diff options
author | Raymond Hettinger <rhettinger@users.noreply.github.com> | 2020-08-16 02:38:19 (GMT) |
---|---|---|
committer | GitHub <noreply@github.com> | 2020-08-16 02:38:19 (GMT) |
commit | fff3c28052e6b0750d6218e00acacd2fded4991a (patch) | |
tree | ce64915e0eca743b0f0c448b714f5e316adca18a /Modules | |
parent | 39dab24621122338d01c1219bb0acc46ba9c9956 (diff) | |
download | cpython-fff3c28052e6b0750d6218e00acacd2fded4991a.zip cpython-fff3c28052e6b0750d6218e00acacd2fded4991a.tar.gz cpython-fff3c28052e6b0750d6218e00acacd2fded4991a.tar.bz2 |
bpo-41513: Improve speed and accuracy of math.hypot() (GH-21803)
Diffstat (limited to 'Modules')
-rw-r--r-- | Modules/mathmodule.c | 41 |
1 files changed, 38 insertions, 3 deletions
diff --git a/Modules/mathmodule.c b/Modules/mathmodule.c index 411c6eb..489802c 100644 --- a/Modules/mathmodule.c +++ b/Modules/mathmodule.c @@ -2406,6 +2406,13 @@ math_fmod_impl(PyObject *module, double x, double y) /* Given an *n* length *vec* of values and a value *max*, compute: + sqrt(sum((x * scale) ** 2 for x in vec)) / scale + + where scale is the first power of two + greater than max. + +or compute: + max * sqrt(sum((x / max) ** 2 for x in vec)) The value of the *max* variable must be non-negative and @@ -2425,19 +2432,25 @@ The *csum* variable tracks the cumulative sum and *frac* tracks the cumulative fractional errors at each step. Since this variant assumes that |csum| >= |x| at each step, we establish the precondition by starting the accumulation from 1.0 which -represents the largest possible value of (x/max)**2. +represents the largest possible value of (x*scale)**2 or (x/max)**2. After the loop is finished, the initial 1.0 is subtracted out for a net zero effect on the final sum. Since *csum* will be greater than 1.0, the subtraction of 1.0 will not cause fractional digits to be dropped from *csum*. +To get the full benefit from compensated summation, the +largest addend should be in the range: 0.5 <= x <= 1.0. +Accordingly, scaling or division by *max* should not be skipped +even if not otherwise needed to prevent overflow or loss of precision. + */ static inline double vector_norm(Py_ssize_t n, double *vec, double max, int found_nan) { - double x, csum = 1.0, oldcsum, frac = 0.0; + double x, csum = 1.0, oldcsum, frac = 0.0, scale; + int max_e; Py_ssize_t i; if (Py_IS_INFINITY(max)) { @@ -2449,14 +2462,36 @@ vector_norm(Py_ssize_t n, double *vec, double max, int found_nan) if (max == 0.0 || n <= 1) { return max; } + frexp(max, &max_e); + if (max_e >= -1023) { + scale = ldexp(1.0, -max_e); + assert(max * scale >= 0.5); + assert(max * scale < 1.0); + for (i=0 ; i < n ; i++) { + x = vec[i]; + assert(Py_IS_FINITE(x) && fabs(x) <= max); + x *= scale; + x = x*x; + assert(x <= 1.0); + assert(csum >= x); + oldcsum = csum; + csum += x; + frac += (oldcsum - csum) + x; + } + return sqrt(csum - 1.0 + frac) / scale; + } + /* When max_e < -1023, ldexp(1.0, -max_e) overflows. + So instead of multiplying by a scale, we just divide by *max*. + */ for (i=0 ; i < n ; i++) { x = vec[i]; assert(Py_IS_FINITE(x) && fabs(x) <= max); x /= max; x = x*x; + assert(x <= 1.0); + assert(csum >= x); oldcsum = csum; csum += x; - assert(csum >= x); frac += (oldcsum - csum) + x; } return max * sqrt(csum - 1.0 + frac); |