diff options
author | Brett Cannon <brett@python.org> | 2016-01-15 17:41:49 (GMT) |
---|---|---|
committer | Brett Cannon <brett@python.org> | 2016-01-15 17:41:49 (GMT) |
commit | c39162de4a64a9f8c03a474e97a9f2a21ceb9f54 (patch) | |
tree | 548c6c766fda08a7b25967cf0967c1aa87ad599e /Modules | |
parent | 1826f6369c77588fc851afd4504c915ef5eb2408 (diff) | |
download | cpython-c39162de4a64a9f8c03a474e97a9f2a21ceb9f54.zip cpython-c39162de4a64a9f8c03a474e97a9f2a21ceb9f54.tar.gz cpython-c39162de4a64a9f8c03a474e97a9f2a21ceb9f54.tar.bz2 |
Issue #26114: Remove mention of 'Numerical Recipes'.
Diffstat (limited to 'Modules')
-rw-r--r-- | Modules/mathmodule.c | 5 |
1 files changed, 2 insertions, 3 deletions
diff --git a/Modules/mathmodule.c b/Modules/mathmodule.c index 670e52d..01ed36b 100644 --- a/Modules/mathmodule.c +++ b/Modules/mathmodule.c @@ -379,9 +379,8 @@ m_lgamma(double x) Implementations of the error function erf(x) and the complementary error function erfc(x). - Method: following 'Numerical Recipes' by Flannery, Press et. al. (2nd ed., - Cambridge University Press), we use a series approximation for erf for - small x, and a continued fraction approximation for erfc(x) for larger x; + Method: we use a series approximation for erf for small x, and a continued + fraction approximation for erfc(x) for larger x; combined with the relations erf(-x) = -erf(x) and erfc(x) = 1.0 - erf(x), this gives us erf(x) and erfc(x) for all x. |