diff options
author | Brett Cannon <brett@python.org> | 2016-01-15 17:39:06 (GMT) |
---|---|---|
committer | Brett Cannon <brett@python.org> | 2016-01-15 17:39:06 (GMT) |
commit | 2f1a0b6ad5ea9e8d05782f7d0055c393d184d91f (patch) | |
tree | f78c37f9b86a7146a62a3377f4000f02de0c6a90 /Modules/mathmodule.c | |
parent | 4edc0e8407cc66d08d431292a5392d77fecd6544 (diff) | |
parent | 45adb3100bd8a3f88c382750b6c4d8d9203cbcd2 (diff) | |
download | cpython-2f1a0b6ad5ea9e8d05782f7d0055c393d184d91f.zip cpython-2f1a0b6ad5ea9e8d05782f7d0055c393d184d91f.tar.gz cpython-2f1a0b6ad5ea9e8d05782f7d0055c393d184d91f.tar.bz2 |
Merge for issue #26114
Diffstat (limited to 'Modules/mathmodule.c')
-rw-r--r-- | Modules/mathmodule.c | 5 |
1 files changed, 2 insertions, 3 deletions
diff --git a/Modules/mathmodule.c b/Modules/mathmodule.c index 6b3e139..7bbcf58 100644 --- a/Modules/mathmodule.c +++ b/Modules/mathmodule.c @@ -400,9 +400,8 @@ m_lgamma(double x) Implementations of the error function erf(x) and the complementary error function erfc(x). - Method: following 'Numerical Recipes' by Flannery, Press et. al. (2nd ed., - Cambridge University Press), we use a series approximation for erf for - small x, and a continued fraction approximation for erfc(x) for larger x; + Method: we use a series approximation for erf for small x, and a continued + fraction approximation for erfc(x) for larger x; combined with the relations erf(-x) = -erf(x) and erfc(x) = 1.0 - erf(x), this gives us erf(x) and erfc(x) for all x. |