summaryrefslogtreecommitdiffstats
path: root/Modules
diff options
context:
space:
mode:
authorMark Dickinson <dickinsm@gmail.com>2009-12-19 11:20:49 (GMT)
committerMark Dickinson <dickinsm@gmail.com>2009-12-19 11:20:49 (GMT)
commit45f992a45e54330335417f1368f7fc7c920737c6 (patch)
treeb1568e3c8d8ff63614c0f87edf30e328e1170166 /Modules
parent056aafe7f242058c767b5a2c8a8971ea31edfa8e (diff)
downloadcpython-45f992a45e54330335417f1368f7fc7c920737c6.zip
cpython-45f992a45e54330335417f1368f7fc7c920737c6.tar.gz
cpython-45f992a45e54330335417f1368f7fc7c920737c6.tar.bz2
Merged revisions 76878 via svnmerge from
svn+ssh://pythondev@svn.python.org/python/trunk ........ r76878 | mark.dickinson | 2009-12-19 11:07:23 +0000 (Sat, 19 Dec 2009) | 3 lines Issue #3366: Add error function and complementary error function to math module. ........
Diffstat (limited to 'Modules')
-rw-r--r--Modules/mathmodule.c142
1 files changed, 142 insertions, 0 deletions
diff --git a/Modules/mathmodule.c b/Modules/mathmodule.c
index ef84298..f835005 100644
--- a/Modules/mathmodule.c
+++ b/Modules/mathmodule.c
@@ -69,6 +69,7 @@ extern double copysign(double, double);
*/
static const double pi = 3.141592653589793238462643383279502884197;
+static const double sqrtpi = 1.772453850905516027298167483341145182798;
static double
sinpi(double x)
@@ -375,6 +376,141 @@ m_lgamma(double x)
return r;
}
+/*
+ Implementations of the error function erf(x) and the complementary error
+ function erfc(x).
+
+ Method: following 'Numerical Recipes' by Flannery, Press et. al. (2nd ed.,
+ Cambridge University Press), we use a series approximation for erf for
+ small x, and a continued fraction approximation for erfc(x) for larger x;
+ combined with the relations erf(-x) = -erf(x) and erfc(x) = 1.0 - erf(x),
+ this gives us erf(x) and erfc(x) for all x.
+
+ The series expansion used is:
+
+ erf(x) = x*exp(-x*x)/sqrt(pi) * [
+ 2/1 + 4/3 x**2 + 8/15 x**4 + 16/105 x**6 + ...]
+
+ The coefficient of x**(2k-2) here is 4**k*factorial(k)/factorial(2*k).
+ This series converges well for smallish x, but slowly for larger x.
+
+ The continued fraction expansion used is:
+
+ erfc(x) = x*exp(-x*x)/sqrt(pi) * [1/(0.5 + x**2 -) 0.5/(2.5 + x**2 - )
+ 3.0/(4.5 + x**2 - ) 7.5/(6.5 + x**2 - ) ...]
+
+ after the first term, the general term has the form:
+
+ k*(k-0.5)/(2*k+0.5 + x**2 - ...).
+
+ This expansion converges fast for larger x, but convergence becomes
+ infinitely slow as x approaches 0.0. The (somewhat naive) continued
+ fraction evaluation algorithm used below also risks overflow for large x;
+ but for large x, erfc(x) == 0.0 to within machine precision. (For
+ example, erfc(30.0) is approximately 2.56e-393).
+
+ Parameters: use series expansion for abs(x) < ERF_SERIES_CUTOFF and
+ continued fraction expansion for ERF_SERIES_CUTOFF <= abs(x) <
+ ERFC_CONTFRAC_CUTOFF. ERFC_SERIES_TERMS and ERFC_CONTFRAC_TERMS are the
+ numbers of terms to use for the relevant expansions. */
+
+#define ERF_SERIES_CUTOFF 1.5
+#define ERF_SERIES_TERMS 25
+#define ERFC_CONTFRAC_CUTOFF 30.0
+#define ERFC_CONTFRAC_TERMS 50
+
+/*
+ Error function, via power series.
+
+ Given a finite float x, return an approximation to erf(x).
+ Converges reasonably fast for small x.
+*/
+
+static double
+m_erf_series(double x)
+{
+ double x2, acc, fk;
+ int i;
+
+ x2 = x * x;
+ acc = 0.0;
+ fk = (double)ERF_SERIES_TERMS + 0.5;
+ for (i = 0; i < ERF_SERIES_TERMS; i++) {
+ acc = 2.0 + x2 * acc / fk;
+ fk -= 1.0;
+ }
+ return acc * x * exp(-x2) / sqrtpi;
+}
+
+/*
+ Complementary error function, via continued fraction expansion.
+
+ Given a positive float x, return an approximation to erfc(x). Converges
+ reasonably fast for x large (say, x > 2.0), and should be safe from
+ overflow if x and nterms are not too large. On an IEEE 754 machine, with x
+ <= 30.0, we're safe up to nterms = 100. For x >= 30.0, erfc(x) is smaller
+ than the smallest representable nonzero float. */
+
+static double
+m_erfc_contfrac(double x)
+{
+ double x2, a, da, p, p_last, q, q_last, b;
+ int i;
+
+ if (x >= ERFC_CONTFRAC_CUTOFF)
+ return 0.0;
+
+ x2 = x*x;
+ a = 0.0;
+ da = 0.5;
+ p = 1.0; p_last = 0.0;
+ q = da + x2; q_last = 1.0;
+ for (i = 0; i < ERFC_CONTFRAC_TERMS; i++) {
+ double temp;
+ a += da;
+ da += 2.0;
+ b = da + x2;
+ temp = p; p = b*p - a*p_last; p_last = temp;
+ temp = q; q = b*q - a*q_last; q_last = temp;
+ }
+ return p / q * x * exp(-x2) / sqrtpi;
+}
+
+/* Error function erf(x), for general x */
+
+static double
+m_erf(double x)
+{
+ double absx, cf;
+
+ if (Py_IS_NAN(x))
+ return x;
+ absx = fabs(x);
+ if (absx < ERF_SERIES_CUTOFF)
+ return m_erf_series(x);
+ else {
+ cf = m_erfc_contfrac(absx);
+ return x > 0.0 ? 1.0 - cf : cf - 1.0;
+ }
+}
+
+/* Complementary error function erfc(x), for general x. */
+
+static double
+m_erfc(double x)
+{
+ double absx, cf;
+
+ if (Py_IS_NAN(x))
+ return x;
+ absx = fabs(x);
+ if (absx < ERF_SERIES_CUTOFF)
+ return 1.0 - m_erf_series(x);
+ else {
+ cf = m_erfc_contfrac(absx);
+ return x > 0.0 ? cf : 2.0 - cf;
+ }
+}
/*
wrapper for atan2 that deals directly with special cases before
@@ -721,6 +857,10 @@ FUNC1(cos, cos, 0,
"cos(x)\n\nReturn the cosine of x (measured in radians).")
FUNC1(cosh, cosh, 1,
"cosh(x)\n\nReturn the hyperbolic cosine of x.")
+FUNC1A(erf, m_erf,
+ "erf(x)\n\nError function at x.")
+FUNC1A(erfc, m_erfc,
+ "erfc(x)\n\nComplementary error function at x.")
FUNC1(exp, exp, 1,
"exp(x)\n\nReturn e raised to the power of x.")
FUNC1(expm1, m_expm1, 1,
@@ -1497,6 +1637,8 @@ static PyMethodDef math_methods[] = {
{"cos", math_cos, METH_O, math_cos_doc},
{"cosh", math_cosh, METH_O, math_cosh_doc},
{"degrees", math_degrees, METH_O, math_degrees_doc},
+ {"erf", math_erf, METH_O, math_erf_doc},
+ {"erfc", math_erfc, METH_O, math_erfc_doc},
{"exp", math_exp, METH_O, math_exp_doc},
{"expm1", math_expm1, METH_O, math_expm1_doc},
{"fabs", math_fabs, METH_O, math_fabs_doc},