diff options
author | Christian Heimes <christian@cheimes.de> | 2008-04-20 21:01:16 (GMT) |
---|---|---|
committer | Christian Heimes <christian@cheimes.de> | 2008-04-20 21:01:16 (GMT) |
commit | a342c013fc97df2110c420af2cd66b7e8489b9af (patch) | |
tree | 8e95e3309129066e84c3aa83bdbc7aaf087fbf62 /Modules | |
parent | 58f9e4f34793a14050648c9f620e96189908a3e9 (diff) | |
download | cpython-a342c013fc97df2110c420af2cd66b7e8489b9af.zip cpython-a342c013fc97df2110c420af2cd66b7e8489b9af.tar.gz cpython-a342c013fc97df2110c420af2cd66b7e8489b9af.tar.bz2 |
Merged revisions 62386-62387,62389-62393,62396,62400-62402,62407,62409-62410,62412-62414,62418-62419 via svnmerge from
svn+ssh://pythondev@svn.python.org/python/trunk
........
r62386 | christian.heimes | 2008-04-19 04:23:57 +0200 (Sat, 19 Apr 2008) | 2 lines
Added kill, terminate and send_signal to subprocess.Popen
The bits and pieces for the Windows side were already in place. The POSIX side is trivial (as usual) and uses os.kill().
........
r62387 | georg.brandl | 2008-04-19 10:23:59 +0200 (Sat, 19 Apr 2008) | 2 lines
Fix-up docs for revision 62386.
........
r62389 | georg.brandl | 2008-04-19 18:57:43 +0200 (Sat, 19 Apr 2008) | 2 lines
#2369: clarify that copyfile() doesn't take a target directory.
........
r62390 | georg.brandl | 2008-04-19 18:58:28 +0200 (Sat, 19 Apr 2008) | 2 lines
#2634: clarify meaning of env parameter to spawn/exec*e.
........
r62391 | georg.brandl | 2008-04-19 18:58:49 +0200 (Sat, 19 Apr 2008) | 2 lines
#2633: clarify meaning of env parameter.
........
r62392 | georg.brandl | 2008-04-19 18:59:16 +0200 (Sat, 19 Apr 2008) | 2 lines
#2631: clarify IMPORT_NAME semantics.
........
r62393 | georg.brandl | 2008-04-19 19:00:14 +0200 (Sat, 19 Apr 2008) | 2 lines
:func: et al. should *not* include the parens.
........
r62396 | mark.dickinson | 2008-04-19 20:51:48 +0200 (Sat, 19 Apr 2008) | 5 lines
Additional tests for math.pow, and extra special-case
handling code in math.pow, in the hope of making all
tests pass on the alpha Tru64 buildbot.
........
r62400 | mark.dickinson | 2008-04-19 21:41:52 +0200 (Sat, 19 Apr 2008) | 3 lines
Additional special-case handling for math.pow.
Windows/VS2008 doesn't like (-1)**(+-inf).
........
r62401 | benjamin.peterson | 2008-04-19 21:47:34 +0200 (Sat, 19 Apr 2008) | 2 lines
Complete documentation for errors argument of io's open and TextIOWrapper
........
r62402 | mark.dickinson | 2008-04-19 22:31:16 +0200 (Sat, 19 Apr 2008) | 2 lines
Document updates to math and cmath modules.
........
r62407 | georg.brandl | 2008-04-19 23:28:38 +0200 (Sat, 19 Apr 2008) | 2 lines
Update template for newest Sphinx.
........
r62409 | mark.dickinson | 2008-04-19 23:35:35 +0200 (Sat, 19 Apr 2008) | 5 lines
Correct documentation for math.pow;
0**nan is nan, not 0. (But nan**0 and 1**nan are 1.)
Also fix minor typo: 'quite NaN' -> 'quiet NaN'
........
r62410 | mark.dickinson | 2008-04-19 23:49:22 +0200 (Sat, 19 Apr 2008) | 4 lines
Move asinh documentation to the proper place.
Remove meaningless 'in radians' from inverse
hyperbolic functions.
........
r62412 | mark.dickinson | 2008-04-20 03:22:30 +0200 (Sun, 20 Apr 2008) | 5 lines
Report additional diagnostic information in
test_math, to help track down debian-alpha
buildbot failure.
........
r62413 | mark.dickinson | 2008-04-20 03:39:24 +0200 (Sun, 20 Apr 2008) | 3 lines
FreeBSD doesn't follow C99 for modf(inf); so add explicit
special-value handling to math.modf code.
........
r62414 | mark.dickinson | 2008-04-20 06:13:13 +0200 (Sun, 20 Apr 2008) | 5 lines
Yet more explicit special case handling to make
math.pow behave on alpha Tru64. All IEEE 754
special values are now handled directly; only
the finite**finite case is handled by libm.
........
r62418 | mark.dickinson | 2008-04-20 18:13:17 +0200 (Sun, 20 Apr 2008) | 7 lines
Issue 2662: Initialize special value tables dynamically (i.e. when
cmath module is loaded) instead of statically. This fixes compile-time
problems on platforms where HUGE_VAL is an extern variable rather than
a constant.
Thanks Hirokazu Yamamoto for the patch.
........
r62419 | andrew.kuchling | 2008-04-20 18:54:02 +0200 (Sun, 20 Apr 2008) | 1 line
Move description of math module changes; various edits to description of cmath changes
........
Diffstat (limited to 'Modules')
-rw-r--r-- | Modules/cmathmodule.c | 237 | ||||
-rw-r--r-- | Modules/mathmodule.c | 95 |
2 files changed, 193 insertions, 139 deletions
diff --git a/Modules/cmathmodule.c b/Modules/cmathmodule.c index 8e3c31e..347f88d 100644 --- a/Modules/cmathmodule.c +++ b/Modules/cmathmodule.c @@ -107,16 +107,8 @@ special_type(double d) #define P14 0.25*Py_MATH_PI #define P12 0.5*Py_MATH_PI #define P34 0.75*Py_MATH_PI -#ifdef MS_WINDOWS -/* On Windows HUGE_VAL is an extern variable and not a constant. Since the - special value arrays need a constant we have to roll our own infinity - and nan. */ -# define INF (DBL_MAX*DBL_MAX) -# define N (INF*0.) -#else -# define INF Py_HUGE_VAL -# define N Py_NAN -#endif /* MS_WINDOWS */ +#define INF Py_HUGE_VAL +#define N Py_NAN #define U -9.5426319407711027e33 /* unlikely value, used as placeholder */ /* First, the C functions that do the real work. Each of the c_* @@ -128,15 +120,7 @@ special_type(double d) raised. */ -static Py_complex acos_special_values[7][7] = { - {{P34,INF},{P,INF}, {P,INF}, {P,-INF}, {P,-INF}, {P34,-INF},{N,INF}}, - {{P12,INF},{U,U}, {U,U}, {U,U}, {U,U}, {P12,-INF},{N,N}}, - {{P12,INF},{U,U}, {P12,0.},{P12,-0.},{U,U}, {P12,-INF},{P12,N}}, - {{P12,INF},{U,U}, {P12,0.},{P12,-0.},{U,U}, {P12,-INF},{P12,N}}, - {{P12,INF},{U,U}, {U,U}, {U,U}, {U,U}, {P12,-INF},{N,N}}, - {{P14,INF},{0.,INF},{0.,INF},{0.,-INF},{0.,-INF},{P14,-INF},{N,INF}}, - {{N,INF}, {N,N}, {N,N}, {N,N}, {N,N}, {N,-INF}, {N,N}} -}; +static Py_complex acos_special_values[7][7]; static Py_complex c_acos(Py_complex z) @@ -177,15 +161,7 @@ PyDoc_STRVAR(c_acos_doc, "Return the arc cosine of x."); -static Py_complex acosh_special_values[7][7] = { - {{INF,-P34},{INF,-P}, {INF,-P}, {INF,P}, {INF,P}, {INF,P34},{INF,N}}, - {{INF,-P12},{U,U}, {U,U}, {U,U}, {U,U}, {INF,P12},{N,N}}, - {{INF,-P12},{U,U}, {0.,-P12},{0.,P12},{U,U}, {INF,P12},{N,N}}, - {{INF,-P12},{U,U}, {0.,-P12},{0.,P12},{U,U}, {INF,P12},{N,N}}, - {{INF,-P12},{U,U}, {U,U}, {U,U}, {U,U}, {INF,P12},{N,N}}, - {{INF,-P14},{INF,-0.},{INF,-0.},{INF,0.},{INF,0.},{INF,P14},{INF,N}}, - {{INF,N}, {N,N}, {N,N}, {N,N}, {N,N}, {INF,N}, {N,N}} -}; +static Py_complex acosh_special_values[7][7]; static Py_complex c_acosh(Py_complex z) @@ -237,15 +213,7 @@ PyDoc_STRVAR(c_asin_doc, "Return the arc sine of x."); -static Py_complex asinh_special_values[7][7] = { - {{-INF,-P14},{-INF,-0.},{-INF,-0.},{-INF,0.},{-INF,0.},{-INF,P14},{-INF,N}}, - {{-INF,-P12},{U,U}, {U,U}, {U,U}, {U,U}, {-INF,P12},{N,N}}, - {{-INF,-P12},{U,U}, {-0.,-0.}, {-0.,0.}, {U,U}, {-INF,P12},{N,N}}, - {{INF,-P12}, {U,U}, {0.,-0.}, {0.,0.}, {U,U}, {INF,P12}, {N,N}}, - {{INF,-P12}, {U,U}, {U,U}, {U,U}, {U,U}, {INF,P12}, {N,N}}, - {{INF,-P14}, {INF,-0.}, {INF,-0.}, {INF,0.}, {INF,0.}, {INF,P14}, {INF,N}}, - {{INF,N}, {N,N}, {N,-0.}, {N,0.}, {N,N}, {INF,N}, {N,N}} -}; +static Py_complex asinh_special_values[7][7]; static Py_complex c_asinh(Py_complex z) @@ -323,15 +291,7 @@ PyDoc_STRVAR(c_atan_doc, "Return the arc tangent of x."); -static Py_complex atanh_special_values[7][7] = { - {{-0.,-P12},{-0.,-P12},{-0.,-P12},{-0.,P12},{-0.,P12},{-0.,P12},{-0.,N}}, - {{-0.,-P12},{U,U}, {U,U}, {U,U}, {U,U}, {-0.,P12},{N,N}}, - {{-0.,-P12},{U,U}, {-0.,-0.}, {-0.,0.}, {U,U}, {-0.,P12},{-0.,N}}, - {{0.,-P12}, {U,U}, {0.,-0.}, {0.,0.}, {U,U}, {0.,P12}, {0.,N}}, - {{0.,-P12}, {U,U}, {U,U}, {U,U}, {U,U}, {0.,P12}, {N,N}}, - {{0.,-P12}, {0.,-P12}, {0.,-P12}, {0.,P12}, {0.,P12}, {0.,P12}, {0.,N}}, - {{0.,-P12}, {N,N}, {N,N}, {N,N}, {N,N}, {0.,P12}, {N,N}} -}; +static Py_complex atanh_special_values[7][7]; static Py_complex c_atanh(Py_complex z) @@ -404,15 +364,7 @@ PyDoc_STRVAR(c_cos_doc, /* cosh(infinity + i*y) needs to be dealt with specially */ -static Py_complex cosh_special_values[7][7] = { - {{INF,N},{U,U},{INF,0.}, {INF,-0.},{U,U},{INF,N},{INF,N}}, - {{N,N}, {U,U},{U,U}, {U,U}, {U,U},{N,N}, {N,N}}, - {{N,0.}, {U,U},{1.,0.}, {1.,-0.}, {U,U},{N,0.}, {N,0.}}, - {{N,0.}, {U,U},{1.,-0.}, {1.,0.}, {U,U},{N,0.}, {N,0.}}, - {{N,N}, {U,U},{U,U}, {U,U}, {U,U},{N,N}, {N,N}}, - {{INF,N},{U,U},{INF,-0.},{INF,0.}, {U,U},{INF,N},{INF,N}}, - {{N,N}, {N,N},{N,0.}, {N,0.}, {N,N},{N,N}, {N,N}} -}; +static Py_complex cosh_special_values[7][7]; static Py_complex c_cosh(Py_complex z) @@ -472,15 +424,7 @@ PyDoc_STRVAR(c_cosh_doc, /* exp(infinity + i*y) and exp(-infinity + i*y) need special treatment for finite y */ -static Py_complex exp_special_values[7][7] = { - {{0.,0.},{U,U},{0.,-0.}, {0.,0.}, {U,U},{0.,0.},{0.,0.}}, - {{N,N}, {U,U},{U,U}, {U,U}, {U,U},{N,N}, {N,N}}, - {{N,N}, {U,U},{1.,-0.}, {1.,0.}, {U,U},{N,N}, {N,N}}, - {{N,N}, {U,U},{1.,-0.}, {1.,0.}, {U,U},{N,N}, {N,N}}, - {{N,N}, {U,U},{U,U}, {U,U}, {U,U},{N,N}, {N,N}}, - {{INF,N},{U,U},{INF,-0.},{INF,0.},{U,U},{INF,N},{INF,N}}, - {{N,N}, {N,N},{N,-0.}, {N,0.}, {N,N},{N,N}, {N,N}} -}; +static Py_complex exp_special_values[7][7]; static Py_complex c_exp(Py_complex z) @@ -538,15 +482,7 @@ PyDoc_STRVAR(c_exp_doc, "Return the exponential value e**x."); -static Py_complex log_special_values[7][7] = { - {{INF,-P34},{INF,-P}, {INF,-P}, {INF,P}, {INF,P}, {INF,P34}, {INF,N}}, - {{INF,-P12},{U,U}, {U,U}, {U,U}, {U,U}, {INF,P12}, {N,N}}, - {{INF,-P12},{U,U}, {-INF,-P}, {-INF,P}, {U,U}, {INF,P12}, {N,N}}, - {{INF,-P12},{U,U}, {-INF,-0.},{-INF,0.},{U,U}, {INF,P12}, {N,N}}, - {{INF,-P12},{U,U}, {U,U}, {U,U}, {U,U}, {INF,P12}, {N,N}}, - {{INF,-P14},{INF,-0.},{INF,-0.}, {INF,0.}, {INF,0.},{INF,P14}, {INF,N}}, - {{INF,N}, {N,N}, {N,N}, {N,N}, {N,N}, {INF,N}, {N,N}} -}; +static Py_complex log_special_values[7][7]; static Py_complex c_log(Py_complex z) @@ -658,15 +594,7 @@ PyDoc_STRVAR(c_sin_doc, /* sinh(infinity + i*y) needs to be dealt with specially */ -static Py_complex sinh_special_values[7][7] = { - {{INF,N},{U,U},{-INF,-0.},{-INF,0.},{U,U},{INF,N},{INF,N}}, - {{N,N}, {U,U},{U,U}, {U,U}, {U,U},{N,N}, {N,N}}, - {{0.,N}, {U,U},{-0.,-0.}, {-0.,0.}, {U,U},{0.,N}, {0.,N}}, - {{0.,N}, {U,U},{0.,-0.}, {0.,0.}, {U,U},{0.,N}, {0.,N}}, - {{N,N}, {U,U},{U,U}, {U,U}, {U,U},{N,N}, {N,N}}, - {{INF,N},{U,U},{INF,-0.}, {INF,0.}, {U,U},{INF,N},{INF,N}}, - {{N,N}, {N,N},{N,-0.}, {N,0.}, {N,N},{N,N}, {N,N}} -}; +static Py_complex sinh_special_values[7][7]; static Py_complex c_sinh(Py_complex z) @@ -723,15 +651,7 @@ PyDoc_STRVAR(c_sinh_doc, "Return the hyperbolic sine of x."); -static Py_complex sqrt_special_values[7][7] = { - {{INF,-INF},{0.,-INF},{0.,-INF},{0.,INF},{0.,INF},{INF,INF},{N,INF}}, - {{INF,-INF},{U,U}, {U,U}, {U,U}, {U,U}, {INF,INF},{N,N}}, - {{INF,-INF},{U,U}, {0.,-0.}, {0.,0.}, {U,U}, {INF,INF},{N,N}}, - {{INF,-INF},{U,U}, {0.,-0.}, {0.,0.}, {U,U}, {INF,INF},{N,N}}, - {{INF,-INF},{U,U}, {U,U}, {U,U}, {U,U}, {INF,INF},{N,N}}, - {{INF,-INF},{INF,-0.},{INF,-0.},{INF,0.},{INF,0.},{INF,INF},{INF,N}}, - {{INF,-INF},{N,N}, {N,N}, {N,N}, {N,N}, {INF,INF},{N,N}} -}; +static Py_complex sqrt_special_values[7][7]; static Py_complex c_sqrt(Py_complex z) @@ -826,15 +746,7 @@ PyDoc_STRVAR(c_tan_doc, /* tanh(infinity + i*y) needs to be dealt with specially */ -static Py_complex tanh_special_values[7][7] = { - {{-1.,0.},{U,U},{-1.,-0.},{-1.,0.},{U,U},{-1.,0.},{-1.,0.}}, - {{N,N}, {U,U},{U,U}, {U,U}, {U,U},{N,N}, {N,N}}, - {{N,N}, {U,U},{-0.,-0.},{-0.,0.},{U,U},{N,N}, {N,N}}, - {{N,N}, {U,U},{0.,-0.}, {0.,0.}, {U,U},{N,N}, {N,N}}, - {{N,N}, {U,U},{U,U}, {U,U}, {U,U},{N,N}, {N,N}}, - {{1.,0.}, {U,U},{1.,-0.}, {1.,0.}, {U,U},{1.,0.}, {1.,0.}}, - {{N,N}, {N,N},{N,-0.}, {N,0.}, {N,N},{N,N}, {N,N}} -}; +static Py_complex tanh_special_values[7][7]; static Py_complex c_tanh(Py_complex z) @@ -1043,15 +955,7 @@ the distance from 0 and phi the phase angle."); */ -static Py_complex rect_special_values[7][7] = { - {{INF,N},{U,U},{-INF,0.},{-INF,-0.},{U,U},{INF,N},{INF,N}}, - {{N,N}, {U,U},{U,U}, {U,U}, {U,U},{N,N}, {N,N}}, - {{0.,0.},{U,U},{-0.,0.}, {-0.,-0.}, {U,U},{0.,0.},{0.,0.}}, - {{0.,0.},{U,U},{0.,-0.}, {0.,0.}, {U,U},{0.,0.},{0.,0.}}, - {{N,N}, {U,U},{U,U}, {U,U}, {U,U},{N,N}, {N,N}}, - {{INF,N},{U,U},{INF,-0.},{INF,0.}, {U,U},{INF,N},{INF,N}}, - {{N,N}, {N,N},{N,0.}, {N,0.}, {N,N},{N,N}, {N,N}} -}; +static Py_complex rect_special_values[7][7]; static PyObject * cmath_rect(PyObject *self, PyObject *args) @@ -1176,4 +1080,119 @@ initcmath(void) PyModule_AddObject(m, "pi", PyFloat_FromDouble(Py_MATH_PI)); PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E)); + + /* initialize special value tables */ + +#define INIT_SPECIAL_VALUES(NAME, BODY) { Py_complex* p = (Py_complex*)NAME; BODY } +#define C(REAL, IMAG) p->real = REAL; p->imag = IMAG; ++p; + + INIT_SPECIAL_VALUES(acos_special_values, { + C(P34,INF) C(P,INF) C(P,INF) C(P,-INF) C(P,-INF) C(P34,-INF) C(N,INF) + C(P12,INF) C(U,U) C(U,U) C(U,U) C(U,U) C(P12,-INF) C(N,N) + C(P12,INF) C(U,U) C(P12,0.) C(P12,-0.) C(U,U) C(P12,-INF) C(P12,N) + C(P12,INF) C(U,U) C(P12,0.) C(P12,-0.) C(U,U) C(P12,-INF) C(P12,N) + C(P12,INF) C(U,U) C(U,U) C(U,U) C(U,U) C(P12,-INF) C(N,N) + C(P14,INF) C(0.,INF) C(0.,INF) C(0.,-INF) C(0.,-INF) C(P14,-INF) C(N,INF) + C(N,INF) C(N,N) C(N,N) C(N,N) C(N,N) C(N,-INF) C(N,N) + }) + + INIT_SPECIAL_VALUES(acosh_special_values, { + C(INF,-P34) C(INF,-P) C(INF,-P) C(INF,P) C(INF,P) C(INF,P34) C(INF,N) + C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N) + C(INF,-P12) C(U,U) C(0.,-P12) C(0.,P12) C(U,U) C(INF,P12) C(N,N) + C(INF,-P12) C(U,U) C(0.,-P12) C(0.,P12) C(U,U) C(INF,P12) C(N,N) + C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N) + C(INF,-P14) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,P14) C(INF,N) + C(INF,N) C(N,N) C(N,N) C(N,N) C(N,N) C(INF,N) C(N,N) + }) + + INIT_SPECIAL_VALUES(asinh_special_values, { + C(-INF,-P14) C(-INF,-0.) C(-INF,-0.) C(-INF,0.) C(-INF,0.) C(-INF,P14) C(-INF,N) + C(-INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(-INF,P12) C(N,N) + C(-INF,-P12) C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(-INF,P12) C(N,N) + C(INF,-P12) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(INF,P12) C(N,N) + C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N) + C(INF,-P14) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,P14) C(INF,N) + C(INF,N) C(N,N) C(N,-0.) C(N,0.) C(N,N) C(INF,N) C(N,N) + }) + + INIT_SPECIAL_VALUES(atanh_special_values, { + C(-0.,-P12) C(-0.,-P12) C(-0.,-P12) C(-0.,P12) C(-0.,P12) C(-0.,P12) C(-0.,N) + C(-0.,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(-0.,P12) C(N,N) + C(-0.,-P12) C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(-0.,P12) C(-0.,N) + C(0.,-P12) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(0.,P12) C(0.,N) + C(0.,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(0.,P12) C(N,N) + C(0.,-P12) C(0.,-P12) C(0.,-P12) C(0.,P12) C(0.,P12) C(0.,P12) C(0.,N) + C(0.,-P12) C(N,N) C(N,N) C(N,N) C(N,N) C(0.,P12) C(N,N) + }) + + INIT_SPECIAL_VALUES(cosh_special_values, { + C(INF,N) C(U,U) C(INF,0.) C(INF,-0.) C(U,U) C(INF,N) C(INF,N) + C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N) + C(N,0.) C(U,U) C(1.,0.) C(1.,-0.) C(U,U) C(N,0.) C(N,0.) + C(N,0.) C(U,U) C(1.,-0.) C(1.,0.) C(U,U) C(N,0.) C(N,0.) + C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N) + C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N) + C(N,N) C(N,N) C(N,0.) C(N,0.) C(N,N) C(N,N) C(N,N) + }) + + INIT_SPECIAL_VALUES(exp_special_values, { + C(0.,0.) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(0.,0.) C(0.,0.) + C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N) + C(N,N) C(U,U) C(1.,-0.) C(1.,0.) C(U,U) C(N,N) C(N,N) + C(N,N) C(U,U) C(1.,-0.) C(1.,0.) C(U,U) C(N,N) C(N,N) + C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N) + C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N) + C(N,N) C(N,N) C(N,-0.) C(N,0.) C(N,N) C(N,N) C(N,N) + }) + + INIT_SPECIAL_VALUES(log_special_values, { + C(INF,-P34) C(INF,-P) C(INF,-P) C(INF,P) C(INF,P) C(INF,P34) C(INF,N) + C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N) + C(INF,-P12) C(U,U) C(-INF,-P) C(-INF,P) C(U,U) C(INF,P12) C(N,N) + C(INF,-P12) C(U,U) C(-INF,-0.) C(-INF,0.) C(U,U) C(INF,P12) C(N,N) + C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N) + C(INF,-P14) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,P14) C(INF,N) + C(INF,N) C(N,N) C(N,N) C(N,N) C(N,N) C(INF,N) C(N,N) + }) + + INIT_SPECIAL_VALUES(sinh_special_values, { + C(INF,N) C(U,U) C(-INF,-0.) C(-INF,0.) C(U,U) C(INF,N) C(INF,N) + C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N) + C(0.,N) C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(0.,N) C(0.,N) + C(0.,N) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(0.,N) C(0.,N) + C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N) + C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N) + C(N,N) C(N,N) C(N,-0.) C(N,0.) C(N,N) C(N,N) C(N,N) + }) + + INIT_SPECIAL_VALUES(sqrt_special_values, { + C(INF,-INF) C(0.,-INF) C(0.,-INF) C(0.,INF) C(0.,INF) C(INF,INF) C(N,INF) + C(INF,-INF) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,INF) C(N,N) + C(INF,-INF) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(INF,INF) C(N,N) + C(INF,-INF) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(INF,INF) C(N,N) + C(INF,-INF) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,INF) C(N,N) + C(INF,-INF) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,INF) C(INF,N) + C(INF,-INF) C(N,N) C(N,N) C(N,N) C(N,N) C(INF,INF) C(N,N) + }) + + INIT_SPECIAL_VALUES(tanh_special_values, { + C(-1.,0.) C(U,U) C(-1.,-0.) C(-1.,0.) C(U,U) C(-1.,0.) C(-1.,0.) + C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N) + C(N,N) C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(N,N) C(N,N) + C(N,N) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(N,N) C(N,N) + C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N) + C(1.,0.) C(U,U) C(1.,-0.) C(1.,0.) C(U,U) C(1.,0.) C(1.,0.) + C(N,N) C(N,N) C(N,-0.) C(N,0.) C(N,N) C(N,N) C(N,N) + }) + + INIT_SPECIAL_VALUES(rect_special_values, { + C(INF,N) C(U,U) C(-INF,0.) C(-INF,-0.) C(U,U) C(INF,N) C(INF,N) + C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N) + C(0.,0.) C(U,U) C(-0.,0.) C(-0.,-0.) C(U,U) C(0.,0.) C(0.,0.) + C(0.,0.) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(0.,0.) C(0.,0.) + C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N) + C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N) + C(N,N) C(N,N) C(N,0.) C(N,0.) C(N,N) C(N,N) C(N,N) + }) } diff --git a/Modules/mathmodule.c b/Modules/mathmodule.c index 8c48316..19ed1b1 100644 --- a/Modules/mathmodule.c +++ b/Modules/mathmodule.c @@ -414,6 +414,15 @@ math_modf(PyObject *self, PyObject *arg) double y, x = PyFloat_AsDouble(arg); if (x == -1.0 && PyErr_Occurred()) return NULL; + /* some platforms don't do the right thing for NaNs and + infinities, so we take care of special cases directly. */ + if (!Py_IS_FINITE(x)) { + if (Py_IS_INFINITY(x)) + return Py_BuildValue("(dd)", copysign(0., x), x); + else if (Py_IS_NAN(x)) + return Py_BuildValue("(dd)", x, x); + } + errno = 0; PyFPE_START_PROTECT("in math_modf", return 0); x = modf(x, &y); @@ -586,6 +595,7 @@ math_pow(PyObject *self, PyObject *args) { PyObject *ox, *oy; double r, x, y; + int odd_y; if (! PyArg_UnpackTuple(args, "pow", 2, 2, &ox, &oy)) return NULL; @@ -593,37 +603,62 @@ math_pow(PyObject *self, PyObject *args) y = PyFloat_AsDouble(oy); if ((x == -1.0 || y == -1.0) && PyErr_Occurred()) return NULL; - /* 1**x and x**0 return 1., even if x is a NaN or infinity. */ - if (x == 1.0 || y == 0.0) - return PyFloat_FromDouble(1.); - errno = 0; - PyFPE_START_PROTECT("in math_pow", return 0); - r = pow(x, y); - PyFPE_END_PROTECT(r); - if (Py_IS_NAN(r)) { - if (!Py_IS_NAN(x) && !Py_IS_NAN(y)) - errno = EDOM; - else - errno = 0; - } - /* an infinite result arises either from: - (A) (+/-0.)**negative, - (B) overflow of x**y with both x and y finite (and x nonzero) - (C) (+/-inf)**positive, or - (D) x**inf with |x| > 1, or x**-inf with |x| < 1. - - In case (A) we want ValueError to be raised. In case (B) - OverflowError should be raised. In cases (C) and (D) the infinite - result should be returned. - */ - else if (Py_IS_INFINITY(r)) { - if (x == 0.) - errno = EDOM; - else if (Py_IS_FINITE(x) && Py_IS_FINITE(y)) - errno = ERANGE; - else - errno = 0; + /* deal directly with IEEE specials, to cope with problems on various + platforms whose semantics don't exactly match C99 */ + if (!Py_IS_FINITE(x) || !Py_IS_FINITE(y)) { + errno = 0; + if (Py_IS_NAN(x)) + r = y == 0. ? 1. : x; /* NaN**0 = 1 */ + else if (Py_IS_NAN(y)) + r = x == 1. ? 1. : y; /* 1**NaN = 1 */ + else if (Py_IS_INFINITY(x)) { + odd_y = Py_IS_FINITE(y) && fmod(fabs(y), 2.0) == 1.0; + if (y > 0.) + r = odd_y ? x : fabs(x); + else if (y == 0.) + r = 1.; + else /* y < 0. */ + r = odd_y ? copysign(0., x) : 0.; + } + else if (Py_IS_INFINITY(y)) { + if (fabs(x) == 1.0) + r = 1.; + else if (y > 0. && fabs(x) > 1.0) + r = y; + else if (y < 0. && fabs(x) < 1.0) { + r = -y; /* result is +inf */ + if (x == 0.) /* 0**-inf: divide-by-zero */ + errno = EDOM; + } + else + r = 0.; + } + } + else { + /* let libm handle finite**finite */ + errno = 0; + PyFPE_START_PROTECT("in math_pow", return 0); + r = pow(x, y); + PyFPE_END_PROTECT(r); + /* a NaN result should arise only from (-ve)**(finite + non-integer); in this case we want to raise ValueError. */ + if (!Py_IS_FINITE(r)) { + if (Py_IS_NAN(r)) { + errno = EDOM; + } + /* + an infinite result here arises either from: + (A) (+/-0.)**negative (-> divide-by-zero) + (B) overflow of x**y with x and y finite + */ + else if (Py_IS_INFINITY(r)) { + if (x == 0.) + errno = EDOM; + else + errno = ERANGE; + } + } } if (errno && is_error(r)) |