summaryrefslogtreecommitdiffstats
path: root/Modules/mathmodule.c
diff options
context:
space:
mode:
authorSerhiy Storchaka <storchaka@gmail.com>2017-01-19 16:13:09 (GMT)
committerSerhiy Storchaka <storchaka@gmail.com>2017-01-19 16:13:09 (GMT)
commitc9ea933586ec0ac686c83d514c56876ac0e259e3 (patch)
tree60e00c854396fec957135b2924232b1146c01a50 /Modules/mathmodule.c
parentb813a0e9488efbcd2836133f075b65484e185f3f (diff)
downloadcpython-c9ea933586ec0ac686c83d514c56876ac0e259e3.zip
cpython-c9ea933586ec0ac686c83d514c56876ac0e259e3.tar.gz
cpython-c9ea933586ec0ac686c83d514c56876ac0e259e3.tar.bz2
Issue #20186: Converted the math module to Argument Clinic.
Patch by Tal Einat.
Diffstat (limited to 'Modules/mathmodule.c')
-rw-r--r--Modules/mathmodule.c631
1 files changed, 384 insertions, 247 deletions
diff --git a/Modules/mathmodule.c b/Modules/mathmodule.c
index e7e34ef..8bd38d0 100644
--- a/Modules/mathmodule.c
+++ b/Modules/mathmodule.c
@@ -55,6 +55,14 @@ raised for division by zero and mod by zero.
#include "Python.h"
#include "_math.h"
+#include "clinic/mathmodule.c.h"
+
+/*[clinic input]
+module math
+[clinic start generated code]*/
+/*[clinic end generated code: output=da39a3ee5e6b4b0d input=76bc7002685dd942]*/
+
+
/*
sin(pi*x), giving accurate results for all finite x (especially x
integral or close to an integer). This is here for use in the
@@ -684,13 +692,21 @@ m_log10(double x)
}
+/*[clinic input]
+math.gcd
+
+ x as a: object
+ y as b: object
+ /
+
+greatest common divisor of x and y
+[clinic start generated code]*/
+
static PyObject *
-math_gcd(PyObject *self, PyObject *args)
+math_gcd_impl(PyObject *module, PyObject *a, PyObject *b)
+/*[clinic end generated code: output=7b2e0c151bd7a5d8 input=c2691e57fb2a98fa]*/
{
- PyObject *a, *b, *g;
-
- if (!PyArg_ParseTuple(args, "OO:gcd", &a, &b))
- return NULL;
+ PyObject *g;
a = PyNumber_Index(a);
if (a == NULL)
@@ -706,10 +722,6 @@ math_gcd(PyObject *self, PyObject *args)
return g;
}
-PyDoc_STRVAR(math_gcd_doc,
-"gcd(x, y) -> int\n\
-greatest common divisor of x and y");
-
/* Call is_error when errno != 0, and where x is the result libm
* returned. is_error will usually set up an exception and return
@@ -753,7 +765,7 @@ is_error(double x)
/*
math_1 is used to wrap a libm function f that takes a double
- arguments and returns a double.
+ argument and returns a double.
The error reporting follows these rules, which are designed to do
the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
@@ -926,22 +938,43 @@ math_2(PyObject *args, double (*func) (double, double), const char *funcname)
PyDoc_STRVAR(math_##funcname##_doc, docstring);
FUNC1(acos, acos, 0,
- "acos(x)\n\nReturn the arc cosine (measured in radians) of x.")
+ "acos($module, x, /)\n--\n\n"
+ "Return the arc cosine (measured in radians) of x.")
FUNC1(acosh, m_acosh, 0,
- "acosh(x)\n\nReturn the inverse hyperbolic cosine of x.")
+ "acosh($module, x, /)\n--\n\n"
+ "Return the inverse hyperbolic cosine of x.")
FUNC1(asin, asin, 0,
- "asin(x)\n\nReturn the arc sine (measured in radians) of x.")
+ "asin($module, x, /)\n--\n\n"
+ "Return the arc sine (measured in radians) of x.")
FUNC1(asinh, m_asinh, 0,
- "asinh(x)\n\nReturn the inverse hyperbolic sine of x.")
+ "asinh($module, x, /)\n--\n\n"
+ "Return the inverse hyperbolic sine of x.")
FUNC1(atan, atan, 0,
- "atan(x)\n\nReturn the arc tangent (measured in radians) of x.")
+ "atan($module, x, /)\n--\n\n"
+ "Return the arc tangent (measured in radians) of x.")
FUNC2(atan2, m_atan2,
- "atan2(y, x)\n\nReturn the arc tangent (measured in radians) of y/x.\n"
+ "atan2($module, y, x, /)\n--\n\n"
+ "Return the arc tangent (measured in radians) of y/x.\n\n"
"Unlike atan(y/x), the signs of both x and y are considered.")
FUNC1(atanh, m_atanh, 0,
- "atanh(x)\n\nReturn the inverse hyperbolic tangent of x.")
+ "atanh($module, x, /)\n--\n\n"
+ "Return the inverse hyperbolic tangent of x.")
+
+/*[clinic input]
+math.ceil
+
+ x as number: object
+ /
+
+Return the ceiling of x as an Integral.
+
+This is the smallest integer >= x.
+[clinic start generated code]*/
-static PyObject * math_ceil(PyObject *self, PyObject *number) {
+static PyObject *
+math_ceil(PyObject *module, PyObject *number)
+/*[clinic end generated code: output=6c3b8a78bc201c67 input=2725352806399cab]*/
+{
_Py_IDENTIFIER(__ceil__);
PyObject *method, *result;
@@ -956,32 +989,50 @@ static PyObject * math_ceil(PyObject *self, PyObject *number) {
return result;
}
-PyDoc_STRVAR(math_ceil_doc,
- "ceil(x)\n\nReturn the ceiling of x as an Integral.\n"
- "This is the smallest integer >= x.");
-
FUNC2(copysign, copysign,
- "copysign(x, y)\n\nReturn a float with the magnitude (absolute value) "
- "of x but the sign \nof y. On platforms that support signed zeros, "
- "copysign(1.0, -0.0) \nreturns -1.0.\n")
+ "copysign($module, x, y, /)\n--\n\n"
+ "Return a float with the magnitude (absolute value) of x but the sign of y.\n\n"
+ "On platforms that support signed zeros, copysign(1.0, -0.0)\n"
+ "returns -1.0.\n")
FUNC1(cos, cos, 0,
- "cos(x)\n\nReturn the cosine of x (measured in radians).")
+ "cos($module, x, /)\n--\n\n"
+ "Return the cosine of x (measured in radians).")
FUNC1(cosh, cosh, 1,
- "cosh(x)\n\nReturn the hyperbolic cosine of x.")
+ "cosh($module, x, /)\n--\n\n"
+ "Return the hyperbolic cosine of x.")
FUNC1A(erf, m_erf,
- "erf(x)\n\nError function at x.")
+ "erf($module, x, /)\n--\n\n"
+ "Error function at x.")
FUNC1A(erfc, m_erfc,
- "erfc(x)\n\nComplementary error function at x.")
+ "erfc($module, x, /)\n--\n\n"
+ "Complementary error function at x.")
FUNC1(exp, exp, 1,
- "exp(x)\n\nReturn e raised to the power of x.")
+ "exp($module, x, /)\n--\n\n"
+ "Return e raised to the power of x.")
FUNC1(expm1, m_expm1, 1,
- "expm1(x)\n\nReturn exp(x)-1.\n"
+ "expm1($module, x, /)\n--\n\n"
+ "Return exp(x)-1.\n\n"
"This function avoids the loss of precision involved in the direct "
"evaluation of exp(x)-1 for small x.")
FUNC1(fabs, fabs, 0,
- "fabs(x)\n\nReturn the absolute value of the float x.")
+ "fabs($module, x, /)\n--\n\n"
+ "Return the absolute value of the float x.")
+
+/*[clinic input]
+math.floor
-static PyObject * math_floor(PyObject *self, PyObject *number) {
+ x as number: object
+ /
+
+Return the floor of x as an Integral.
+
+This is the largest integer <= x.
+[clinic start generated code]*/
+
+static PyObject *
+math_floor(PyObject *module, PyObject *number)
+/*[clinic end generated code: output=c6a65c4884884b8a input=63af6b5d7ebcc3d6]*/
+{
_Py_IDENTIFIER(__floor__);
PyObject *method, *result;
@@ -996,27 +1047,31 @@ static PyObject * math_floor(PyObject *self, PyObject *number) {
return result;
}
-PyDoc_STRVAR(math_floor_doc,
- "floor(x)\n\nReturn the floor of x as an Integral.\n"
- "This is the largest integer <= x.");
-
FUNC1A(gamma, m_tgamma,
- "gamma(x)\n\nGamma function at x.")
+ "gamma($module, x, /)\n--\n\n"
+ "Gamma function at x.")
FUNC1A(lgamma, m_lgamma,
- "lgamma(x)\n\nNatural logarithm of absolute value of Gamma function at x.")
+ "lgamma($module, x, /)\n--\n\n"
+ "Natural logarithm of absolute value of Gamma function at x.")
FUNC1(log1p, m_log1p, 0,
- "log1p(x)\n\nReturn the natural logarithm of 1+x (base e).\n"
+ "log1p($module, x, /)\n--\n\n"
+ "Return the natural logarithm of 1+x (base e).\n\n"
"The result is computed in a way which is accurate for x near zero.")
FUNC1(sin, sin, 0,
- "sin(x)\n\nReturn the sine of x (measured in radians).")
+ "sin($module, x, /)\n--\n\n"
+ "Return the sine of x (measured in radians).")
FUNC1(sinh, sinh, 1,
- "sinh(x)\n\nReturn the hyperbolic sine of x.")
+ "sinh($module, x, /)\n--\n\n"
+ "Return the hyperbolic sine of x.")
FUNC1(sqrt, sqrt, 0,
- "sqrt(x)\n\nReturn the square root of x.")
+ "sqrt($module, x, /)\n--\n\n"
+ "Return the square root of x.")
FUNC1(tan, tan, 0,
- "tan(x)\n\nReturn the tangent of x (measured in radians).")
+ "tan($module, x, /)\n--\n\n"
+ "Return the tangent of x (measured in radians).")
FUNC1(tanh, tanh, 0,
- "tanh(x)\n\nReturn the hyperbolic tangent of x.")
+ "tanh($module, x, /)\n--\n\n"
+ "Return the hyperbolic tangent of x.")
/* Precision summation function as msum() by Raymond Hettinger in
<http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/393090>,
@@ -1114,8 +1169,20 @@ _fsum_realloc(double **p_ptr, Py_ssize_t n,
Depends on IEEE 754 arithmetic guarantees and half-even rounding.
*/
-static PyObject*
-math_fsum(PyObject *self, PyObject *seq)
+/*[clinic input]
+math.fsum
+
+ seq: object
+ /
+
+Return an accurate floating point sum of values in the iterable seq.
+
+Assumes IEEE-754 floating point arithmetic.
+[clinic start generated code]*/
+
+static PyObject *
+math_fsum(PyObject *module, PyObject *seq)
+/*[clinic end generated code: output=ba5c672b87fe34fc input=c51b7d8caf6f6e82]*/
{
PyObject *item, *iter, *sum = NULL;
Py_ssize_t i, j, n = 0, m = NUM_PARTIALS;
@@ -1234,10 +1301,6 @@ _fsum_error:
#undef NUM_PARTIALS
-PyDoc_STRVAR(math_fsum_doc,
-"fsum(iterable)\n\n\
-Return an accurate floating point sum of values in the iterable.\n\
-Assumes IEEE-754 floating point arithmetic.");
/* Return the smallest integer k such that n < 2**k, or 0 if n == 0.
* Equivalent to floor(lg(x))+1. Also equivalent to: bitwidth_of_type -
@@ -1447,6 +1510,7 @@ factorial_odd_part(unsigned long n)
return NULL;
}
+
/* Lookup table for small factorial values */
static const unsigned long SmallFactorials[] = {
@@ -1459,8 +1523,20 @@ static const unsigned long SmallFactorials[] = {
#endif
};
+/*[clinic input]
+math.factorial
+
+ x as arg: object
+ /
+
+Find x!.
+
+Raise a ValueError if x is negative or non-integral.
+[clinic start generated code]*/
+
static PyObject *
-math_factorial(PyObject *self, PyObject *arg)
+math_factorial(PyObject *module, PyObject *arg)
+/*[clinic end generated code: output=6686f26fae00e9ca input=6d1c8105c0d91fb4]*/
{
long x;
int overflow;
@@ -1518,28 +1594,36 @@ math_factorial(PyObject *self, PyObject *arg)
return result;
}
-PyDoc_STRVAR(math_factorial_doc,
-"factorial(x) -> Integral\n"
-"\n"
-"Find x!. Raise a ValueError if x is negative or non-integral.");
+
+/*[clinic input]
+math.trunc
+
+ x: object
+ /
+
+Truncates the Real x to the nearest Integral toward 0.
+
+Uses the __trunc__ magic method.
+[clinic start generated code]*/
static PyObject *
-math_trunc(PyObject *self, PyObject *number)
+math_trunc(PyObject *module, PyObject *x)
+/*[clinic end generated code: output=34b9697b707e1031 input=2168b34e0a09134d]*/
{
_Py_IDENTIFIER(__trunc__);
PyObject *trunc, *result;
- if (Py_TYPE(number)->tp_dict == NULL) {
- if (PyType_Ready(Py_TYPE(number)) < 0)
+ if (Py_TYPE(x)->tp_dict == NULL) {
+ if (PyType_Ready(Py_TYPE(x)) < 0)
return NULL;
}
- trunc = _PyObject_LookupSpecial(number, &PyId___trunc__);
+ trunc = _PyObject_LookupSpecial(x, &PyId___trunc__);
if (trunc == NULL) {
if (!PyErr_Occurred())
PyErr_Format(PyExc_TypeError,
"type %.100s doesn't define __trunc__ method",
- Py_TYPE(number)->tp_name);
+ Py_TYPE(x)->tp_name);
return NULL;
}
result = _PyObject_CallNoArg(trunc);
@@ -1547,18 +1631,24 @@ math_trunc(PyObject *self, PyObject *number)
return result;
}
-PyDoc_STRVAR(math_trunc_doc,
-"trunc(x:Real) -> Integral\n"
-"\n"
-"Truncates x to the nearest Integral toward 0. Uses the __trunc__ magic method.");
+
+/*[clinic input]
+math.frexp
+
+ x: double
+ /
+
+Return the mantissa and exponent of x, as pair (m, e).
+
+m is a float and e is an int, such that x = m * 2.**e.
+If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0.
+[clinic start generated code]*/
static PyObject *
-math_frexp(PyObject *self, PyObject *arg)
+math_frexp_impl(PyObject *module, double x)
+/*[clinic end generated code: output=03e30d252a15ad4a input=96251c9e208bc6e9]*/
{
int i;
- double x = PyFloat_AsDouble(arg);
- if (x == -1.0 && PyErr_Occurred())
- return NULL;
/* deal with special cases directly, to sidestep platform
differences */
if (Py_IS_NAN(x) || Py_IS_INFINITY(x) || !x) {
@@ -1572,27 +1662,31 @@ math_frexp(PyObject *self, PyObject *arg)
return Py_BuildValue("(di)", x, i);
}
-PyDoc_STRVAR(math_frexp_doc,
-"frexp(x)\n"
-"\n"
-"Return the mantissa and exponent of x, as pair (m, e).\n"
-"m is a float and e is an int, such that x = m * 2.**e.\n"
-"If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0.");
+
+/*[clinic input]
+math.ldexp
+
+ x: double
+ i: object
+ /
+
+Return x * (2**i).
+
+This is essentially the inverse of frexp().
+[clinic start generated code]*/
static PyObject *
-math_ldexp(PyObject *self, PyObject *args)
+math_ldexp_impl(PyObject *module, double x, PyObject *i)
+/*[clinic end generated code: output=b6892f3c2df9cc6a input=17d5970c1a40a8c1]*/
{
- double x, r;
- PyObject *oexp;
+ double r;
long exp;
int overflow;
- if (! PyArg_ParseTuple(args, "dO:ldexp", &x, &oexp))
- return NULL;
- if (PyLong_Check(oexp)) {
+ if (PyLong_Check(i)) {
/* on overflow, replace exponent with either LONG_MAX
or LONG_MIN, depending on the sign. */
- exp = PyLong_AsLongAndOverflow(oexp, &overflow);
+ exp = PyLong_AsLongAndOverflow(i, &overflow);
if (exp == -1 && PyErr_Occurred())
return NULL;
if (overflow)
@@ -1630,16 +1724,23 @@ math_ldexp(PyObject *self, PyObject *args)
return PyFloat_FromDouble(r);
}
-PyDoc_STRVAR(math_ldexp_doc,
-"ldexp(x, i)\n\n\
-Return x * (2**i).");
+
+/*[clinic input]
+math.modf
+
+ x: double
+ /
+
+Return the fractional and integer parts of x.
+
+Both results carry the sign of x and are floats.
+[clinic start generated code]*/
static PyObject *
-math_modf(PyObject *self, PyObject *arg)
+math_modf_impl(PyObject *module, double x)
+/*[clinic end generated code: output=90cee0260014c3c0 input=b4cfb6786afd9035]*/
{
- double y, x = PyFloat_AsDouble(arg);
- if (x == -1.0 && PyErr_Occurred())
- return NULL;
+ double y;
/* some platforms don't do the right thing for NaNs and
infinities, so we take care of special cases directly. */
if (!Py_IS_FINITE(x)) {
@@ -1656,11 +1757,6 @@ math_modf(PyObject *self, PyObject *arg)
return Py_BuildValue("(dd)", x, y);
}
-PyDoc_STRVAR(math_modf_doc,
-"modf(x)\n"
-"\n"
-"Return the fractional and integer parts of x. Both results carry the sign\n"
-"of x and are floats.");
/* A decent logarithm is easy to compute even for huge ints, but libm can't
do that by itself -- loghelper can. func is log or log10, and name is
@@ -1709,18 +1805,30 @@ loghelper(PyObject* arg, double (*func)(double), const char *funcname)
return math_1(arg, func, 0);
}
+
+/*[clinic input]
+math.log
+
+ x: object
+ [
+ base: object(c_default="NULL") = math.e
+ ]
+ /
+
+Return the logarithm of x to the given base.
+
+If the base not specified, returns the natural logarithm (base e) of x.
+[clinic start generated code]*/
+
static PyObject *
-math_log(PyObject *self, PyObject *args)
+math_log_impl(PyObject *module, PyObject *x, int group_right_1,
+ PyObject *base)
+/*[clinic end generated code: output=7b5a39e526b73fc9 input=0f62d5726cbfebbd]*/
{
- PyObject *arg;
- PyObject *base = NULL;
PyObject *num, *den;
PyObject *ans;
- if (!PyArg_UnpackTuple(args, "log", 1, 2, &arg, &base))
- return NULL;
-
- num = loghelper(arg, m_log, "log");
+ num = loghelper(x, m_log, "log");
if (num == NULL || base == NULL)
return num;
@@ -1736,40 +1844,58 @@ math_log(PyObject *self, PyObject *args)
return ans;
}
-PyDoc_STRVAR(math_log_doc,
-"log(x[, base])\n\n\
-Return the logarithm of x to the given base.\n\
-If the base not specified, returns the natural logarithm (base e) of x.");
+
+/*[clinic input]
+math.log2
+
+ x: object
+ /
+
+Return the base 2 logarithm of x.
+[clinic start generated code]*/
static PyObject *
-math_log2(PyObject *self, PyObject *arg)
+math_log2(PyObject *module, PyObject *x)
+/*[clinic end generated code: output=5425899a4d5d6acb input=08321262bae4f39b]*/
{
- return loghelper(arg, m_log2, "log2");
+ return loghelper(x, m_log2, "log2");
}
-PyDoc_STRVAR(math_log2_doc,
-"log2(x)\n\nReturn the base 2 logarithm of x.");
+
+/*[clinic input]
+math.log10
+
+ x: object
+ /
+
+Return the base 10 logarithm of x.
+[clinic start generated code]*/
static PyObject *
-math_log10(PyObject *self, PyObject *arg)
+math_log10(PyObject *module, PyObject *x)
+/*[clinic end generated code: output=be72a64617df9c6f input=b2469d02c6469e53]*/
{
- return loghelper(arg, m_log10, "log10");
+ return loghelper(x, m_log10, "log10");
}
-PyDoc_STRVAR(math_log10_doc,
-"log10(x)\n\nReturn the base 10 logarithm of x.");
+
+/*[clinic input]
+math.fmod
+
+ x: double
+ y: double
+ /
+
+Return fmod(x, y), according to platform C.
+
+x % y may differ.
+[clinic start generated code]*/
static PyObject *
-math_fmod(PyObject *self, PyObject *args)
+math_fmod_impl(PyObject *module, double x, double y)
+/*[clinic end generated code: output=7559d794343a27b5 input=4f84caa8cfc26a03]*/
{
- PyObject *ox, *oy;
- double r, x, y;
- if (! PyArg_UnpackTuple(args, "fmod", 2, 2, &ox, &oy))
- return NULL;
- x = PyFloat_AsDouble(ox);
- y = PyFloat_AsDouble(oy);
- if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
- return NULL;
+ double r;
/* fmod(x, +/-Inf) returns x for finite x. */
if (Py_IS_INFINITY(y) && Py_IS_FINITE(x))
return PyFloat_FromDouble(x);
@@ -1789,21 +1915,22 @@ math_fmod(PyObject *self, PyObject *args)
return PyFloat_FromDouble(r);
}
-PyDoc_STRVAR(math_fmod_doc,
-"fmod(x, y)\n\nReturn fmod(x, y), according to platform C."
-" x % y may differ.");
+
+/*[clinic input]
+math.hypot
+
+ x: double
+ y: double
+ /
+
+Return the Euclidean distance, sqrt(x*x + y*y).
+[clinic start generated code]*/
static PyObject *
-math_hypot(PyObject *self, PyObject *args)
+math_hypot_impl(PyObject *module, double x, double y)
+/*[clinic end generated code: output=b7686e5be468ef87 input=7f8eea70406474aa]*/
{
- PyObject *ox, *oy;
- double r, x, y;
- if (! PyArg_UnpackTuple(args, "hypot", 2, 2, &ox, &oy))
- return NULL;
- x = PyFloat_AsDouble(ox);
- y = PyFloat_AsDouble(oy);
- if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
- return NULL;
+ double r;
/* hypot(x, +/-Inf) returns Inf, even if x is a NaN. */
if (Py_IS_INFINITY(x))
return PyFloat_FromDouble(fabs(x));
@@ -1831,8 +1958,6 @@ math_hypot(PyObject *self, PyObject *args)
return PyFloat_FromDouble(r);
}
-PyDoc_STRVAR(math_hypot_doc,
-"hypot(x, y)\n\nReturn the Euclidean distance, sqrt(x*x + y*y).");
/* pow can't use math_2, but needs its own wrapper: the problem is
that an infinite result can arise either as a result of overflow
@@ -1840,20 +1965,23 @@ PyDoc_STRVAR(math_hypot_doc,
e.g. 0.**-5. (for which ValueError needs to be raised.)
*/
+/*[clinic input]
+math.pow
+
+ x: double
+ y: double
+ /
+
+Return x**y (x to the power of y).
+[clinic start generated code]*/
+
static PyObject *
-math_pow(PyObject *self, PyObject *args)
+math_pow_impl(PyObject *module, double x, double y)
+/*[clinic end generated code: output=fff93e65abccd6b0 input=c26f1f6075088bfd]*/
{
- PyObject *ox, *oy;
- double r, x, y;
+ double r;
int odd_y;
- if (! PyArg_UnpackTuple(args, "pow", 2, 2, &ox, &oy))
- return NULL;
- x = PyFloat_AsDouble(ox);
- y = PyFloat_AsDouble(oy);
- if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
- return NULL;
-
/* deal directly with IEEE specials, to cope with problems on various
platforms whose semantics don't exactly match C99 */
r = 0.; /* silence compiler warning */
@@ -1918,107 +2046,139 @@ math_pow(PyObject *self, PyObject *args)
return PyFloat_FromDouble(r);
}
-PyDoc_STRVAR(math_pow_doc,
-"pow(x, y)\n\nReturn x**y (x to the power of y).");
static const double degToRad = Py_MATH_PI / 180.0;
static const double radToDeg = 180.0 / Py_MATH_PI;
+/*[clinic input]
+math.degrees
+
+ x: double
+ /
+
+Convert angle x from radians to degrees.
+[clinic start generated code]*/
+
static PyObject *
-math_degrees(PyObject *self, PyObject *arg)
+math_degrees_impl(PyObject *module, double x)
+/*[clinic end generated code: output=7fea78b294acd12f input=81e016555d6e3660]*/
{
- double x = PyFloat_AsDouble(arg);
- if (x == -1.0 && PyErr_Occurred())
- return NULL;
return PyFloat_FromDouble(x * radToDeg);
}
-PyDoc_STRVAR(math_degrees_doc,
-"degrees(x)\n\n\
-Convert angle x from radians to degrees.");
+
+/*[clinic input]
+math.radians
+
+ x: double
+ /
+
+Convert angle x from degrees to radians.
+[clinic start generated code]*/
static PyObject *
-math_radians(PyObject *self, PyObject *arg)
+math_radians_impl(PyObject *module, double x)
+/*[clinic end generated code: output=34daa47caf9b1590 input=91626fc489fe3d63]*/
{
- double x = PyFloat_AsDouble(arg);
- if (x == -1.0 && PyErr_Occurred())
- return NULL;
return PyFloat_FromDouble(x * degToRad);
}
-PyDoc_STRVAR(math_radians_doc,
-"radians(x)\n\n\
-Convert angle x from degrees to radians.");
+
+/*[clinic input]
+math.isfinite
+
+ x: double
+ /
+
+Return True if x is neither an infinity nor a NaN, and False otherwise.
+[clinic start generated code]*/
static PyObject *
-math_isfinite(PyObject *self, PyObject *arg)
+math_isfinite_impl(PyObject *module, double x)
+/*[clinic end generated code: output=8ba1f396440c9901 input=46967d254812e54a]*/
{
- double x = PyFloat_AsDouble(arg);
- if (x == -1.0 && PyErr_Occurred())
- return NULL;
return PyBool_FromLong((long)Py_IS_FINITE(x));
}
-PyDoc_STRVAR(math_isfinite_doc,
-"isfinite(x) -> bool\n\n\
-Return True if x is neither an infinity nor a NaN, and False otherwise.");
+
+/*[clinic input]
+math.isnan
+
+ x: double
+ /
+
+Return True if x is a NaN (not a number), and False otherwise.
+[clinic start generated code]*/
static PyObject *
-math_isnan(PyObject *self, PyObject *arg)
+math_isnan_impl(PyObject *module, double x)
+/*[clinic end generated code: output=f537b4d6df878c3e input=935891e66083f46a]*/
{
- double x = PyFloat_AsDouble(arg);
- if (x == -1.0 && PyErr_Occurred())
- return NULL;
return PyBool_FromLong((long)Py_IS_NAN(x));
}
-PyDoc_STRVAR(math_isnan_doc,
-"isnan(x) -> bool\n\n\
-Return True if x is a NaN (not a number), and False otherwise.");
+
+/*[clinic input]
+math.isinf
+
+ x: double
+ /
+
+Return True if x is a positive or negative infinity, and False otherwise.
+[clinic start generated code]*/
static PyObject *
-math_isinf(PyObject *self, PyObject *arg)
+math_isinf_impl(PyObject *module, double x)
+/*[clinic end generated code: output=9f00cbec4de7b06b input=32630e4212cf961f]*/
{
- double x = PyFloat_AsDouble(arg);
- if (x == -1.0 && PyErr_Occurred())
- return NULL;
return PyBool_FromLong((long)Py_IS_INFINITY(x));
}
-PyDoc_STRVAR(math_isinf_doc,
-"isinf(x) -> bool\n\n\
-Return True if x is a positive or negative infinity, and False otherwise.");
-static PyObject *
-math_isclose(PyObject *self, PyObject *args, PyObject *kwargs)
-{
- double a, b;
- double rel_tol = 1e-9;
- double abs_tol = 0.0;
- double diff = 0.0;
- long result = 0;
+/*[clinic input]
+math.isclose -> bool
- static char *keywords[] = {"a", "b", "rel_tol", "abs_tol", NULL};
+ a: double
+ b: double
+ *
+ rel_tol: double = 1e-09
+ maximum difference for being considered "close", relative to the
+ magnitude of the input values
+ abs_tol: double = 0.0
+ maximum difference for being considered "close", regardless of the
+ magnitude of the input values
+Determine whether two floating point numbers are close in value.
- if (!PyArg_ParseTupleAndKeywords(args, kwargs, "dd|$dd:isclose",
- keywords,
- &a, &b, &rel_tol, &abs_tol
- ))
- return NULL;
+Return True if a is close in value to b, and False otherwise.
+
+For the values to be considered close, the difference between them
+must be smaller than at least one of the tolerances.
+
+-inf, inf and NaN behave similarly to the IEEE 754 Standard. That
+is, NaN is not close to anything, even itself. inf and -inf are
+only close to themselves.
+[clinic start generated code]*/
+
+static int
+math_isclose_impl(PyObject *module, double a, double b, double rel_tol,
+ double abs_tol)
+/*[clinic end generated code: output=b73070207511952d input=f28671871ea5bfba]*/
+{
+ double diff = 0.0;
/* sanity check on the inputs */
if (rel_tol < 0.0 || abs_tol < 0.0 ) {
PyErr_SetString(PyExc_ValueError,
"tolerances must be non-negative");
- return NULL;
+ return -1;
}
if ( a == b ) {
/* short circuit exact equality -- needed to catch two infinities of
the same sign. And perhaps speeds things up a bit sometimes.
*/
- Py_RETURN_TRUE;
+ return 1;
}
/* This catches the case of two infinities of opposite sign, or
@@ -2029,7 +2189,7 @@ math_isclose(PyObject *self, PyObject *args, PyObject *kwargs)
*/
if (Py_IS_INFINITY(a) || Py_IS_INFINITY(b)) {
- Py_RETURN_FALSE;
+ return 0;
}
/* now do the regular computation
@@ -2038,33 +2198,11 @@ math_isclose(PyObject *self, PyObject *args, PyObject *kwargs)
diff = fabs(b - a);
- result = (((diff <= fabs(rel_tol * b)) ||
- (diff <= fabs(rel_tol * a))) ||
- (diff <= abs_tol));
-
- return PyBool_FromLong(result);
+ return (((diff <= fabs(rel_tol * b)) ||
+ (diff <= fabs(rel_tol * a))) ||
+ (diff <= abs_tol));
}
-PyDoc_STRVAR(math_isclose_doc,
-"isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0) -> bool\n"
-"\n"
-"Determine whether two floating point numbers are close in value.\n"
-"\n"
-" rel_tol\n"
-" maximum difference for being considered \"close\", relative to the\n"
-" magnitude of the input values\n"
-" abs_tol\n"
-" maximum difference for being considered \"close\", regardless of the\n"
-" magnitude of the input values\n"
-"\n"
-"Return True if a is close in value to b, and False otherwise.\n"
-"\n"
-"For the values to be considered close, the difference between them\n"
-"must be smaller than at least one of the tolerances.\n"
-"\n"
-"-inf, inf and NaN behave similarly to the IEEE 754 Standard. That\n"
-"is, NaN is not close to anything, even itself. inf and -inf are\n"
-"only close to themselves.");
static PyMethodDef math_methods[] = {
{"acos", math_acos, METH_O, math_acos_doc},
@@ -2074,44 +2212,43 @@ static PyMethodDef math_methods[] = {
{"atan", math_atan, METH_O, math_atan_doc},
{"atan2", math_atan2, METH_VARARGS, math_atan2_doc},
{"atanh", math_atanh, METH_O, math_atanh_doc},
- {"ceil", math_ceil, METH_O, math_ceil_doc},
+ MATH_CEIL_METHODDEF
{"copysign", math_copysign, METH_VARARGS, math_copysign_doc},
{"cos", math_cos, METH_O, math_cos_doc},
{"cosh", math_cosh, METH_O, math_cosh_doc},
- {"degrees", math_degrees, METH_O, math_degrees_doc},
+ MATH_DEGREES_METHODDEF
{"erf", math_erf, METH_O, math_erf_doc},
{"erfc", math_erfc, METH_O, math_erfc_doc},
{"exp", math_exp, METH_O, math_exp_doc},
{"expm1", math_expm1, METH_O, math_expm1_doc},
{"fabs", math_fabs, METH_O, math_fabs_doc},
- {"factorial", math_factorial, METH_O, math_factorial_doc},
- {"floor", math_floor, METH_O, math_floor_doc},
- {"fmod", math_fmod, METH_VARARGS, math_fmod_doc},
- {"frexp", math_frexp, METH_O, math_frexp_doc},
- {"fsum", math_fsum, METH_O, math_fsum_doc},
+ MATH_FACTORIAL_METHODDEF
+ MATH_FLOOR_METHODDEF
+ MATH_FMOD_METHODDEF
+ MATH_FREXP_METHODDEF
+ MATH_FSUM_METHODDEF
{"gamma", math_gamma, METH_O, math_gamma_doc},
- {"gcd", math_gcd, METH_VARARGS, math_gcd_doc},
- {"hypot", math_hypot, METH_VARARGS, math_hypot_doc},
- {"isclose", (PyCFunction) math_isclose, METH_VARARGS | METH_KEYWORDS,
- math_isclose_doc},
- {"isfinite", math_isfinite, METH_O, math_isfinite_doc},
- {"isinf", math_isinf, METH_O, math_isinf_doc},
- {"isnan", math_isnan, METH_O, math_isnan_doc},
- {"ldexp", math_ldexp, METH_VARARGS, math_ldexp_doc},
+ MATH_GCD_METHODDEF
+ MATH_HYPOT_METHODDEF
+ MATH_ISCLOSE_METHODDEF
+ MATH_ISFINITE_METHODDEF
+ MATH_ISINF_METHODDEF
+ MATH_ISNAN_METHODDEF
+ MATH_LDEXP_METHODDEF
{"lgamma", math_lgamma, METH_O, math_lgamma_doc},
- {"log", math_log, METH_VARARGS, math_log_doc},
+ MATH_LOG_METHODDEF
{"log1p", math_log1p, METH_O, math_log1p_doc},
- {"log10", math_log10, METH_O, math_log10_doc},
- {"log2", math_log2, METH_O, math_log2_doc},
- {"modf", math_modf, METH_O, math_modf_doc},
- {"pow", math_pow, METH_VARARGS, math_pow_doc},
- {"radians", math_radians, METH_O, math_radians_doc},
+ MATH_LOG10_METHODDEF
+ MATH_LOG2_METHODDEF
+ MATH_MODF_METHODDEF
+ MATH_POW_METHODDEF
+ MATH_RADIANS_METHODDEF
{"sin", math_sin, METH_O, math_sin_doc},
{"sinh", math_sinh, METH_O, math_sinh_doc},
{"sqrt", math_sqrt, METH_O, math_sqrt_doc},
{"tan", math_tan, METH_O, math_tan_doc},
{"tanh", math_tanh, METH_O, math_tanh_doc},
- {"trunc", math_trunc, METH_O, math_trunc_doc},
+ MATH_TRUNC_METHODDEF
{NULL, NULL} /* sentinel */
};