summaryrefslogtreecommitdiffstats
path: root/Modules/mathmodule.c
diff options
context:
space:
mode:
authorMark Dickinson <dickinsm@gmail.com>2010-01-02 15:33:56 (GMT)
committerMark Dickinson <dickinsm@gmail.com>2010-01-02 15:33:56 (GMT)
commit6ecd9e53ce43796a0626d16a89cd6a99b28333cc (patch)
tree006509589544384205fdb543e214b101e1c71414 /Modules/mathmodule.c
parent01f748a8326770f98e514da85b4a42cae672cd80 (diff)
downloadcpython-6ecd9e53ce43796a0626d16a89cd6a99b28333cc.zip
cpython-6ecd9e53ce43796a0626d16a89cd6a99b28333cc.tar.gz
cpython-6ecd9e53ce43796a0626d16a89cd6a99b28333cc.tar.bz2
Merged revisions 77234 via svnmerge from
svn+ssh://pythondev@svn.python.org/python/trunk ........ r77234 | mark.dickinson | 2010-01-02 14:45:40 +0000 (Sat, 02 Jan 2010) | 7 lines Refactor some longobject internals: PyLong_AsDouble and _PyLong_AsScaledDouble (the latter renamed to _PyLong_Frexp) now use the same core code. The exponent produced by _PyLong_Frexp now has type Py_ssize_t instead of the previously used int, and no longer needs scaling by PyLong_SHIFT. This frees the math module from having to know anything about the PyLong implementation. This closes issue #5576. ........
Diffstat (limited to 'Modules/mathmodule.c')
-rw-r--r--Modules/mathmodule.c27
1 files changed, 15 insertions, 12 deletions
diff --git a/Modules/mathmodule.c b/Modules/mathmodule.c
index a057cac..ee479ea 100644
--- a/Modules/mathmodule.c
+++ b/Modules/mathmodule.c
@@ -54,7 +54,6 @@ raised for division by zero and mod by zero.
#include "Python.h"
#include "_math.h"
-#include "longintrepr.h" /* just for SHIFT */
#ifdef _OSF_SOURCE
/* OSF1 5.1 doesn't make this available with XOPEN_SOURCE_EXTENDED defined */
@@ -1342,11 +1341,12 @@ PyDoc_STRVAR(math_modf_doc,
/* A decent logarithm is easy to compute even for huge longs, but libm can't
do that by itself -- loghelper can. func is log or log10, and name is
- "log" or "log10". Note that overflow isn't possible: a long can contain
- no more than INT_MAX * SHIFT bits, so has value certainly less than
- 2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is
+ "log" or "log10". Note that overflow of the result isn't possible: a long
+ can contain no more than INT_MAX * SHIFT bits, so has value certainly less
+ than 2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is
small enough to fit in an IEEE single. log and log10 are even smaller.
-*/
+ However, intermediate overflow is possible for a long if the number of bits
+ in that long is larger than PY_SSIZE_T_MAX. */
static PyObject*
loghelper(PyObject* arg, double (*func)(double), char *funcname)
@@ -1354,18 +1354,21 @@ loghelper(PyObject* arg, double (*func)(double), char *funcname)
/* If it is long, do it ourselves. */
if (PyLong_Check(arg)) {
double x;
- int e;
- x = _PyLong_AsScaledDouble(arg, &e);
+ Py_ssize_t e;
+ x = _PyLong_Frexp((PyLongObject *)arg, &e);
+ if (x == -1.0 && PyErr_Occurred())
+ return NULL;
if (x <= 0.0) {
PyErr_SetString(PyExc_ValueError,
"math domain error");
return NULL;
}
- /* Value is ~= x * 2**(e*PyLong_SHIFT), so the log ~=
- log(x) + log(2) * e * PyLong_SHIFT.
- CAUTION: e*PyLong_SHIFT may overflow using int arithmetic,
- so force use of double. */
- x = func(x) + (e * (double)PyLong_SHIFT) * func(2.0);
+ /* Special case for log(1), to make sure we get an
+ exact result there. */
+ if (e == 1 && x == 0.5)
+ return PyFloat_FromDouble(0.0);
+ /* Value is ~= x * 2**e, so the log ~= log(x) + log(2) * e. */
+ x = func(x) + func(2.0) * e;
return PyFloat_FromDouble(x);
}