isenabled__doc__,
static PyObject *
gc_isenabled(PyObject *self, PyObject *noargs)
{
- return PyBool_FromLong((long)enabled);
+ return PyBool_FromLong((long)enabled);
}
PyDoc_STRVAR(gc_collect__doc__,
@@ -1015,27 +1015,27 @@ PyDoc_STRVAR(gc_collect__doc__,
static PyObject *
gc_collect(PyObject *self, PyObject *args, PyObject *kws)
{
- static char *keywords[] = {"generation", NULL};
- int genarg = NUM_GENERATIONS - 1;
- Py_ssize_t n;
-
- if (!PyArg_ParseTupleAndKeywords(args, kws, "|i", keywords, &genarg))
- return NULL;
-
- else if (genarg < 0 || genarg >= NUM_GENERATIONS) {
- PyErr_SetString(PyExc_ValueError, "invalid generation");
- return NULL;
- }
-
- if (collecting)
- n = 0; /* already collecting, don't do anything */
- else {
- collecting = 1;
- n = collect(genarg);
- collecting = 0;
- }
-
- return PyLong_FromSsize_t(n);
+ static char *keywords[] = {"generation", NULL};
+ int genarg = NUM_GENERATIONS - 1;
+ Py_ssize_t n;
+
+ if (!PyArg_ParseTupleAndKeywords(args, kws, "|i", keywords, &genarg))
+ return NULL;
+
+ else if (genarg < 0 || genarg >= NUM_GENERATIONS) {
+ PyErr_SetString(PyExc_ValueError, "invalid generation");
+ return NULL;
+ }
+
+ if (collecting)
+ n = 0; /* already collecting, don't do anything */
+ else {
+ collecting = 1;
+ n = collect(genarg);
+ collecting = 0;
+ }
+
+ return PyLong_FromSsize_t(n);
}
PyDoc_STRVAR(gc_set_debug__doc__,
@@ -1055,11 +1055,11 @@ PyDoc_STRVAR(gc_set_debug__doc__,
static PyObject *
gc_set_debug(PyObject *self, PyObject *args)
{
- if (!PyArg_ParseTuple(args, "i:set_debug", &debug))
- return NULL;
+ if (!PyArg_ParseTuple(args, "i:set_debug", &debug))
+ return NULL;
- Py_INCREF(Py_None);
- return Py_None;
+ Py_INCREF(Py_None);
+ return Py_None;
}
PyDoc_STRVAR(gc_get_debug__doc__,
@@ -1070,7 +1070,7 @@ PyDoc_STRVAR(gc_get_debug__doc__,
static PyObject *
gc_get_debug(PyObject *self, PyObject *noargs)
{
- return Py_BuildValue("i", debug);
+ return Py_BuildValue("i", debug);
}
PyDoc_STRVAR(gc_set_thresh__doc__,
@@ -1082,19 +1082,19 @@ PyDoc_STRVAR(gc_set_thresh__doc__,
static PyObject *
gc_set_thresh(PyObject *self, PyObject *args)
{
- int i;
- if (!PyArg_ParseTuple(args, "i|ii:set_threshold",
- &generations[0].threshold,
- &generations[1].threshold,
- &generations[2].threshold))
- return NULL;
- for (i = 2; i < NUM_GENERATIONS; i++) {
- /* generations higher than 2 get the same threshold */
- generations[i].threshold = generations[2].threshold;
- }
-
- Py_INCREF(Py_None);
- return Py_None;
+ int i;
+ if (!PyArg_ParseTuple(args, "i|ii:set_threshold",
+ &generations[0].threshold,
+ &generations[1].threshold,
+ &generations[2].threshold))
+ return NULL;
+ for (i = 2; i < NUM_GENERATIONS; i++) {
+ /* generations higher than 2 get the same threshold */
+ generations[i].threshold = generations[2].threshold;
+ }
+
+ Py_INCREF(Py_None);
+ return Py_None;
}
PyDoc_STRVAR(gc_get_thresh__doc__,
@@ -1105,10 +1105,10 @@ PyDoc_STRVAR(gc_get_thresh__doc__,
static PyObject *
gc_get_thresh(PyObject *self, PyObject *noargs)
{
- return Py_BuildValue("(iii)",
- generations[0].threshold,
- generations[1].threshold,
- generations[2].threshold);
+ return Py_BuildValue("(iii)",
+ generations[0].threshold,
+ generations[1].threshold,
+ generations[2].threshold);
}
PyDoc_STRVAR(gc_get_count__doc__,
@@ -1119,39 +1119,39 @@ PyDoc_STRVAR(gc_get_count__doc__,
static PyObject *
gc_get_count(PyObject *self, PyObject *noargs)
{
- return Py_BuildValue("(iii)",
- generations[0].count,
- generations[1].count,
- generations[2].count);
+ return Py_BuildValue("(iii)",
+ generations[0].count,
+ generations[1].count,
+ generations[2].count);
}
static int
referrersvisit(PyObject* obj, PyObject *objs)
{
- Py_ssize_t i;
- for (i = 0; i < PyTuple_GET_SIZE(objs); i++)
- if (PyTuple_GET_ITEM(objs, i) == obj)
- return 1;
- return 0;
+ Py_ssize_t i;
+ for (i = 0; i < PyTuple_GET_SIZE(objs); i++)
+ if (PyTuple_GET_ITEM(objs, i) == obj)
+ return 1;
+ return 0;
}
static int
gc_referrers_for(PyObject *objs, PyGC_Head *list, PyObject *resultlist)
{
- PyGC_Head *gc;
- PyObject *obj;
- traverseproc traverse;
- for (gc = list->gc.gc_next; gc != list; gc = gc->gc.gc_next) {
- obj = FROM_GC(gc);
- traverse = Py_TYPE(obj)->tp_traverse;
- if (obj == objs || obj == resultlist)
- continue;
- if (traverse(obj, (visitproc)referrersvisit, objs)) {
- if (PyList_Append(resultlist, obj) < 0)
- return 0; /* error */
- }
- }
- return 1; /* no error */
+ PyGC_Head *gc;
+ PyObject *obj;
+ traverseproc traverse;
+ for (gc = list->gc.gc_next; gc != list; gc = gc->gc.gc_next) {
+ obj = FROM_GC(gc);
+ traverse = Py_TYPE(obj)->tp_traverse;
+ if (obj == objs || obj == resultlist)
+ continue;
+ if (traverse(obj, (visitproc)referrersvisit, objs)) {
+ if (PyList_Append(resultlist, obj) < 0)
+ return 0; /* error */
+ }
+ }
+ return 1; /* no error */
}
PyDoc_STRVAR(gc_get_referrers__doc__,
@@ -1161,24 +1161,24 @@ Return the list of objects that directly refer to any of objs.");
static PyObject *
gc_get_referrers(PyObject *self, PyObject *args)
{
- int i;
- PyObject *result = PyList_New(0);
- if (!result) return NULL;
-
- for (i = 0; i < NUM_GENERATIONS; i++) {
- if (!(gc_referrers_for(args, GEN_HEAD(i), result))) {
- Py_DECREF(result);
- return NULL;
- }
- }
- return result;
+ int i;
+ PyObject *result = PyList_New(0);
+ if (!result) return NULL;
+
+ for (i = 0; i < NUM_GENERATIONS; i++) {
+ if (!(gc_referrers_for(args, GEN_HEAD(i), result))) {
+ Py_DECREF(result);
+ return NULL;
+ }
+ }
+ return result;
}
/* Append obj to list; return true if error (out of memory), false if OK. */
static int
referentsvisit(PyObject *obj, PyObject *list)
{
- return PyList_Append(list, obj) < 0;
+ return PyList_Append(list, obj) < 0;
}
PyDoc_STRVAR(gc_get_referents__doc__,
@@ -1188,27 +1188,27 @@ Return the list of objects that are directly referred to by objs.");
static PyObject *
gc_get_referents(PyObject *self, PyObject *args)
{
- Py_ssize_t i;
- PyObject *result = PyList_New(0);
-
- if (result == NULL)
- return NULL;
-
- for (i = 0; i < PyTuple_GET_SIZE(args); i++) {
- traverseproc traverse;
- PyObject *obj = PyTuple_GET_ITEM(args, i);
-
- if (! PyObject_IS_GC(obj))
- continue;
- traverse = Py_TYPE(obj)->tp_traverse;
- if (! traverse)
- continue;
- if (traverse(obj, (visitproc)referentsvisit, result)) {
- Py_DECREF(result);
- return NULL;
- }
- }
- return result;
+ Py_ssize_t i;
+ PyObject *result = PyList_New(0);
+
+ if (result == NULL)
+ return NULL;
+
+ for (i = 0; i < PyTuple_GET_SIZE(args); i++) {
+ traverseproc traverse;
+ PyObject *obj = PyTuple_GET_ITEM(args, i);
+
+ if (! PyObject_IS_GC(obj))
+ continue;
+ traverse = Py_TYPE(obj)->tp_traverse;
+ if (! traverse)
+ continue;
+ if (traverse(obj, (visitproc)referentsvisit, result)) {
+ Py_DECREF(result);
+ return NULL;
+ }
+ }
+ return result;
}
PyDoc_STRVAR(gc_get_objects__doc__,
@@ -1220,19 +1220,19 @@ PyDoc_STRVAR(gc_get_objects__doc__,
static PyObject *
gc_get_objects(PyObject *self, PyObject *noargs)
{
- int i;
- PyObject* result;
-
- result = PyList_New(0);
- if (result == NULL)
- return NULL;
- for (i = 0; i < NUM_GENERATIONS; i++) {
- if (append_objects(result, GEN_HEAD(i))) {
- Py_DECREF(result);
- return NULL;
- }
- }
- return result;
+ int i;
+ PyObject* result;
+
+ result = PyList_New(0);
+ if (result == NULL)
+ return NULL;
+ for (i = 0; i < NUM_GENERATIONS; i++) {
+ if (append_objects(result, GEN_HEAD(i))) {
+ Py_DECREF(result);
+ return NULL;
+ }
+ }
+ return result;
}
PyDoc_STRVAR(gc_is_tracked__doc__,
@@ -1245,14 +1245,14 @@ PyDoc_STRVAR(gc_is_tracked__doc__,
static PyObject *
gc_is_tracked(PyObject *self, PyObject *obj)
{
- PyObject *result;
-
- if (PyObject_IS_GC(obj) && IS_TRACKED(obj))
- result = Py_True;
- else
- result = Py_False;
- Py_INCREF(result);
- return result;
+ PyObject *result;
+
+ if (PyObject_IS_GC(obj) && IS_TRACKED(obj))
+ result = Py_True;
+ else
+ result = Py_False;
+ Py_INCREF(result);
+ return result;
}
@@ -1274,101 +1274,101 @@ PyDoc_STRVAR(gc__doc__,
"get_referents() -- Return the list of objects that an object refers to.\n");
static PyMethodDef GcMethods[] = {
- {"enable", gc_enable, METH_NOARGS, gc_enable__doc__},
- {"disable", gc_disable, METH_NOARGS, gc_disable__doc__},
- {"isenabled", gc_isenabled, METH_NOARGS, gc_isenabled__doc__},
- {"set_debug", gc_set_debug, METH_VARARGS, gc_set_debug__doc__},
- {"get_debug", gc_get_debug, METH_NOARGS, gc_get_debug__doc__},
- {"get_count", gc_get_count, METH_NOARGS, gc_get_count__doc__},
- {"set_threshold", gc_set_thresh, METH_VARARGS, gc_set_thresh__doc__},
- {"get_threshold", gc_get_thresh, METH_NOARGS, gc_get_thresh__doc__},
- {"collect", (PyCFunction)gc_collect,
- METH_VARARGS | METH_KEYWORDS, gc_collect__doc__},
- {"get_objects", gc_get_objects,METH_NOARGS, gc_get_objects__doc__},
- {"is_tracked", gc_is_tracked, METH_O, gc_is_tracked__doc__},
- {"get_referrers", gc_get_referrers, METH_VARARGS,
- gc_get_referrers__doc__},
- {"get_referents", gc_get_referents, METH_VARARGS,
- gc_get_referents__doc__},
- {NULL, NULL} /* Sentinel */
+ {"enable", gc_enable, METH_NOARGS, gc_enable__doc__},
+ {"disable", gc_disable, METH_NOARGS, gc_disable__doc__},
+ {"isenabled", gc_isenabled, METH_NOARGS, gc_isenabled__doc__},
+ {"set_debug", gc_set_debug, METH_VARARGS, gc_set_debug__doc__},
+ {"get_debug", gc_get_debug, METH_NOARGS, gc_get_debug__doc__},
+ {"get_count", gc_get_count, METH_NOARGS, gc_get_count__doc__},
+ {"set_threshold", gc_set_thresh, METH_VARARGS, gc_set_thresh__doc__},
+ {"get_threshold", gc_get_thresh, METH_NOARGS, gc_get_thresh__doc__},
+ {"collect", (PyCFunction)gc_collect,
+ METH_VARARGS | METH_KEYWORDS, gc_collect__doc__},
+ {"get_objects", gc_get_objects,METH_NOARGS, gc_get_objects__doc__},
+ {"is_tracked", gc_is_tracked, METH_O, gc_is_tracked__doc__},
+ {"get_referrers", gc_get_referrers, METH_VARARGS,
+ gc_get_referrers__doc__},
+ {"get_referents", gc_get_referents, METH_VARARGS,
+ gc_get_referents__doc__},
+ {NULL, NULL} /* Sentinel */
};
static struct PyModuleDef gcmodule = {
- PyModuleDef_HEAD_INIT,
- "gc",
- gc__doc__,
- -1,
- GcMethods,
- NULL,
- NULL,
- NULL,
- NULL
+ PyModuleDef_HEAD_INIT,
+ "gc",
+ gc__doc__,
+ -1,
+ GcMethods,
+ NULL,
+ NULL,
+ NULL,
+ NULL
};
PyMODINIT_FUNC
PyInit_gc(void)
{
- PyObject *m;
-
- m = PyModule_Create(&gcmodule);
-
- if (m == NULL)
- return NULL;
-
- if (garbage == NULL) {
- garbage = PyList_New(0);
- if (garbage == NULL)
- return NULL;
- }
- Py_INCREF(garbage);
- if (PyModule_AddObject(m, "garbage", garbage) < 0)
- return NULL;
-
- /* Importing can't be done in collect() because collect()
- * can be called via PyGC_Collect() in Py_Finalize().
- * This wouldn't be a problem, except that <initialized> is
- * reset to 0 before calling collect which trips up
- * the import and triggers an assertion.
- */
- if (tmod == NULL) {
- tmod = PyImport_ImportModuleNoBlock("time");
- if (tmod == NULL)
- PyErr_Clear();
- }
+ PyObject *m;
+
+ m = PyModule_Create(&gcmodule);
+
+ if (m == NULL)
+ return NULL;
+
+ if (garbage == NULL) {
+ garbage = PyList_New(0);
+ if (garbage == NULL)
+ return NULL;
+ }
+ Py_INCREF(garbage);
+ if (PyModule_AddObject(m, "garbage", garbage) < 0)
+ return NULL;
+
+ /* Importing can't be done in collect() because collect()
+ * can be called via PyGC_Collect() in Py_Finalize().
+ * This wouldn't be a problem, except that <initialized> is
+ * reset to 0 before calling collect which trips up
+ * the import and triggers an assertion.
+ */
+ if (tmod == NULL) {
+ tmod = PyImport_ImportModuleNoBlock("time");
+ if (tmod == NULL)
+ PyErr_Clear();
+ }
#define ADD_INT(NAME) if (PyModule_AddIntConstant(m, #NAME, NAME) < 0) return NULL
- ADD_INT(DEBUG_STATS);
- ADD_INT(DEBUG_COLLECTABLE);
- ADD_INT(DEBUG_UNCOLLECTABLE);
- ADD_INT(DEBUG_SAVEALL);
- ADD_INT(DEBUG_LEAK);
+ ADD_INT(DEBUG_STATS);
+ ADD_INT(DEBUG_COLLECTABLE);
+ ADD_INT(DEBUG_UNCOLLECTABLE);
+ ADD_INT(DEBUG_SAVEALL);
+ ADD_INT(DEBUG_LEAK);
#undef ADD_INT
- return m;
+ return m;
}
/* API to invoke gc.collect() from C */
Py_ssize_t
PyGC_Collect(void)
{
- Py_ssize_t n;
+ Py_ssize_t n;
- if (collecting)
- n = 0; /* already collecting, don't do anything */
- else {
- collecting = 1;
- n = collect(NUM_GENERATIONS - 1);
- collecting = 0;
- }
+ if (collecting)
+ n = 0; /* already collecting, don't do anything */
+ else {
+ collecting = 1;
+ n = collect(NUM_GENERATIONS - 1);
+ collecting = 0;
+ }
- return n;
+ return n;
}
/* for debugging */
void
_PyGC_Dump(PyGC_Head *g)
{
- _PyObject_Dump(FROM_GC(g));
+ _PyObject_Dump(FROM_GC(g));
}
/* extension modules might be compiled with GC support so these
@@ -1382,7 +1382,7 @@ _PyGC_Dump(PyGC_Head *g)
void
PyObject_GC_Track(void *op)
{
- _PyObject_GC_TRACK(op);
+ _PyObject_GC_TRACK(op);
}
/* for binary compatibility with 2.2 */
@@ -1395,11 +1395,11 @@ _PyObject_GC_Track(PyObject *op)
void
PyObject_GC_UnTrack(void *op)
{
- /* Obscure: the Py_TRASHCAN mechanism requires that we be able to
- * call PyObject_GC_UnTrack twice on an object.
- */
- if (IS_TRACKED(op))
- _PyObject_GC_UNTRACK(op);
+ /* Obscure: the Py_TRASHCAN mechanism requires that we be able to
+ * call PyObject_GC_UnTrack twice on an object.
+ */
+ if (IS_TRACKED(op))
+ _PyObject_GC_UNTRACK(op);
}
/* for binary compatibility with 2.2 */
@@ -1412,73 +1412,73 @@ _PyObject_GC_UnTrack(PyObject *op)
PyObject *
_PyObject_GC_Malloc(size_t basicsize)
{
- PyObject *op;
- PyGC_Head *g;
- if (basicsize > PY_SSIZE_T_MAX - sizeof(PyGC_Head))
- return PyErr_NoMemory();
- g = (PyGC_Head *)PyObject_MALLOC(
- sizeof(PyGC_Head) + basicsize);
- if (g == NULL)
- return PyErr_NoMemory();
- g->gc.gc_refs = GC_UNTRACKED;
- generations[0].count++; /* number of allocated GC objects */
- if (generations[0].count > generations[0].threshold &&
- enabled &&
- generations[0].threshold &&
- !collecting &&
- !PyErr_Occurred()) {
- collecting = 1;
- collect_generations();
- collecting = 0;
- }
- op = FROM_GC(g);
- return op;
+ PyObject *op;
+ PyGC_Head *g;
+ if (basicsize > PY_SSIZE_T_MAX - sizeof(PyGC_Head))
+ return PyErr_NoMemory();
+ g = (PyGC_Head *)PyObject_MALLOC(
+ sizeof(PyGC_Head) + basicsize);
+ if (g == NULL)
+ return PyErr_NoMemory();
+ g->gc.gc_refs = GC_UNTRACKED;
+ generations[0].count++; /* number of allocated GC objects */
+ if (generations[0].count > generations[0].threshold &&
+ enabled &&
+ generations[0].threshold &&
+ !collecting &&
+ !PyErr_Occurred()) {
+ collecting = 1;
+ collect_generations();
+ collecting = 0;
+ }
+ op = FROM_GC(g);
+ return op;
}
PyObject *
_PyObject_GC_New(PyTypeObject *tp)
{
- PyObject *op = _PyObject_GC_Malloc(_PyObject_SIZE(tp));
- if (op != NULL)
- op = PyObject_INIT(op, tp);
- return op;
+ PyObject *op = _PyObject_GC_Malloc(_PyObject_SIZE(tp));
+ if (op != NULL)
+ op = PyObject_INIT(op, tp);
+ return op;
}
PyVarObject *
_PyObject_GC_NewVar(PyTypeObject *tp, Py_ssize_t nitems)
{
- const size_t size = _PyObject_VAR_SIZE(tp, nitems);
- PyVarObject *op = (PyVarObject *) _PyObject_GC_Malloc(size);
- if (op != NULL)
- op = PyObject_INIT_VAR(op, tp, nitems);
- return op;
+ const size_t size = _PyObject_VAR_SIZE(tp, nitems);
+ PyVarObject *op = (PyVarObject *) _PyObject_GC_Malloc(size);
+ if (op != NULL)
+ op = PyObject_INIT_VAR(op, tp, nitems);
+ return op;
}
PyVarObject *
_PyObject_GC_Resize(PyVarObject *op, Py_ssize_t nitems)
{
- const size_t basicsize = _PyObject_VAR_SIZE(Py_TYPE(op), nitems);
- PyGC_Head *g = AS_GC(op);
- if (basicsize > PY_SSIZE_T_MAX - sizeof(PyGC_Head))
- return (PyVarObject *)PyErr_NoMemory();
- g = (PyGC_Head *)PyObject_REALLOC(g, sizeof(PyGC_Head) + basicsize);
- if (g == NULL)
- return (PyVarObject *)PyErr_NoMemory();
- op = (PyVarObject *) FROM_GC(g);
- Py_SIZE(op) = nitems;
- return op;
+ const size_t basicsize = _PyObject_VAR_SIZE(Py_TYPE(op), nitems);
+ PyGC_Head *g = AS_GC(op);
+ if (basicsize > PY_SSIZE_T_MAX - sizeof(PyGC_Head))
+ return (PyVarObject *)PyErr_NoMemory();
+ g = (PyGC_Head *)PyObject_REALLOC(g, sizeof(PyGC_Head) + basicsize);
+ if (g == NULL)
+ return (PyVarObject *)PyErr_NoMemory();
+ op = (PyVarObject *) FROM_GC(g);
+ Py_SIZE(op) = nitems;
+ return op;
}
void
PyObject_GC_Del(void *op)
{
- PyGC_Head *g = AS_GC(op);
- if (IS_TRACKED(op))
- gc_list_remove(g);
- if (generations[0].count > 0) {
- generations[0].count--;
- }
- PyObject_FREE(g);
+ PyGC_Head *g = AS_GC(op);
+ if (IS_TRACKED(op))
+ gc_list_remove(g);
+ if (generations[0].count > 0) {
+ generations[0].count--;
+ }
+ PyObject_FREE(g);
}
/* for binary compatibility with 2.2 */